Skip to main content
Log in

Analytic Calculation and Application of the Q-Law Guidance Algorithm Partial Derivatives

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The closed-loop Q-Law guidance algorithm has been shown to be a very capable and efficient method for producing low-thrust trajectories. This paper poses a Q-Law optimization problem for computing locally optimal gain values and for enforcing nonlinear constraints on the initial state using nonlinear programming (NLP). Gradient-based optimization methods have been shown to benefit greatly when analytical partial derivatives are supplied to the optimizer. Therefore, we present derivations of the Q-Law thrust vector partial derivatives with respect to the Q-law gains as well as with respect to the spacecraft’s state. These partials are leveraged to produce a state transition matrix, which contains exact partial derivatives of the terminal state with respect to the NLP problem decision vector. The Q-Law NLP problem can be coupled with the Sims–Flanagan interplanetary model in the same optimization problem. In this approach, the NLP solver uses a Q-Law model to design the planetocentric capture/escape spirals and a Sims–Flanagan model to design the interplanetary legs, resulting in end-to-end trajectory optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Petropoulos, A.: Low-thrust orbit transfers using candidate lyapunov functions with a mechanism for coasting. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 748–762 (2004)

  2. Petropoulos, A.E.: Refinements to the Q-law for the low-thrust orbit transfers. In: AIAA/AAS Space Flight Mechanics Conference. AAS Paper 05-162 (2005)

  3. Lee, S., Allmen, P.v., Fink, W., Petropoulos, A., Terrile, R.: Multi-objective evolutionary algorithms for low-thrust orbit transfer optimization. In: Genetic and Evolutionary Computation Conference (GECCO 2005) (2005)

  4. Shannon, J.L., Ozimek, M.T., Atchison, J.A., Hartzell, C.M.: Q-law aided direct trajectory optimization of many-revolution low-thrust transfers. J. Spacecr. Rocket. 57(4), 672–682 (2020). https://doi.org/10.2514/1.A34586

    Article  Google Scholar 

  5. Jagannatha, B.B., Bouvier, J.-B.H., Ho, K.: Preliminary design of low-energy, low-thrust transfers to halo orbits using feedback control. J. Guidance Control Dyn. 42(2), 260–271 (2018). https://doi.org/10.2514/1.G003759

    Article  Google Scholar 

  6. Shannon, J., Ozimek, M., Atchison, J., Hartzell, C.: Rapid design and exploration of high-fidelity low-thrust transfers to the moon. IEEE Aerospace Conf. 2020, 1–12 (2020). https://doi.org/10.1109/AERO47225.2020.9172483

    Article  Google Scholar 

  7. Shannon, J., Ozimek, M., Atchison, J., Hartzell, C.: Rapid design and exploration of high-fidelity low-thrust transfers to the moon. J. Spacecr. Rockets 59(5), 1522–1535 (2022)

    Article  Google Scholar 

  8. Sims, J., Flanagan, S.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamics Specialist Conference AAS paper 99-338. Girdwood (1999)

  9. Ellison, D.H., Conway, B.A., Englander, J.A., Ozimek, M.T.: Analytic gradient computation for bounded-impulse trajectory models using two-sided shooting. J. Guidance Control Dyn. 41(7), 1449–1462 (2018). https://doi.org/10.2514/1.G003077

    Article  Google Scholar 

  10. Ellison, D.H., Conway, B.A., Englander, J.A., Ozimek, M.T.: Application and analysis of bounded-impulse trajectory models with analytic gradients. J. Guidance Control Dyn. 41(8), 1700–1714 (2018). https://doi.org/10.2514/1.G003078

    Article  Google Scholar 

  11. Shannon, J., Ellison, D., Hartzell, C.: Analytical partial derivatives of the Q-law guidance algorithm. In: AAS/AIAA Space Flight Mechanics Meeting. AAS Paper 21-274 (2021)

  12. Squire, W., Trapp, G.: Using complex variables to estimate derivatives of real functions. SIAM Rev. 40(1), 110–112 (1998). https://doi.org/10.1137/S003614459631241X

    Article  MathSciNet  MATH  Google Scholar 

  13. Revels, J., Lubin, M., Papamarkou, T.: Forward-mode automatic differentiation in Julia. arXiv Preprint arXiv:1607.07892 (2016)

