Skip to main content
Log in

A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout

  • Published:
METRON Aims and scope Submit manuscript

Abstract

Experiments involving repeated observations of multivariate outcomes are common in biomedical and public health researches which lead to multivariate longitudinal data. These kinds of data have a unique property in the sense that they allow the researcher to study the joint evolution of the multiple outcomes over the time. Recently, there has been a considerable amount of interest on using Bayesian modelling of longitudinal data, data which commonly suffer from incomplete observations. Those Bayesian models for longitudinal data that rely on the ignorability assumption of the dropout mechanism might give misleading inferences. Hence, there is a need to further study the impact of departures from the ignorability assumption on the Bayesian estimates of the model parameters. Current methodology for Bayesian sensitivity analysis mostly involves single response variable in both cross-sectional and longitudinal studies. In this paper, we propose a multivariate extension of the Bayesian index of sensitivity to non-ignorability for the general case of multivariate longitudinal studies with the possibility of having mixed correlated outcomes and a vector of multiple non-ignorability parameters in the missing mechanism. To simultaneously model the mixed responses over the time, we use a random effect latent variable approach. We illustrate the method conducting some simulation studies and analyzing a real data set from a longitudinal study for the comparison of two oral treatments for toenail dermatophyte onychomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chib, S., Greenberg, E.: Understanding the Metropolis–Hastings algorithm. Am. Stat. 49, 327–335 (1995)

    Google Scholar 

  2. Copas, J.B., Eguchi, S.: Local sensitivity approximations for selectivity bias. J. R. Stat. Soc. Ser. B 63, 871–895 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Copas, J.B., Li, H.G.: Inference for non-random samples (with discussion). J. R. Stat. Soc. Ser. B 59, 55–95 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Backer, M., De Keyser, P., De Vroey, C., Lesaffre, E.: A 12-week treatment for dermatophyte toe onychomycosis: terbinafine 250 mg/day vs. itraconazole 200 mg/daya double-blind comparative trial. Br. J. Dermatol. 134, 16–17 (1996)

    Article  Google Scholar 

  5. Diggle, P., Kenward, M.G.: Informative drop-out in longitudinal data analysis (with discussion). Appl. Stat. 43, 49–73 (1994)

    Article  MATH  Google Scholar 

  6. Eftekhari Mahabadi, S., Ganjali, M.: An index of local sensitivity to non-ignorability for multivariate longitudinal mixed data with potential non-random dropout. Stat. Med. 29(17), 1779–1792 (2010)

    Article  MathSciNet  Google Scholar 

  7. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41, 337–348 (1992)

    Article  MATH  Google Scholar 

  8. Hastings, W.K.: Monte Carlo sampling method using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MATH  Google Scholar 

  9. Heckman, J.J.: Dummy endogenous variable in a simultaneous equation system. Econometrica 46(6), 31–959 (1978)

    MathSciNet  Google Scholar 

  10. Little, R.J.A.: Modeling the dropout mechanism in repeated-measures studies. J. Am. Stat. Assoc. 90, 1112–1121 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  12. Ma, G., Troxel, A.B., Heitjan, D.F.: An index of local sensitivity to nonignorable dropout in longitudinal modeling. Stat. Med. 24, 2129–2150 (2005)

    Article  MathSciNet  Google Scholar 

  13. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  Google Scholar 

  14. Molenberghs, G., Kenward, M.G.: Missing Data in Clinical Studies. Wiley, Chichester (2007)

    Book  Google Scholar 

  15. Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer, New York (2005)

    MATH  Google Scholar 

  16. Qian, Y., Xie, H.: Measuring the impact of nonignorability in panel data with non-monotone nonresponse. J. Appl. Econom. 27(1), 129–159 (2010)

    MathSciNet  Google Scholar 

  17. Ripley, B.: Stochastic Simulation. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  18. Roberts, D.T.: Prevalence of dermatophyte onychomycosis in the United Kingdom: results of an omnibus survey. Br. J. Dermatol. 126(Suppl. 39), 23–27 (1992)

    Article  Google Scholar 

  19. Rubin, D.B.: Inference and missing data. Biometrika 63, 581–592 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Scharfstein, D., Rotnitzky, A., Robins, J.M.: Adjusting for nonignorable dropout using semiparametric models (with discussion). J. Am. Stat. Assoc. 94, 1096–1146 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Troxel, A.B., Ma, G., Heitjan, D.F.: An index of local sensitivity to nonignorability. Stat. Sin. 14, 1221–1237 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Vach, W., Blettner, M.: Logistic regression with incompletely observed categorical covariates investigating the sensitivity against violation of the missing at random assumption. Stat. Med. 14, 1315–1329 (1995)

