Skip to main content
Log in

An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a general form of the first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian is required. Apart from the simple yet efficient iteration formula, a straightforward adaptive scheme is introduced to refine the step size and the collocation nodes at each time segment. The presented adaptive method guarantees prescribed accuracy without manual tuning of the algorithm. The computational cost of ALVIM, in terms of functional evaluations, is 1–2 orders of magnitude lower than adaptive finite difference methods. Numerical results of a large amplitude pendulum, perturbed two-body problem, and three-body problem validate the high accuracy and efficiency of this easy-to-use adaptive method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, P.: Introducing computational guidance and control. J. Guid. Control Dyn. 40(2), 193 (2017)

    Article  Google Scholar 

  2. Barrow-Green, J.: Poincaré and the Three Body Problem. 11. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  3. Fox, K.: Numerical integration of the equations of motion of celestial mechanics. Celest. Mech. 33(2), 127–142 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dormand, J., Prince, P.: A reconsideration of some embedded Runge–Kutta formulae. J. Comput. Appl. Math. 15, 203 (1986)

    Article  MATH  Google Scholar 

  6. Dormand, J., Elmikkawy, M., Prince, P.: High-order embedded Runge–Kutta–Nystrom formulae. IMA J. Numer. Anal. 7, 423–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernandez, K., Elgohary, T.A., Turner, J.D., Junkins, J.L.: A novel analytic continuation power series solution for the perturbed two-body problem. Celest. Mech. Dyn. Astron. 131(10), 1–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tasif, T.H., Elgohary, T.A.: A high order analytic continuation technique for the perturbed two-body problem state transition matrix. In: AAS/AIAA Space Flight Mechanics Meeting (2019)

  9. Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation method for computing the perturbed two-body problem state transition matrix. J. Astronaut. Sci. 67(4), 1412–1444 (2020)

    Article  Google Scholar 

  10. Tasif, T.H., Elgohary, T.A.: An adaptive analytic continuation technique for the computation of the higher order state transition tensors for the perturbed two-body problem. In: AIAA Scitech 2020 Forum, p. 0958 (2020)

  11. Tasif, T.H., Elgohary, T.A.: A computation process for the higher order state transition tensors of the gravity and drag perturbed two-body problem using adaptive analytic continuation technique. In: 28th International Conference on Computational & Experimental Engineering and Sciences (ICCES) (2022)

  12. Turner, J.D., Elgohary, T.A., Majji, M., Junkins, J.L.: High accuracy trajectory and uncertainty propagation algorithm for long-term asteroid motion prediction. In: Alfriend, K.T., Akella, M., Hurtado, J.E., Juang, J., Turner, J.D. (eds.) Adventures on the Interface of Mechanics and Control, pp. 15–34. AIAA, Reston (2012)

    Google Scholar 

  13. Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods and Applications. Springer, New York (2012)

    MATH  Google Scholar 

  14. Berry, M.: A variable-step double-integration multi-step integrator. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg (2004)

  15. Berry, M., Healy, L.: The generalized sundman transformation for propagation of high-eccentricity elliptical orbits. Adv. Astronaut. Sci. 112, 127–146 (2002)

    Google Scholar 

  16. Berry, M.M., Healy, L.M.: Implementation of Gauss–Jackson integration for orbit propagation. J. Astronaut. Sci. 52(3), 331–357 (2004)

    Article  MathSciNet  Google Scholar 

  17. Wang, X., Yue, X., Dai, H., Atluri, S.N.: Feedback-accelerated Picard iteration for orbit propagation and lambert’s problem. J. Guid. Control. Dyn. 40(10), 2442–2451 (2017)

    Article  Google Scholar 

  18. Wright, K.: Some relationships between implicit Runge–Kutta, collocation, and Lanczos \(\tau\) methods, and their stability properties. BIT Numer. Math. 10, 217–227 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, B., Anderson, R.: A survey of symplectic and collocation methods for orbit propagation. In: 22nd Annual AAS/AIAA Space Flight Mechanics Meeting, Charleston (2012)

  20. Elgohary, T.A., Dong, L., Junkins, J.L., Atluri, S.N.: A simple, fast, and accurate time-integrator for strongly nonlinear dynamical systems. Comput. Model. Eng. Sci. 100(3), 249–275 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Elgohary, T.A., Junkins, J.L., Atluri, S.N.: An RBF-collocation algorithm for orbit propagation. In: Advances in Astronautical Sciences: AAS/AIAA Space Flight Mechanics Meeting (2015)