  14. Aziz, J., Scheeres, D., Parker, J., Englander, J.: A Smoothed eclipse model for solar electric propulsion trajectory optimization. Trans. Jpn. Soc. Aeronaut. Space Sci. Aerospace Technol. Jpn. 17(2), 181–188 (2019). https://doi.org/10.2322/tastj.17.181

    Article  Google Scholar 

  15. Edelbaum, T.N.: Propulsion requirements for controllable satellites. Ars J. 31(8), 1079–1089 (1961). https://doi.org/10.2514/8.5723

    Article  Google Scholar 

  16. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005). https://doi.org/10.1137/s0036144504446096

    Article  MathSciNet  MATH  Google Scholar 

  17. Varga, G.I., Pérez, J.M.S.: Many-revolution low-thrust orbit transfer computation using equinoctial Q-law including J2 and eclipse effects. In: AIAA/AAS paper 15-590 (2016)

  18. Pellegrini, E., Russell, R.P.: On the computation and accuracy of trajectory state transition matrices. J. Guidance Control Dyn. 39(11), 2485–2499 (2016). https://doi.org/10.2514/1.G001920

    Article  Google Scholar 

  19. Ellison, D.H.: Robust preliminary design for multiple gravity assist spacecraft trajectories. PhD thesis, University of Illinois at Urbana-Champaign (2018)

  20. Acton, C.H., Jr.: Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996)

    Article  Google Scholar 

  21. Kluever, C.A.: Low-thrust trajectory optimization using orbital averaging and control parameterization. Spacecr. Trajectory Optimiz. pp. 112–138 (2010)

    Google Scholar 

  22. Falck, R., Dankanich, J.: Optimization of low-thrust spiral trajectories by collocation. In: AIAA/AAS Astrodynamics Specialist Conference, p. 4423 (2012). https://doi.org/10.2514/6.2012-4423

  23. Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of low-thrust earth-orbit transfers with eclipsing. J. Spacecr. Rocket. 53(2), 289–303 (2016). https://doi.org/10.2514/1.A33416

    Article  Google Scholar 

  24. Shannon, J., Ellison, D., Hartzell, C.: Exploration of low-thrust lunar swingby escape trajectories. In: AAS/AIAA Space Flight Mechanics Meeting. AAS Paper 21-273 (2021)

Download references

Acknowledgements

This work was funded under NASA Space Technology Research Fellowship Grant # 80NSSC19K1172.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackson L. Shannon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Q-Law Thrust Vector Partial Derivatives

First the partials derivatives of \(\frac{\partial Q}{\partial \text{\oe}}\) w.r.t. to the gains are needed. Taking the partials of Eq. 20:

$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}= {} W_{P}\frac{\partial }{\partial W_a} \frac{\partial P}{\partial \text{\oe}}\varvec{W}^T\varvec{V} + \frac{\partial }{\partial W_a}(1 + W_{P}P)\varvec{W}^T\frac{\partial \varvec{V}}{\partial \text{\oe}} \end{aligned}$$
(62)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}= {} W_{P}\frac{\partial P}{\partial \text{\oe}} \frac{\partial \varvec{W}^T}{\partial W_a}\varvec{V} + (1 + W_{P}P) \frac{\partial \varvec{W}^T}{\partial W_a}\frac{\partial \varvec{V}}{\partial \text{\oe}} \end{aligned}$$
(63)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}[1, 0, 0, 0, 0] \varvec{V} + (1 + W_{P}P)[1, 0, 0, 0, 0]\frac{\partial \varvec{V}}{\partial \text{\oe}} \end{aligned}$$
(64)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}{S}_\text {a}\left[ \frac{d(\text {a},\text {a}_{T})}{\dot{\text {a}}_{xx}}\right] ^2+ (1 + W_{P}P)\frac{\partial V_a}{\partial \text{\oe}} \end{aligned}$$
(65)

The partials derivatives w.r.t. the other gains are derived in a similar fashion.

