Skip to main content
Log in

Proximity Operations About Apophis Through Its 2029 Earth Flyby

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The dynamics and control of a satellite in proximity to the asteroid Apophis across its Earth close approach in 2029 is evaluated and investigated. First, the feasibility of carrying out close proximity operations about Apophis when in its heliocentric orbit phase is evaluated and shown to be feasible. Then three different types of close proximity motion relative to Apophis are analyzed that will enable a spacecraft to take observations throughout the Earth close approach. These are maintaining a relative orbit that is somewhat distant from Apophis, hovering along the Earth–Apophis line, or maintaining orbit about Apophis through the flyby. Each of these are shown to be feasible, albeit challenging, and some basic aspects of these operations are noted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ivashkin, V., Krylov, I.: Optimal trajectories for spacecraft with low electric-jet thrust in mission to asteroid Apophis. Dokl. Phys. 57(7), 271–275 (2012)

    Article  Google Scholar 

  2. Ivashkin, V., Lang, A.: Analysis of spacecraft orbital motion around the asteroid Apophis. Dokl. Phys. 61(6), 288–292 (2016)

    Article  Google Scholar 

  3. Plescia, J., Barnouin, O., Richardson, D., Schmerr, N., Lawrence, D., Denevi, B., Ernst, C., Yu, H.: The Asteroid Probe Experiment (APEX) Mission (2017)

  4. Scheeres, D., Benner, L., Ostro, S., Rossi, A., Marzari, F., Washabaugh, P.: Abrupt alteration of Asteroid 2004 MN4’s spin state during its 2029 Earth flyby. Icarus 178(1), 281–283 (2005)

    Article  Google Scholar 

  5. Yu, Y., Richardson, D.C., Michel, P., Schwartz, S.R., Ballouz, R.-L.: Numerical predictions of surface effects during the 2029 close approach of asteroid 99942 Apophis. Icarus 242(2014), 82–96 (2029)

    Google Scholar 

  6. DeMartini, J.V., Richardson, D.C., Barnouin, O.S., Schmerr, N.C., Plescia, J.B., Scheirich, P., Pravec, P.: Using a discrete element method to investigate seismic response and spin change of 99942 Apophis during its 2029 tidal encounter with Earth. Icarus 328, 93–103 (2019)

    Article  Google Scholar 

  7. Ivashkin, V., Lang, A.: Analysis of the orbital motion of the asteroid Apophis? Satellite. Cosm. Res. 55(4), 253–262 (2017)

    Article  Google Scholar 

  8. Brozović, M., Benner, L.A., McMichael, J.G., Giorgini, J.D., Pravec, P., Scheirich, P., Magri, C., Busch, M.W., Jao, J.S., Lee, C.G., et al.: Goldstone and Arecibo radar observations of (99942) Apophis in 2012–2013. Icarus 300, 115–128 (2018)

    Article  Google Scholar 

  9. Pravec, P., Scheirich, P., Ďurech, J., Pollock, J., Kušnirák, P., Hornoch, K., Galád, A., Vokrouhlickỳ, D., Harris, A., Jehin, E., et al.: The tumbling spin state of (99942) Apophis. Icarus 233, 48–60 (2014)

    Article  Google Scholar 

  10. Binzel, R.P., Rivkin, A.S., Thomas, C.A., Vernazza, P., Burbine, T.H., DeMeo, F.E., Bus, S.J., Tokunaga, A.T., Birlan, M.: Spectral properties and composition of potentially hazardous Asteroid (99942) Apophis. Icarus 200(2), 480–485 (2009)

    Article  Google Scholar 

  11. Scheeres, D.: Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid, Comet and Planetary Satellite Orbiters. Springer, London (2012)

    Book  Google Scholar 

  12. Scheeres, D.: Orbit mechanics about asteroids and comets. J. Guid. Control Dyn. 35(3), 987–997 (2012)

    Article  Google Scholar 

  13. Broschart, S., Scheeres, D.: Control of hovering spacecraft near small bodies: application to Asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005)

