Skip to main content
Log in

Star Searches for Patched-Conic Trajectories

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Star is a mission design tool that globally searches for patched-conic trajectories that satisfy a set of user-defined constraints. It has been used to develop dozens of mission concepts at the Jet Propulsion Laboratory spanning multi-target rendezvous, sample return, multiple gravity assists (ballistic, high- and low-thrust), central-body switch to escape Earth or capture at a planet, planetary moon tours, and small-body tours sequenced from a pool of thousands of candidate targets. Star exhibits polynomial algorithmic complexity by constructing trajectories from independently computed encounter times, transfer legs, and flybys. Example missions of a ballistic transfer to Titan, tour of the Trojan asteroids, and low-thrust rendezvous with Mercury demonstrate the efficacy of the tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://montepy.jpl.nasa.gov.

  2. See https://ssd.jpl.nasa.gov/api/horizons.api?format=text &COMMAND=MB and https://ssd.jpl.nasa.gov/sbdb_query.cgi for major and small bodies available to Star .

  3. https://ssd-api.jpl.nasa.gov/doc/horizons.html.

  4. Star accesses orientation data via the https://ssd-api.jpl.nasa.gov/doc/horizons.html JPL HORIZONS ephemeris system.

References

  1. Arora, N., Strange, N., Alkalai, L.: Trajectories for a near term mission to the interstellar medium. In: AAS/AIAA Astrodynamics Specialist Conference, Vail, CO (2015). AAS 15-758

  2. Asphaug, E.: Near-earth asteroid opportunities in 2020–2024. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  3. Asphaug, E., et al.: The comet radar explorer mission. In: AAS/Division for Planetary Sciences Meeting Abstracts #46, AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46, p. 209.07 (2014)

  4. Banfield, D., Simon, A., Danner, R., Atkinson, D.H., Reh, K.R.: SPRITE: a saturn probe new frontiers mission. In: 2018 IEEE Aerospace Conference, pp. 1–15 (2018). https://doi.org/10.1109/AERO.2018.8396829

  5. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edition. American Institute of Aeronautics and Astronautics. pp. 294–539 (1999)

  6. Becerra, V.M., Myatt, D.R., Nasuto, S.J., Bishop, J.M., Izzo, D.: An efficient pruning technique for the global optimisation of multiple gravity assist trajectories. In: Proceedings of the International Workshop on Global Optimization, pp. 39–45 (2005)

  7. Beckman, J., Hyde, J., Rasool, S.: Exploring Jupiter and its satellites with an orbiter. Aeronaut. Astronaut. 12, 24–35 (1974)

    Google Scholar 

  8. Beebe, R.: Saturn atmosphere entry probe. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  9. Bell, J.F., Olkin, C., Castillo-Rogez, J.: Trojan tour and rendezvous (TTR): a new frontiers mission to conduct the first detailed reconnaissance of the Jupiter Trojan asteroids. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47, p. 312.08 (2015)

  10. Blacksberg, J., Chesley, S.R., Ehlmann, B., Raymond, C.A.: Intrepid: Exploring the NEA population with a fleet of highly autonomous smallSat explorers. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 49, p. 219.22 (2017)

  11. Boutonnet, A., Martens, W., Schoenmaekers, J.: SOURCE: a Matlab-oriented tool for interplanetary trajectory global optimization: fundamentals. In: AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI (2013). AAS 13-300

  12. Campagnola, S., Buffington, B.B., Lam, T., Petropoulos, A.E., Pellegrini, E.: Tour design techniques for the Europa Clipper Mission. J. Guid. Control. Dyn. 42(12), 2615–2626 (2019). https://doi.org/10.2514/1.G004309

    Article  Google Scholar 

  13. Castellini, F., Bellei, G., Budnik, F.: BepiColombo orbit determination activities during electric propulsion arcs. In: AIAA Scitech Forum (2020). https://doi.org/10.2514/6.2020-1701

  14. Castillo-Rogez, J.C., Meech, K., Chung, S.J., Landau, D.: Approach to exploring interstellar objects and long-period comets. In: AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, pp. 2115–2128 (2019). AAS 19-436

  15. Chen, K., Landau, D., McConaghy, T., Okutsu, M., Longuski, J., Aldrin, B.: Preliminary analysis and design of powered Earth-Mars cycling trajectories. In: AIAA/AAS Astrodynamics Specialist Conference, Monterey, CA (2002). https://doi.org/10.2514/6.2002-4422

  16. Cheng, A., Rivkin, A., Adler, M.: Galahad: medium class asteroid sample return mission. In: 38th COSPAR Scientific Assembly, vol. 38, p. 4 (2010)

  17. Drake, B.G.: Strategic considerations of human exploration of near-Earth asteroids. In: 2012 IEEE Aerospace Conference, pp. 1–18 (2012). https://doi.org/10.1109/AERO.2012.6187265

  18. Drake, B.G., Baker, J.D., Hoffman, S.J., Landau, D., Voels, S.A.: Alternative Strategies for Exploring Mars and the Moons of Mars. Houston, Texas (2012)

    Google Scholar 

  19. Elliot, J., et al.: Ice giants pre-dedcadal survey mission study report. NASA JPL D-100520 (2017)

  20. Englander, J., Vavrina, M., Ghosh, A.: Multi-objective hybrid optimal control for multiple-flyby low-thrust mission design. In: AAS/AIAA Space Flight Mechanics Meeting, Williamsburg, VA (2015). AAS 15-227