$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_e}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}{S}_\text {e}\left[ \frac{d(\text {e},\text {e}_{T})}{\dot{\text {e}}_{xx}}\right] ^2+ (1 + W_{P}P)\frac{\partial V_e}{\partial \text{\oe}} \end{aligned}$$
(66)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_i}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}{S}_\text {i}\left[ \frac{d(\text {i},\text {i}_{T})}{\dot{\text {i}}_{xx}}\right] ^2+ (1 + W_{P}P)\frac{\partial V_i}{\partial \text{\oe}} \end{aligned}$$
(67)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\omega }}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}{S}_{\omega }\left[ \frac{d({\omega },{\omega }_{T})}{\dot{{\omega }}_{xx}}\right] ^2+ (1 + W_{P}P)\frac{\partial V_{\omega }}{\partial \text{\oe}} \end{aligned}$$
(68)
$$\begin{aligned} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\Omega }}= {} W_{P}\frac{\partial P}{\partial \text{\oe}}{S}_{\Omega }\left[ \frac{d({\Omega },{\Omega }_{T})}{\dot{{\Omega }}_{xx}}\right] ^2+ (1 + W_{P}P)\frac{\partial V_{\Omega }}{\partial \text{\oe}} \end{aligned}$$
(69)

Now, using \(\frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\text{\oe}}}\), the \(D_1\), \(D_2\), and \(D_3\) coefficient derivatives can be found, leading to the thrust vector gain partial derivatives.

1.1.1 \(\frac{\partial {u}}{\partial W_a}\)

$$\begin{aligned} \frac{\partial D_1}{\partial W_a}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} \end{aligned}$$
(70)
$$\begin{aligned} \frac{\partial D_2}{\partial W_a}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} \end{aligned}$$
(71)
$$\begin{aligned} \frac{\partial D_3}{\partial W_a}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_a}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} \end{aligned}$$
(72)
$$\begin{aligned} \frac{\partial u_r}{\partial W_a}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial W_a}+D_2\frac{\partial D_2}{\partial W_a} + D_3\frac{\partial D_3}{\partial W_a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial W_a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(73)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial W_a}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial W_a}+D_2\frac{\partial D_2}{\partial W_a} + D_3\frac{\partial D_3}{\partial W_a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial W_a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(74)
$$\begin{aligned} \frac{\partial u_h}{\partial W_a}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial W_a}+D_2\frac{\partial D_2}{\partial W_a} + D_3\frac{\partial D_3}{\partial W_a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial W_a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(75)

1.1.2 \(\frac{\partial {u}}{\partial W_e}\)

$$\begin{aligned} \frac{\partial D_1}{\partial W_e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_e}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} \end{aligned}$$
(76)
$$\begin{aligned} \frac{\partial D_2}{\partial W_e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_e}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} \end{aligned}$$
(77)
$$\begin{aligned} \frac{\partial D_3}{\partial W_e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_e}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} \end{aligned}$$
(78)
$$\begin{aligned} \frac{\partial u_r}{\partial W_e}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial W_e}+D_2\frac{\partial D_2}{\partial W_e} + D_3\frac{\partial D_3}{\partial W_e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial W_e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(79)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial W_e}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial W_e}+D_2\frac{\partial D_2}{\partial W_e} + D_3\frac{\partial D_3}{\partial W_e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial W_e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(80)
$$\begin{aligned} \frac{\partial u_h}{\partial W_e}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial W_e}+D_2\frac{\partial D_2}{\partial W_e} + D_3\frac{\partial D_3}{\partial W_e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial W_e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(81)

1.1.3 \(\frac{\partial {u}}{\partial W_i}\)

$$\begin{aligned} \frac{\partial D_1}{\partial W_i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_i}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} \end{aligned}$$
(82)
$$\begin{aligned} \frac{\partial D_2}{\partial W_i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_i}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} \end{aligned}$$
(83)
$$\begin{aligned} \frac{\partial D_3}{\partial W_i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_i}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} \end{aligned}$$
(84)
$$\begin{aligned} \frac{\partial u_r}{\partial W_i}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial W_i}+D_2\frac{\partial D_2}{\partial W_i} + D_3\frac{\partial D_3}{\partial W_i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial W_i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(85)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial W_i}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial W_i}+D_2\frac{\partial D_2}{\partial W_i} + D_3\frac{\partial D_3}{\partial W_i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial W_i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(86)
$$\begin{aligned} \frac{\partial u_h}{\partial W_i}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial W_i}+D_2\frac{\partial D_2}{\partial W_i} + D_3\frac{\partial D_3}{\partial W_i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial W_i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(87)