    Article  Google Scholar 

  14. Broschart, S., Scheeres, D.: Boundedness of spacecraft hovering under dead-band control in time-invariant systems. J. Guid. Control Dyn. 30(2), 601–610 (2007)

    Article  Google Scholar 

  15. Scheeres, D.: Distant proximity orbits about asteroids. J. Deep Space Eng. 6(5), 448–455 (2019)

    Google Scholar 

  16. Hirabayashi, M.: Hayabusa2 Asteroid Sample Return Mission: Technological Innovation and Advances. Elsevier, Amsterdam (2022)

    Google Scholar 

  17. Hu, W., Scheeres, D.: Spacecraft motion about slowly rotating asteroids. J. Guid. Control Dyn. 25(4), 765–775 (2002)

    Article  Google Scholar 

  18. Carter, T.E.: New form for the optimal rendezvous equations near a Keplerian orbit. J. Guid. Control Dyn. 13(1), 183–186 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yamanaka, K., Ankersen, F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guid. Control Dyn. 25(1), 60–66 (2002)

    Article  Google Scholar 

  20. Dang, Z.: Solutions of Tschauner–Hempel equations. J. Guid. Control Dyn. 40(11), 2956–2960 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the very helpful reviews and comments from two referees. Their inputs definitely improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Scheeres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Presented as Paper IAA-AAS-SciTech-034 at the 2nd IAA/AAS SciTech Forum, Moscow, Russia, June 2019.

Appendix

Appendix

The following solution has been developed for relative motion about an eccentric orbit [19, 20]. Here we note that these previous solutions can be extended without loss of generality to the hyperbolic case as well. Define a state vector as \({\bar{\Xi }}_{0} = \left[ {X}_{0}, Y_{0}, Z_{0}, X_{0}', Y_{0}', Z_{0}' \right]\). Then the general orbit solution for linearized motion about an eccentric or hyperbolic orbit can be specified as the linear mapping

$$\begin{aligned} {\bar{\Xi }}_{0}= & {} \Phi (f,f_{o}) {\bar{\Xi }}_{o}, \end{aligned}$$
(24)

where \(\Phi \in {\mathbf {R}}^{6\times 6}\) is the state transition matrix for the system. The entries of \(\Phi\) can be written out in detail as

$$\begin{aligned} \Phi= & {} \left[ \begin{array}{cccccc} \phi _{XX} &{} \phi _{XY} &{} 0 &{} \phi _{XX'} &{} \phi _{XY'} &{} 0 \\ \phi _{YX} &{} \phi _{YY} &{} 0 &{} \phi _{YX'} &{} \phi _{YY'} &{} 0 \\ 0 &{} 0 &{} \phi _{ZZ} &{} 0 &{} 0 &{} \phi _{ZZ'} \\ \phi _{X'X} &{} \phi _{X'Y} &{} 0 &{} \phi _{X'X'} &{} \phi _{X'Y'} &{} \\ \phi _{Y'X} &{} \phi _{Y'Y} &{} 0 &{} \phi _{Y'X'} &{} \phi _{Y'Y'} &{} 0 \\ 0 &{} 0 &{} \phi _{Z'Z} &{} 0 &{} 0 &{} \phi _{Z'Z'} \end{array} \right] , \end{aligned}$$
(25)

where we inserted zeros in all of the cross coupling terms between the out-of-plane and in-plane terms. The remaining terms are then, taking \(f_{o} = 0\),