  22. Elgohary, T.A.: Novel computational and analytic techniques for nonlinear systems applied to structural and celestial mechanics. Ph.D. thesis, Texas A &M University, College Station (2015)

  23. Woollands, R.M., Bani Younes, A., Junkins, J.L.: New solutions for the perturbed lambert problem using regularization and Picard iteration. J. Guid. Control. Dyn. 38(9), 1548–1562 (2015)

    Article  Google Scholar 

  24. Junkins, J., Woollands, R.: Nonlinear differential equation solvers via adaptive Picard–Chebyshev iteration: applications in astrodynamics. In: AAS/AIAA Astrodynamics Specialist Conference (2017)

  25. Woollands, R., Junkins, J.L.: Nonlinear differential equation solvers via adaptive Picard–Chebyshev iteration: applications in astrodynamics. J. Guid. Control Dyn. 42, 1–16 (2018)

    Google Scholar 

  26. Bolatti, D.A., de Ruiter, A.H.: Galerkin variational integrators for orbit propagation with applications to small bodies. J. Guid. Control. Dyn. 42(2), 347–363 (2018)

    Article  Google Scholar 

  27. Nielsen, P., Alfriend, K., Bloomfield, M., et al.: Continuing Kepler’s Quest: Assessing Air Force Space Command’s Astrodynamics Standards. The National Academics Press, Washington (2012)

    Google Scholar 

  28. Probe, A., Read, J., Macomber, B., Junkins, J.: Massively parallel implementation of modified Chebyshev Picard iteration for perturbed orbit propagation. In: Advances in Astronautical Sciences: AAS/AIAA Space Flight Mechanics Meeting (2015)

  29. Hatten, N., Russell, R.P.: Parallel implicit Runge–Kutta methods applied to coupled orbit/attitude propagation. J. Astronaut. Sci. 64(4), 333–360 (2017)

    Article  Google Scholar 

  30. Atallah, A., Bani Younes, A.: Parallel integration of perturbed orbital motion. In: AIAA SciTech Forum (2019)

  31. Atallah, A.M., Woollands, R.M., Elgohary, T.A., Junkins, J.L.: Accuracy and efficiency comparison of six numerical integrators for propagating perturbed orbits. J. Astronaut. Sci. 67, 1–28 (2019)

    Google Scholar 

  32. Patterson, M.A., Hager, W.W., Rao, A.V.: A ph mesh refinement method for optimal control. Optim. Control Appl. Methods 36(4), 398–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Elgohary, T.A., Atluri, S.: An adaptive local variational iteration method for orbit propagation and strongly nonlinear dynamical systems. In: AIAA Scitech 2020 Forum, p. 0957 (2020)

  34. Wang, X., Atluri, S.N.: A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics. Comput. Mech. 59(5), 861–876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, X., Xu, Q., Atluri, S.N.: Combination of the variational iteration method and numerical algorithms for nonlinear problems. Appl. Math. Model. 79, 243–259 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  37. Darby CL Hager WW, R.A.: An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32(4), 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd edn. SIAM Press, Philadelphia (2009)

    MATH  Google Scholar 

  39. Shampine, L.F., Gordon, M.K.: Computer Solution of Ordinary Differential Equations: The Initial Value Problem. W.H. Freeman, San Francisco (1975)

    MATH  Google Scholar 

  40. Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Govorukhin, V.: ode87 integrator. https://www.mathworks.com/matlabcentral/fileexchange/3616-ode87-integrator (2003). Accessed 25 July 2021

  42. Vallado, D.: Fundamentals of Astrodynamics and Applications. Space Technology Library (2013)

  43. Schaub, H., Junkins, J.: Analytical Mechanics of Aerospace Systems, 3rd edn. American Institute of Aeronautics and Astronautics, Reston (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (No. 3102019HTQD014) of Northwestern Polytechnical University and the FAA Center of Excellence for Commercial Space Transportation (COE-CST). The authors also thank the support of Texas Tech University, and the University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechuan Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Elgohary, T.A., Zhang, Z. et al. An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems. J Astronaut Sci 70, 2 (2023). https://doi.org/10.1007/s40295-023-00366-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40295-023-00366-y

Keywords

Navigation