    Article  Google Scholar 

  23. Verbeke, G., Lesaffre, E., Spiessens, B.: The practical use of different strategies to handle dropout in longitudinal studies. Drug Inf. J. 35, 419–434 (2001)

    Google Scholar 

  24. Verbeke, G., Molenberghs, G.: Linear Mixed Models for Longitudinal Data. Springer, New York (2000)

    MATH  Google Scholar 

  25. Xie, H.: A local sensitivity analysis approach to longitudinal non-Gaussian data with non-ignorable dropout. Stat. Med. 27, 3155–3177 (2008)

    Article  MathSciNet  Google Scholar 

  26. Xie, H.: Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout. Stat. Med. 28, 2725–2747 (2009)

    Article  MathSciNet  Google Scholar 

  27. Xie, H., Heitjan, D.F.: Sensitivity analysis of causal inference in a clinical trial subject to crossover. Clin. Trials 1, 21–30 (2004)

    Article  Google Scholar 

  28. Xie, H., Heitjan, D.F.: Local sensitivity to nonignorability: dependence on the assumed dropout mechanism. Stat. Biopharm. Res. 1, 243–257 (2009)

    Article  Google Scholar 

  29. Zhang, J., Heitjan, D.F.: A simple local sensitivity analysis tool for nonignorable coarsening: application to dependent censoring. Biometrics 62, 1260–1268 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, J., Heitjan, D.F.: Impact of nonignorable coarsening on Bayesian inference. Biostatistics 8, 722–743 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Eftekhari Mahabadi.

Appendix: Bayesian ISNI derivation

Appendix: Bayesian ISNI derivation

Assume that there is a \(s=(m+n)\) dimensional vector of non-ignorability parameters \(\Gamma _1=(\gamma _{11},\ldots , \gamma _{1s})\) in the missing mechanism and that \(\eta =(\Theta , \Gamma _0)\) is the vector of model parameters. We define the Bayesian ISNI in the case of multiple non-ignorability parameters as the partial first derivatives of the posterior mean of \(\eta \) with respect to \(\Gamma _1\), i.e.,

$$\begin{aligned}&ISNI[\tilde{\eta }(\Gamma _1)]=\frac{\partial E(\eta |w^{obs},R,\Gamma _1)}{\partial \Gamma _1^T}|_{\Gamma _1=0}\\&\quad \!=\! \left( \! \frac{\partial E(\eta |w^{obs},R,\Gamma _1)}{\partial \gamma _{11}}|_{\Gamma _1=0}, \frac{\partial E(\eta |w^{obs},R,\Gamma _1)}{\partial \gamma _{12}}|_{\Gamma _1=0},\ldots , \frac{\partial E(\eta |w^{obs},R,\Gamma _1)}{\partial \gamma _{1s}}|_{\Gamma _1=0} \!\right) \end{aligned}$$

where the elements of the above vector could be calculated as follows:

$$\begin{aligned} \frac{\partial E(\eta |w^{obs},R,\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0}= & {} \frac{\partial }{\partial \gamma _{1j}} \int \eta \frac{f_{\eta }(w^{obs},R|\Gamma _1)\pi (\eta ) }{\int f_{\eta }(w^{obs},R|\Gamma _1)\pi (\eta ) d \eta } d \eta \vert _{\Gamma _1=0}\\= & {} \int \eta \frac{\partial f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}} \frac{\pi (\eta )}{\int f_{\eta }(w^{obs},R|\Gamma _1)\pi (\eta ) d \eta }d \eta |_{\Gamma _1=0}\\&- \left[ \frac{\int \eta f_{\eta }(w^{obs},R|\Gamma _1)\pi (\eta ) d \eta }{(\int f_{\eta }(w^{obs},R|\Gamma _1)\pi (\eta ) d \eta )^2}\times \int \frac{\partial f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}} \pi (\eta ) d \eta \right] _{\Gamma _1=0}\\= & {} \int \left\{ \eta \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0} \frac{f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) }{\int f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) d \eta } \right\} d \eta \\&- \int \eta \frac{f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) }{\int f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) d \eta } d\eta \\&\times \int \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0} \frac{f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) }{\int f_{\eta }(w^{obs},R|\Gamma _1=0)\pi (\eta ) d \eta } d \eta \\= & {} E_I \left( \eta \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0} \right) \\&- E_I (\eta ) E_I \left( \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0}\right) \\= & {} COV_I(\eta , \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}|_{\Gamma _1=0}), ~~\forall j=1,\ldots , s \end{aligned}$$

