Skip to main content
Log in

Modelling bivariate lifetime data using copula

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Generally modelling lifetime data is carried out using probability distributions with the aid of reliability functions such as hazard rate, mean residual life, etc. In the present work an alternative approach is proposed by considering bivariate copulas instead of bivariate distributions. We define the analogues of reliability functions that are expressed in terms of copulas and study their properties. The results of the study are applied to case of the copulas of a bivariate exponential family of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bassan, B., Kochar, S., Spizzichino, F.: Some bivariate notions of IFR and DMRL and related properties. J. Appl. Probab. 39, 533–544 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassan, B., Spizzichino, F.: Stochastic comparisons for residual lifetimes and Bayesian notions of multivariate ageing. Adv. Appl. Probab. 31, 1078–1094 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berg, D.: Copula goodness-of-fit testing: an overview and power comparison. Eur. J. Finance 15, 675–701 (2009)

    Article  Google Scholar 

  4. Csörga̋, S., Welsh, A.: Testing for exponential and Marshall–Olkin distributions. J. Stat. Plan. Inference 23, 287–300 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Agostino, R.B.: Goodness-of-fit-techniques, vol. 68. CRC Press, Boca Raton (1986)

    MATH  Google Scholar 

  6. Fang, K.-T., Fang, H.-B., Rosen, D.V.: A family of bivariate distributions with non-elliptical contours. Commun. Stat. Theory Methods 29, 1885–1898 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Galambos, J., Kotz, S.: Characterizations of Probability Distributions. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  8. Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: a review and a power study. Insur. Math. Econ. 44, 199–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Genest, C., Rivest, L.-P.: Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88, 1034–1043 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Georges, P., Lamy, A.-G., Nicolas, E., Quibel, G., Roncalli, T.:. Multivariate survival modelling: a unified approach with copulas. Available at Social Science Research Network (2001). http://gro.creditlyonnais.fr/content/rd/homecopulas.htm

  11. Gumbel, E.J.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55, 698–707 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, N.L., Kotz, S.: A vector multivariate hazard rate. J. Multivar. Anal. 5, 53–66 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaishev, V.K., Dimitrova, D.S., Haberman, S.: Modelling the joint distribution of competing risks survival times using copula functions. Insur. Math. Econ. 41, 339–361 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Louzada, F., Suzuki, A.K., Cancho, V.G., Prince, F.L., Pereira, G.A.: The long-term bivariate survival FGM copula model: an application to a brazilian HIV Data. J. Data Sci. 10, 511–535 (2012)

    MathSciNet  Google Scholar 

  15. Nair, N.U., Nair, V.K.R.: A characterization of the bivariate exponential distribution. Biom. J. 30, 107–112 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nair, N.U., Sankaran, P.G.: A family of bivariate exponential distributions and their copulas. Sankhya B 76, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Navarro, J., Spizzichino, F.: Comparisons of series and parallel systems with components sharing the same copula. Appl. Stoch. Models Bus. Ind. 26, 775–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  19. Pellerey, F.: On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas. Kybernetika 44, 795–806 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Romeo, J.S., Tanaka, N.I., Pedroso-de Lima, A.C.: Bivariate survival modeling: a Bayesian approach based on copulas. Lifetime Data Anal. 12, 205–222 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Saunders, R., Laud, P.: The multidimensional Kolmogorov goodness-of-fit test. Biometrika 67, 237–237 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  23. Zahedi, H.: Some new classes of multivariate survival distribution functions. J. Stat. Plan. Inference 11, 171–188 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee and the editor for the constructive comments. The third author thanks Department of Science and Technology, Government of India for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Sankaran.