$$\begin{aligned} \phi _{XX}= & {} \frac{1}{1-e}\left[ 4 + 2e - 3\cos f - 3e\cos ^{2} f - 3 e (2+e)\sin f(1+e\cos f) L \right] , \end{aligned}$$
(26)
$$\begin{aligned} \phi _{XY}= & {} 0, \end{aligned}$$
(27)
$$\begin{aligned} \phi _{XX'}= & {} \frac{1}{1+e} \sin f (1+e\cos f), \end{aligned}$$
(28)
$$\begin{aligned} \phi _{XY'}= & {} \frac{1}{1-e} \left[ 2 + 2e - 2\cos f - 2e\cos ^{2} f - 3 e (1+e)\sin f(1+e\cos f) L \right] , \end{aligned}$$
(29)
$$\begin{aligned} \phi _{YX}= & {} \frac{1}{1-e} \left[ 3\sin f ( 2 + e \cos f) - 3 (2+e)(1+e\cos f)^{2} L \right] , \end{aligned}$$
(30)
$$\begin{aligned} \phi _{YY}= & {} 1, \end{aligned}$$
(31)
$$\begin{aligned} \phi _{YX'}= & {} \frac{1}{1+e} \left[ \cos f (2+e\cos f) - (2+e)\right] , \end{aligned}$$
(32)
$$\begin{aligned} \phi _{YY'}= & {} \frac{1}{1-e}\left[ 2\sin f (2+e\cos f) - 3(1+e)(1+e\cos f)^{2} L \right] , \end{aligned}$$
(33)
$$\begin{aligned} \phi _{X'X}= & {} \frac{1}{1-e}\left[ 3\sin f + 3 e \sin 2f - 3 e (2+e) ( \cos f + e\cos 2f )L - \frac{3e(2+e)\sin f}{1+e\cos f}\right] , \end{aligned}$$
(34)
$$\begin{aligned} \phi _{X'Y}= & {} 0, \end{aligned}$$
(35)
$$\begin{aligned} \phi _{X'X'}= & {} \frac{1}{1+e}\left[ \cos f + e \cos 2f\right] , \end{aligned}$$
(36)
$$\begin{aligned} \phi _{X'Y'}= & {} \frac{1}{1-e} \left[ 2 \sin f + 2 e \sin 2f - 3e (1+e)(\cos f + e\cos 2f)L - \frac{3e(1+e)\sin f}{1+e\cos f}\right] , \end{aligned}$$
(37)
$$\begin{aligned} \phi _{Y'X}= & {} \frac{1}{1-e} \left[ 6\cos f + 3 e \cos 2f - 3(2+e)(1 - 2 e \sin f (1+e\cos f)L) \right] , \end{aligned}$$
(38)
$$\begin{aligned} \phi _{Y'Y}= & {} 0, \end{aligned}$$
(39)
$$\begin{aligned} \phi _{Y'X'}= & {} \frac{-2\sin f(1+e\cos f) }{1+e}, \end{aligned}$$
(40)
$$\begin{aligned} \phi _{Y'Y'}= & {} \frac{1}{1-e} \left[ 4 \cos f + 2 e \cos 2f - 3(1+e)(1 - 2e\sin f(1+e\cos f)L) \right] , \end{aligned}$$
(41)
$$\begin{aligned} \phi _{ZZ}= & {} \cos f, \end{aligned}$$
(42)
$$\begin{aligned} \phi _{ZZ'}= & {} \sin f, \end{aligned}$$
(43)
$$\begin{aligned} \phi _{Z'Z}= & {} -\sin f, \end{aligned}$$
(44)
$$\begin{aligned} \phi _{Z'Z'}= & {} \cos f, \end{aligned}$$
(45)

where we note the function L is defined as

$$\begin{aligned} L(f)= & {} \int \frac{ df}{(1+e\cos f)^{2}} \end{aligned}$$
(46)
$$\begin{aligned}= & {} \sqrt{\frac{\mu }{p^{3}}} t, \end{aligned}$$
(47)

where t is the time from perihelion. Thus we see that L will linearly increase in time, and could lead to an overall secular drift.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheeres, D.J. Proximity Operations About Apophis Through Its 2029 Earth Flyby. J Astronaut Sci 69, 1514–1536 (2022). https://doi.org/10.1007/s40295-022-00360-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00360-w

Keywords

Navigation