where \(E_I(.)\) and \(COV_I(.)\) denote the posterior mean and covariance functions for the ignorable model. Hence the vector of Bayesian sensitivity index could be denoted as:

$$\begin{aligned} ISNI[\tilde{\eta }(\Gamma _1)]= & {} COV_{I}\left( \eta ,\frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \Gamma _1^T}\vert _{\Gamma _1=0}\right) \nonumber \\= & {} \left[ COV_I(\eta ,\frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{11}}\vert _{\Gamma _1=0}),\right. \nonumber \\&\left. \ldots ,COV_I\left( \eta ,\frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1s}}\vert _{\Gamma _1=0}\right) \right] \end{aligned}$$
(15)

Now if we want to calculate the Bayesian ISNI for the multivariate mixed longitudinal model of Sect. 2, we have to compute the first order derivations of the corresponding log likelihood function (logarithm of the quantity in Eq. (4)).

Assume that \(y_{i}^{obs}=(y_{i1},\ldots ,y_{iM_i})\), \(z_{i}^{obs}=(z_{i1},\ldots ,z_{iM_i})\), where for \(t=1,\ldots , M_i\), \(y_{it}=\{y_{ijt}: 1\le j \le m\}\) and \(z_{it}=\{z_{ikt}: 1\le k \le n \}\), and also assume that the non-ignorability parameters in Eq. (3) are denoted by, \(\Gamma _1=(\Gamma _{11}, \Gamma _{12})\), where \(\Gamma _{11}=(\xi _{1},\ldots ,\xi _{m})\) and \(\Gamma _{12}=(\eta _{1},\ldots ,\eta _{n})\). The log likelihood function for the multivariate mixed longitudinal model of Sect. 2 could be decomposed as the sum of the following three terms;

$$\begin{aligned} l_1= & {} \sum _{i=1}^{N} log~\left[ \int \prod _{t=1}^{M_i}f(w_{it}|B_i)\phi (B_i)dB_i\right] \\ l_2= & {} \sum _{i=1}^{N}\sum _{t=2}^{M_i} log~P(R_{it}=1|w_{it},w_{it-1})\\ l_3= & {} \sum _{i; M_i<T_i} log~ \left\{ \int P(R_{i,M_i+1}=0|w_{i,M_i+1}^{mis}, w_{iM_i}) f(w_{i,M_i+1}^{mis}|w_{iM_i})dw_{i,M_i+1}^{mis}\right\} \end{aligned}$$

According to the above decomposition, \(\frac{\partial l_1}{\Gamma _1^T}=0\) since \(l_1\) is not a function of \(\Gamma _1\). Also the derivatives of \(l_2\) and \(l_3\) are as follows;

$$\begin{aligned} \frac{\partial l_2}{\partial \Gamma _{1}^T}|_{\Gamma _1=0}= & {} \sum _{i=1}^{N}\sum _{t=2}^{M_i} \frac{g_{it}'}{g_{it}}|_{\Gamma _1=0}w_{it},\\ \frac{\partial l_3}{\partial \Gamma _{11}^T}|_{\Gamma _1=0}= & {} \sum _{i; M_i<T_i}-\frac{\partial g_{i,M_i+1}/\partial \Gamma _{11}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0} \\&\times \left[ \sum _{mis}\int _{mis}y_{i,M_i+1}^{mis} f(w_{i,M_i+1}^{mis}|w_{iM_i})d z_{i,M_i+1}^{mis}\right] _{\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i} \frac{\partial g_{i,M_i+1}/\partial \Gamma _{11}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0}\left[ \int _{B_i}\int _{mis}\sum _{mis}y_{i,M_i+1}^{mis}\right. \\&\times \left. f(w_{i,M_i+1}^{mis}|B_i)\phi (B_i|w_{iM_i})d z_{i,M_i+1}^{mis}dB_i\right] {\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i}\frac{\partial g_{i,M_i+1}/\partial \Gamma _{11}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0}\\&\times \left[ \int _{B_i}\sum _{mis}y_{i,M_i+1}^{mis} f(y_{i,M_i+1}^{mis}|B_i)\phi (B_i|w_{iM_i})dB_i\right] _{\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i}\frac{\partial g_{i,M_i+1}/\partial \Gamma _{11}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0} E[\mu _{i,M_i+1}^{Y}(\Theta ,B_i)|w_{iM_i}]\}_{\Gamma _1=0}, \end{aligned}$$
$$\begin{aligned} \frac{\partial l_3}{\partial \Gamma _{12}^T}|_{\Gamma _1=0}= & {} -\sum _{i; M_i<T_i}\frac{\partial g_{i,M_i+1}/\partial \Gamma _{12}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0}\\&\times \left[ \sum _{mis}\int _{mis}z_{i,M_i+1}^{mis}f(w_{i,M_i+1}^{mis}|w_{iM_i})d z_{i,M_i+1}^{mis}\right] _{\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i} \frac{\partial g_{i,M_i+1}/\partial \Gamma _{12}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0}\\&\times \left[ \int _{B_i}\int _{mis}\sum _{mis}z_{i,M_i+1}^{mis}f(w_{i,M_i+1}^{mis}|B_i)\phi (B_i|w_{iM_i})d z_{i,M_i+1}^{mis}dB_i\right] _{\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i}\frac{\partial g_{i,M_i+1}/\partial \Gamma _{12}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0}\\&\times \left[ \int _{B_i}\int _{mis}z_{i,M_i+1}^{mis} f(z_{i,M_i+1}^{mis}|B_i)\phi (B_i|w_{iM_i})dB_i\right] _{\Gamma _1=0}\\= & {} -\sum _{i; M_i<T_i}\frac{\partial g_{i,M_i+1}/\partial \Gamma _{12}^T}{1-g_{i,M_i+1}}\vert _{\Gamma _1=0} E[\mu _{i,M_i+1}^{z}(\Theta ,B_i)|w_{iM_i}]_{\Gamma _1=0} \end{aligned}$$