Appendices

Appendix A: Proof of Proposition 3.2

Since \(G_1(u,v) =\dfrac{{A_1 (u,v)}}{{A_1 (u,1)}}\), we have \(G_1(p,1)=1\) and

$$\begin{aligned} C(u,1)=\exp \left[ - \int \limits _u^1 {\frac{{dp}}{p}}\right] =u. \end{aligned}$$

The properties \(C(1,v)=v\) and \(C(u,0)=0\) are obvious. Further,

$$\begin{aligned} C(0,v)=v \exp \left[ - \int \limits _0^1 {\frac{{{G_1}(p,v)}}{p}} dp\right] =0, \quad \text {by (ii)}. \end{aligned}$$

Condition (iii) implies that for \(v_2 \ge v_1\),

$$\begin{aligned}&v_2\left[ \exp \left( - \int \limits _{u_2}^1 {\frac{{{G_1}(p,v_2)}}{p}} dp\,\right) - \exp \left( - \int \limits _{u_1}^1 {\frac{{{G_1}(p,v_2)}}{p}} dp\,\right) \right] \\&\quad \ge v_1\left[ \exp \left( - \int \limits _{u_2}^1 {\frac{{{G_1}(p,v_1)}}{p}} dp\,\right) - \exp \left( - \int \limits _{u_1}^1 {\frac{{{G_1}(p,v_1)}}{p}} dp\,\right) \right] \end{aligned}$$

which is the same as

$$\begin{aligned} C(u_2,v_2)- C(u_1,v_2)-C(u_2,v_1)+C(u_1,v_1) \ge 0 \end{aligned}$$

and thus C(uv) is a copula.

Appendix B: Proof of Proposition 3.3

Assume (3.9). Then by direct calculation,

$$\begin{aligned} (G_1,G_2)= (1-\beta \log v,1-\beta \log u ) \end{aligned}$$

which is of the form (3.10). On the other hand, if we assume that (3.10) holds then formulas (3.6) and (3.7) lead to the functional equation

$$\begin{aligned} v\,\, u^ {B_1(v)}= u\,\, v^{B_2(u)}, \end{aligned}$$
(B1)

which is equivalent to

$$\begin{aligned} u^{\frac{1}{B_2(u)-1}}= v^{\frac{1}{B_1(v)-1}}. \end{aligned}$$

The solution is

$$\begin{aligned} u^{\frac{1}{B_2(u)-1}}= k = v^{\frac{1}{B_1(v)-1}} \end{aligned}$$

giving

$$\begin{aligned} B_1(v) = 1- \beta \log v\quad \text{ and }\quad B_2(u) = 1-\beta \log u\quad \text {where}\quad \beta = (-\log k)^{-1}. \end{aligned}$$

Substituting into (3.6) and (3.7), we recover the copula (3.9). This completes the proof.

Appendix C: Proof of Proposition 3.4

To prove the necessary part, we note that for the Clayton survival copula,

$$\begin{aligned} G_1(u,v)= \dfrac{u^{-\frac{1}{\theta }}}{u^{-\frac{1}{\theta }}+v^{-\frac{1}{\theta }}-1} \end{aligned}$$

and

$$\begin{aligned} G_2(u,v)= \dfrac{v^{-\frac{1}{\theta }}}{u^{-\frac{1}{\theta }}+v^{-\frac{1}{\theta }}-1} \end{aligned}$$

so that (3.11) holds. To prove the converse part, we observe that (3.12) is an Archimedean copula with generator \(\phi (u)=\theta (u^{\frac{-1}{\theta }}-1)\). From Theorem 4.3.8 in Nelsen [18], for Archimedean copula with generator \(\phi \),

$$\begin{aligned} \phi ^{'}(u)\dfrac{\partial C}{\partial v}= \phi ^{'}(v)\dfrac{\partial C}{\partial u} \end{aligned}$$
(C1)

for almost all u,v in I.