1.1.4 \(\frac{\partial {u}}{\partial W_{\omega} }\)

$$\begin{aligned} \frac{\partial D_1}{\partial W_{\omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} \end{aligned}$$
(88)
$$\begin{aligned} \frac{\partial D_2}{\partial W_{\omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} \end{aligned}$$
(89)
$$\begin{aligned} \frac{\partial D_3}{\partial W_{\omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} \end{aligned}$$
(90)
$$\begin{aligned} \frac{\partial u_r}{\partial W_{\omega }}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial W_{\omega }}+D_2\frac{\partial D_2}{\partial W_{\omega }} + D_3\frac{\partial D_3}{\partial W_{\omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial W_{\omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(91)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial W_{\omega }}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial W_{\omega }}+D_2\frac{\partial D_2}{\partial W_{\omega }} + D_3\frac{\partial D_3}{\partial W_{\omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial W_{\omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(92)
$$\begin{aligned} \frac{\partial u_h}{\partial W_{\omega }}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial W_{\omega }}+D_2\frac{\partial D_2}{\partial W_{\omega }} + D_3\frac{\partial D_3}{\partial W_{\omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial W_{\omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(93)

1.1.5 \(\frac{\partial {u}}{\partial W_{\omega} }\)

$$\begin{aligned} \frac{\partial D_1}{\partial W_{\Omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\Omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} \end{aligned}$$
(94)
$$\begin{aligned} \frac{\partial D_2}{\partial W_{\Omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\Omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} \end{aligned}$$
(95)
$$\begin{aligned} \frac{\partial D_3}{\partial W_{\Omega }}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial W_{\Omega }}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} \end{aligned}$$
(96)
$$\begin{aligned} \frac{\partial u_r}{\partial W_{\Omega }}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial W_{\Omega }}+D_2\frac{\partial D_2}{\partial W_{\Omega }} + D_3\frac{\partial D_3}{\partial W_{\Omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial W_{\Omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(97)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial W_{\Omega }}= & {} \frac{D_1(D_1\frac{\partial D_1}{\partial W_{\Omega }}+D_2\frac{\partial D_2}{\partial W_{\Omega }} + D_3\frac{\partial D_3}{\partial W_{\Omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial W_{\Omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(98)
$$\begin{aligned} \frac{\partial u_h}{\partial W_{\Omega }}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial W_{\Omega }}+D_2\frac{\partial D_2}{\partial W_{\Omega }} + D_3\frac{\partial D_3}{\partial W_{\Omega }})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial W_{\Omega }} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(99)

Next, we focus on taking the thrust vector partial derivatives w.r.t. the spacecraft state. First, we take the partial derivatives of Eqs. 16 to 18. In this step, symbolic derivatives were used to find expressions for the hessian elements of Q.

1.1.6 \(\frac{\partial {u}}{\partial a}\)

$$\begin{aligned} \frac{\partial D_1}{\partial a}= & {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial a}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial a} \end{aligned}$$
(100)
$$\begin{aligned} \frac{\partial D_2}{\partial a}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial a}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial a} \end{aligned}$$
(101)
$$\begin{aligned} \frac{\partial D_3}{\partial a}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial a}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial a} \end{aligned}$$
(102)
$$\begin{aligned} \frac{\partial u_r}{\partial a}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial a}+D_2\frac{\partial D_2}{\partial a} + D_3\frac{\partial D_3}{\partial a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(103)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial a}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial a}+D_2\frac{\partial D_2}{\partial a} + D_3\frac{\partial D_3}{\partial a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(104)
$$\begin{aligned} \frac{\partial u_h}{\partial a}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial a}+D_2\frac{\partial D_2}{\partial a} + D_3\frac{\partial D_3}{\partial a})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial a} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(105)