where,

$$\begin{aligned} \mu _{i,M_i+1}^{Y}(\Theta ;B_i)= & {} E[Y_{i,M_i+1}|B_i]=\sum _{mis}y_{i,M_i+1}^{mis}f(y_{i,M_i+1}^{mis}|B_i),\\ \mu _{i,M_i+1}^{Z}(\Theta ;B_i)= & {} E[Z_{i,M_i+1}|B_i]=\int _{mis}z_{i,M_i+1}^{mis}f(z_{i,M_i+1}^{mis}|B_i)d z_{i,M_i+1}^{mis}, \end{aligned}$$

and \(g_{i,M_i+1}=P(R_{i,M_i+1}=1|W_{i,M_i+1},W_{i,M_i},X,R_{i,M_i}=1)\) which has been modeled in Eq. (3). Also, the posterior means are calculated with respect to the posterior distribution of \(B_i\) given \(W_i^{obs}=(y_{i}^{obs}, z_{i}^{obs})\) for the ignorable model (i.e., \(\phi (B_i|W_{i,M_i})\)).

According to Eq. (15), we need the posterior covariance of the above quantities with the vector of parameters \(\eta \) where we have, \(COV_{I}(\eta ,\frac{\partial l_2}{\partial \Gamma _1^T}\vert _{\Gamma _1=0})=0\). Hence, the vector of Bayesian ISNI with multiple non-ignorability parameters for the multivariate longitudinal data would be reduced to:

$$\begin{aligned} ISNI[\tilde{\eta }(\Gamma _1)]= & {} -\left( COV_I \left( \eta , \sum _{i; M_i<T_i}\frac{g_{i}'|_{\Gamma _1=0}}{1-g_{i}|_{\Gamma _1=0}} E[\mu _{i,M_i+1}^{Y}(\Theta ,B_i)\left| w_{iM_i}\right] \right) ,\right. \\&\times \left. COV_I \left( \eta , \sum _{i; M_i<T_i}\frac{g_{i}'|_{\Gamma _1=0}}{1-g_{i}|_{\Gamma _1=0}} E[\mu _{i,M_i+1}^{Z}(\Theta ,B_i)\left| w_{iM_i}\right] \right) \right) . \end{aligned}$$

On the other hand, one can approximate the above vector of covariances using the Delta method which leads to the following approximation:

$$\begin{aligned} COV_I\left( \eta , \frac{\partial log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \gamma _{1j}}_{\Gamma _1=0}\right) \approx VAR_I(\eta )\times \frac{\partial ^2 log~ f_{\eta }(w^{obs},R|\Gamma _1)}{\partial \eta \partial \Gamma _1^T}|_{\Gamma _1=0} \end{aligned}$$

where \(VAR_I(\eta )\) is the covariance matrix of the posterior distribution of \(\eta \) evaluated at the ignorable model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahabadi, S.E., Ganjali, M. A Bayesian approach for sensitivity analysis of incomplete multivariate longitudinal data with potential nonrandom dropout. METRON 73, 397–417 (2015). https://doi.org/10.1007/s40300-015-0063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40300-015-0063-6

Keywords

Navigation