Using

$$\begin{aligned} \dfrac{G_1}{G_2}= \dfrac{u \frac{1}{c}\frac{\partial C}{\partial u}}{v \frac{1}{c}\frac{\partial C}{\partial v}}=\dfrac{u^{-\frac{1}{\theta }}}{v^{-\frac{1}{\theta }}} \end{aligned}$$

(C1) becomes

$$\begin{aligned} \phi ^{'}(u)u ^{\frac{1}{\theta }+1}=\phi ^{'}(v)v ^{\frac{1}{\theta }+1}, \end{aligned}$$

for all uv.

The solution of the above functional equation is

$$\begin{aligned} \phi ^{'}(u)u ^{\frac{1}{\theta }+1}=\phi ^{'}(v)v ^{\frac{1}{\theta }+1}=k \end{aligned}$$
(C2)

where k is a constant that may depend on \(\theta \). Also k is less than zero since \(\phi \) is decreasing. Solving (C2) with the boundary condition \(\phi (1)=0\) and setting \(k=-1,\)

$$\begin{aligned} \phi (u)= \theta \left( u^{\frac{-1}{\theta }}-1\right) \end{aligned}$$

and accordingly C is a Clayton survival copula.

Appendix D: Proof of Proposition 4.1

Differentiating (4.1) with respect to u,

$$\begin{aligned} C\,\frac{{\partial M_1 }}{{\partial u}} + \,M_1 \frac{{\partial C}}{{\partial u}} = - C(u,v)\frac{{dS_1^{ - 1} }}{{du}}. \end{aligned}$$
(D1)

Also

$$\begin{aligned} M_1(u,1)&= m_1(S_1^{-1}(u),0)\\ =&- \frac{1}{u}\int \limits _0^u {p_1\,} \frac{{dS_1^{ - 1} (p_1)}}{{dp_1}}dp_1, \end{aligned}$$

or

$$\begin{aligned} \frac{{dS_1^{ - 1} (u)}}{{du}} = - \frac{1}{u}\frac{d (u M_1(u,1))}{du}. \end{aligned}$$

Substituting in (D1),

$$\begin{aligned} \frac{{\partial \log C}}{{\partial u}} = \frac{{\frac{d }{{d u}}(u\,M_1 (u,1))}}{{u\,M_1 (u,v)}} - \frac{{\partial \log M_1 (u,v)}}{{\partial u}}. \end{aligned}$$
(D2)

Similarly

$$\begin{aligned} \frac{{\partial \log C}}{{\partial v}} = \frac{{\frac{d }{{d v}}(v\,M_2 (1,v))}}{{v\,M_2 (u,v)}} - \frac{{\partial \log M_2 (u,v)}}{{\partial v}}. \end{aligned}$$
(D3)

Integrating (D2) from u to 1 and (D3) from v to 1 we have (4.3) and (4.4).

Appendix E: Proof of Proposition 4.2

Condition (i) follows from the identity

$$\begin{aligned} G_1(u,v)=\frac{\frac{d}{du}u M_1(u,1)}{M_1(u,v)} -u \frac{\partial \log M_1(u,v)}{\partial u} \ge 0. \end{aligned}$$

Now

$$\begin{aligned} C(u,1)=\frac{M_1(1,1)}{M_1(u,1)}\exp \left[ - \int \limits _u^1 {\frac{\partial }{{\partial p_1}}\log p_1 {M_1}(p_1,1)} dp_1\right] =u. \end{aligned}$$

It is easy to see that \(C(1,v)=v\) and \(C(u,0)=0\). Also

$$\begin{aligned} C(0,v) =v \exp \left[ - \int \limits _0^1 {\frac{{\tfrac{\partial }{{\partial p_1}}p_1{M_1}(p_1,1)}}{{p_1{M_1}(p_1,v)}}} dp_1\right] =0 \end{aligned}$$

by (ii).

Condition (iii) implies that for \(v_2 \ge v_1\)

$$\begin{aligned} v_2[B(u_2,v_2)-B(u_1,v_2)]\ge v_1[B(u_2,v_1)-B(u_1,v_1)] \end{aligned}$$

which is equivalent to the 2-increasing property of C(uv). Thus C(uv) is a copula.