1.1.7 \(\frac{\partial {u}}{\partial e}\)

$$\begin{aligned} \frac{\partial D_1}{\partial e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial e}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial e} \end{aligned}$$
(106)
$$\begin{aligned} \frac{\partial D_2}{\partial e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial e}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial e} \end{aligned}$$
(107)
$$\begin{aligned} \frac{\partial D_3}{\partial e}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial e}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial e} \end{aligned}$$
(108)
$$\begin{aligned} \frac{\partial u_r}{\partial e}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial e}+D_2\frac{\partial D_2}{\partial e} + D_3\frac{\partial D_3}{\partial e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(109)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial e}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial e}+D_2\frac{\partial D_2}{\partial e} + D_3\frac{\partial D_3}{\partial e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(110)
$$\begin{aligned} \frac{\partial u_h}{\partial e}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial e}+D_2\frac{\partial D_2}{\partial e} + D_3\frac{\partial D_3}{\partial e})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial e} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(111)

1.1.8 \(\frac{\partial {u}}{\partial i}\)

$$\begin{aligned} \frac{\partial D_1}{\partial i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial i}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial i} \end{aligned}$$
(112)
$$\begin{aligned} \frac{\partial D_2}{\partial i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial i}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial i} \end{aligned}$$
(113)
$$\begin{aligned} \frac{\partial D_3}{\partial i}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial i}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial i} \end{aligned}$$
(114)
$$\begin{aligned} \frac{\partial u_r}{\partial i}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial i}+D_2\frac{\partial D_2}{\partial i} + D_3\frac{\partial D_3}{\partial i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(115)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial i}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial i}+D_2\frac{\partial D_2}{\partial i} + D_3\frac{\partial D_3}{\partial i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(116)
$$\begin{aligned} \frac{\partial u_h}{\partial i}= & {} \frac{D_3(D_1\frac{\partial D_1}{\partial i}+D_2\frac{\partial D_2}{\partial i} + D_3\frac{\partial D_3}{\partial i})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial i} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(117)

1.1.9 \(\frac{\partial {u}}{\partial \omega }\)

$$\begin{aligned} \frac{\partial D_1}{\partial \omega }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial \omega } \end{aligned}$$
(118)
$$\begin{aligned} \frac{\partial D_2}{\partial \omega }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial \omega } \end{aligned}$$
(119)
$$\begin{aligned} \frac{\partial D_3}{\partial \omega }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial \omega } \end{aligned}$$
(120)
$$\begin{aligned} \frac{\partial u_r}{\partial \omega }= {} \frac{D_2(D_1\frac{\partial D_1}{\partial \omega }+D_2\frac{\partial D_2}{\partial \omega } + D_3\frac{\partial D_3}{\partial \omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial \omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(121)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial \omega }= {} \frac{D_1(D_1\frac{\partial D_1}{\partial \omega }+D_2\frac{\partial D_2}{\partial \omega } + D_3\frac{\partial D_3}{\partial \omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial \omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(122)
$$\begin{aligned} \frac{\partial u_h}{\partial \omega }= {} \frac{D_3(D_1\frac{\partial D_1}{\partial \omega }+D_2\frac{\partial D_2}{\partial \omega } + D_3\frac{\partial D_3}{\partial \omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial \omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(123)

1.1.10 \(\frac{\partial {u}}{\partial \Omega }\)

$$\begin{aligned} \frac{\partial D_1}{\partial \Omega }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \Omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial \Omega } \end{aligned}$$
(124)
$$\begin{aligned} \frac{\partial D_2}{\partial \Omega }= & {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \Omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial \Omega } \end{aligned}$$
(125)
$$\begin{aligned} \frac{\partial D_3}{\partial \Omega }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \Omega }\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial \Omega } \end{aligned}$$
(126)
$$\begin{aligned} \frac{\partial u_r}{\partial \Omega }= {} \frac{D_2(D_1\frac{\partial D_1}{\partial \Omega }+D_2\frac{\partial D_2}{\partial \Omega } + D_3\frac{\partial D_3}{\partial \Omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial \Omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(127)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial \Omega }= {} \frac{D_1(D_1\frac{\partial D_1}{\partial \Omega }+D_2\frac{\partial D_2}{\partial \Omega } + D_3\frac{\partial D_3}{\partial \Omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial \Omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(128)
$$\begin{aligned} \frac{\partial u_h}{\partial \Omega }= & {} \frac{D_3(D_1\frac{\partial D_1}{\partial \Omega }+D_2\frac{\partial D_2}{\partial \Omega } + D_3\frac{\partial D_3}{\partial \Omega })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial \Omega } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(129)

1.1.11 \(\frac{\partial {u}}{\partial \theta }\)

$$\begin{aligned} \frac{\partial D_1}{\partial \theta }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \theta }\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial \theta } \end{aligned}$$
(130)
$$\begin{aligned} \frac{\partial D_2}{\partial \theta }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \theta }\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial \theta } \end{aligned}$$
(131)
$$\begin{aligned} \frac{\partial D_3}{\partial \theta }= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial \theta }\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial \theta } \end{aligned}$$
(132)
$$\begin{aligned} \frac{\partial u_r}{\partial \theta }= {} \frac{D_2(D_1\frac{\partial D_1}{\partial \theta }+D_2\frac{\partial D_2}{\partial \theta } + D_3\frac{\partial D_3}{\partial \theta })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial \theta } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(133)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial \theta }= {} \frac{D_1(D_1\frac{\partial D_1}{\partial \theta }+D_2\frac{\partial D_2}{\partial \theta } + D_3\frac{\partial D_3}{\partial \theta })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial \theta } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(134)
$$\begin{aligned} \frac{\partial u_h}{\partial \theta }= {} \frac{D_3(D_1\frac{\partial D_1}{\partial \theta }+D_2\frac{\partial D_2}{\partial \theta } + D_3\frac{\partial D_3}{\partial \theta })}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial \theta } }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(135)

1.1.12 \(\frac{\partial {u}}{\partial m}\)

$$\begin{aligned} \frac{\partial D_1}{\partial m}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial m}\frac{\partial \dot{\text{\oe}}}{\partial f_{\theta }} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{\theta } \partial m} \end{aligned}$$
(136)
$$\begin{aligned} \frac{\partial D_2}{\partial m}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial m}\frac{\partial \dot{\text{\oe}}}{\partial f_{r}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{r} \partial m} \end{aligned}$$
(137)
$$\begin{aligned} \frac{\partial D_3}{\partial m}= {} \frac{\partial ^2 Q}{\partial \text{\oe} \partial m}\frac{\partial \dot{\text{\oe}}}{\partial f_{h}} + \frac{\partial Q}{\partial \text{\oe}}\frac{\partial ^2 \dot{\text{\oe}}}{\partial f_{h} \partial m} \end{aligned}$$
(138)
$$\begin{aligned} \frac{\partial u_r}{\partial m}= {} \frac{D_2(D_1\frac{\partial D_1}{\partial m}+D_2\frac{\partial D_2}{\partial m} + D_3\frac{\partial D_3}{\partial m})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_2}{\partial m} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(139)
$$\begin{aligned} \frac{\partial u_{\theta }}{\partial m}= {} \frac{D_1(D_1\frac{\partial D_1}{\partial m}+D_2\frac{\partial D_2}{\partial m} + D_3\frac{\partial D_3}{\partial m})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_1}{\partial m} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(140)
$$\begin{aligned} \frac{\partial u_h}{\partial m}= {} \frac{D_3(D_1\frac{\partial D_1}{\partial m}+D_2\frac{\partial D_2}{\partial m} + D_3\frac{\partial D_3}{\partial m})}{(D_1^2+D_2^2+D_3^2)^{3/2}} - \frac{\frac{\partial D_3}{\partial m} }{\sqrt{D_1^2+D_2^2+D_3^2}} \end{aligned}$$
(141)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shannon, J.L., Ellison, D.H. & Hartzell, C.M. Analytic Calculation and Application of the Q-Law Guidance Algorithm Partial Derivatives. J Astronaut Sci 70, 14 (2023). https://doi.org/10.1007/s40295-023-00371-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00371-1

Keywords

Navigation