Appendix F: Proof of Proposition 4.3

The necessary part of the theorem follows by direct calculations using (3.9) in (4.5) and (4.6). This gives

$$\begin{aligned} (L_1, L_2)=\left( \frac{1}{1-\beta \log v} ,\frac{1}{1-\beta \log u}\right) , \end{aligned}$$

which is of the form (4.9). We prove the converse part by assuming (4.9). Equations (4.7) and (4.8) yield after some algebra

$$\begin{aligned} C(u,v)= v \exp \left( \frac{\log u}{K_1(v)}\right) =u \exp \left( \frac{\log v}{K_2(u)}\right) . \end{aligned}$$
(F1)

This leads to the functional equation

$$\begin{aligned} \frac{\log v}{1-\frac{1}{K_1(v)}}=\frac{\log u}{1-\frac{1}{K_2(u)}} \end{aligned}$$
(F2)

which is true for all uv. This happens if and only if (F2) is a constant, say \(\dfrac{1}{\beta }\), \(\beta >0\). Thus from (F2),we obtain

$$\begin{aligned} K_1(v)=\frac{1}{1-\beta \log v} \end{aligned}$$

and

$$\begin{aligned} K_2(u)=\frac{1}{1-\beta \log u}. \end{aligned}$$

Substituting \(K_1(v)\) and \(K_2(u)\) in (F1), we obtain the Gumbel–Barnett survival copula.

There exist some identities connecting \((G_1,G_2)\), \((M_1,M_2)\) and \((L_1,L_2)\). From (D2) and (D3)

$$\begin{aligned} G_1(u,v)= [M_1(u,v)]^{-1}\left[ \frac{d}{du}u M_1(u,1)-u\frac{\partial M_1(u,v)}{\partial u}\right] \end{aligned}$$

and

$$\begin{aligned} G_2(u,v)= [M_2(u,v)]^{-1}\left[ \frac{d}{dv}v M_2(1,v)-{v}\frac{\partial M_2(u,v)}{\partial v}\right] \end{aligned}$$

Differentiating (4.5)

$$\begin{aligned} L_1 \frac{\partial C}{\partial u}+C \frac{\partial L_1}{\partial u}= \dfrac{C}{u} \end{aligned}$$

or

$$\begin{aligned} L_1 \frac{\partial \log C}{\partial u}+ \frac{\partial L_1}{\partial u}= \dfrac{1}{u}. \end{aligned}$$

Using the definition of \(G_1\),

$$\begin{aligned} L_1(u,v) G_1(u,v)+u \frac{\partial L_1}{\partial u}=1. \end{aligned}$$
(F3)

Similarly

$$\begin{aligned} L_2(u,v) G_2(u,v)+v\frac{\partial L_2}{\partial v}=1. \end{aligned}$$
(F4)

Also \((L_1,L_2)\) is related to \((M_1,M_2)\) by the identities

$$\begin{aligned} \dfrac{1}{L_1}\left( \dfrac{\partial L_1}{\partial u}-\dfrac{1}{u}\right) = \dfrac{1}{M_1}\left( \dfrac{\partial M_1}{\partial u}-\dfrac{1}{u}\dfrac{d(u M_1(u,1))}{d u}\right) \end{aligned}$$

and

$$\begin{aligned} \dfrac{1}{L_2}\left( \dfrac{\partial L_2}{\partial v}-\dfrac{1}{v}\right) = \dfrac{1}{M_2}\left( \dfrac{\partial M_2}{\partial v}-\dfrac{1}{v}\dfrac{d(v M_2(1,v))}{d v}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, N.U., Sankaran, P.G. & John, P. Modelling bivariate lifetime data using copula. METRON 76, 133–153 (2018). https://doi.org/10.1007/s40300-018-0135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-018-0135-5

Keywords

Mathematics Subject Classification

Navigation