  21. Gooding, R.: A procedure for the solution of Lambert’s orbital boundary-value problem. Celest. Mech. Dyn. Astron. 48(2), 145–165 (1990)

    MATH  Google Scholar 

  22. Hogstrom, K., Murphy, J., Zusack, S., Coffey, A., Borden, C., Didion, A., Landau, D., Nelessen, A., Vining, M., Miller, R.: From cocktail napkin to concept feasibility: spacecraft design in early formulation with TATER. In: 2019 IEEE Aerospace Conference (2019). https://doi.org/10.1109/AERO.2019.8741906

  23. Izzo, D., Becerra, V.M., Myatt, D.R., Nasuto, S.J., Bishop, J.M.: Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories. J. Glob. Optim. 38(2), 283–296 (2007). https://doi.org/10.1007/s10898-006-9106-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. Stud. Comput. Intell. 415, 151–169 (2012). https://doi.org/10.1007/978-3-642-28789-3_7

    Article  MATH  Google Scholar 

  25. Landau, D.: Efficient maneuver placement for automated trajectory design. J. Guid. Control. Dyn. 41(7), 1531–1541 (2018). https://doi.org/10.2514/1.G003172

    Article  Google Scholar 

  26. Landau, D., Dankanich, J., Strange, N., Bellerose, J., Llanos, P., Tantardini, M.: Trajectories to nab a NEA (Near-Earth Asteroid). In: AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI, pp. 3251–3262 (2013). AAS 13-409

  27. Landau, D., Lam, T., Strange, N.: Broad search and optimization of solar electric propulsion trajectories to Uranus and Neptune. In: AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, pp. 2093–2112 (2009). AAS 09-428

  28. Lantukh, D.V., Russell, R.P., Campagnola, S.: V-infinity leveraging boundary-value problem and application in spacecraft trajectory design. J. Spacecr. Rocket. 52(3), 697–710 (2015). https://doi.org/10.2514/1.A32918

    Article  Google Scholar 

  29. Marley, M.: Neptune-triton-KBO mission. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  30. Martens, W., Boutonnet, A., Schoenmaekers, J.: SOURCE: a Matlab-oriented tool for interplanetary trajectory global optimization: applications. In: AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI (2013). AAS 13-301

  31. Martin, K., Landau, D., Campagnola, S., McElrath, T.: Automating tour design with applications for Europa Lander. In: AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI, pp. 517–530 (2019). AAS 19-324

  32. McNutt, L., Johnson, L., Kahn, P., Castillo-Rogez, J., Frick, A.: Near-Earth Asteroid (NEA) scout. In: AIAA SPACE 2014 Conference and Exposition, San Diego, CA (2014). https://doi.org/10.2514/6.2014-4435

  33. Meech, K., A’Hearn, M., Deininger, W., Randolph, T., Broschart, S., Sims, J.: Proteus–searching for the origin of Earth’s water. In: Low Cost Planetary Missions Conference (2011)

  34. Morante, D., Sanjurjo Rivo, M., Soler, M.: A survey on low-thrust trajectory optimization approaches. Aerospace (2021). https://doi.org/10.3390/aerospace8030088

    Article  Google Scholar 

  35. Nicholson, P.: Saturn ring observer. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  36. Okutsu, M., Yam, C.H., Longuski, J., Strange, N.J.: Cassini end-of-life escape trajectories to the outer planets. In: AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI, pp. 117–143 (2007). AAS 07-258

  37. Petropoulos, A.E., Kloster, K.W., Landau, D.F.: Mission design for the Jupiter Europa Orbiter flagship mission study. In: AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, pp. 891–903 (2009). AAS 09-354

  38. Prockter, L.M., Mitchell, K.L., Howett, C.J.A., Smythe, W.D., Sutin, B.M., Bearden, D.A., Frazier, W.E.: Exploring triton with trident: a discovery class mission. In: Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, p. 3188 (2019)

  39. Robert, O., Lognonne, P., Scheeres, D.J., Goujon, N., Le Feuvre, M., Izzet, A., Blitz, C., Bowman, L.: Seismology on a small body: expected results for the BASiX Discovery Mission proposal. In: AGU Fall Meeting Abstracts, U51B-0044 (2010)

  40. Scott, C., Ozimek, M., Adams, D., Lorenz, R., Bhaskaran, S., Ionasescu, R., Jesick, M., Laipert, F.: Preliminary interplanetary mission design and navigation for the Dragonfly New Frontiers mission concept. In: AAS/AIAA Astrodynamics Specialist Conference, Snowbird, Utah (2018). AAS 18-416

  41. Sherwood, B., McCleese, D.: Jpl innovation foundry. Acta Astronaut. 89, 236–247 (2013). https://doi.org/10.1016/j.actaastro.2013.04.020

    Article  Google Scholar 

  42. Singer, K.N., Stern, S.A., Stern, D., Verbiscer, A., Olkin, C.: Centaurus: exploring centaurs and more, messengers from the era of planet formation. In: EPSC-DPS Joint Meeting 2019, pp. EPSC–DPS2019–2025 (2019)

  43. Smith, J., Taber, W., Drain, T., Evans, S., Evans, J., Guervara, M., Schulze, W., Sunseri, R., Wu, H.C.: MONTE python for deep space navigation. In: Benthall, S., Rostrup, S., (eds.) Proceedings of the 15th Python in Science Conference, pp. 62 – 68 (2016). https://doi.org/10.25080/Majora-629e541a-009

  44. Sotin, C., Altwegg, K., Brown, R.H., Hand, K., Soderblom, J., JET Team: JET: A journey to Enceladus and Titan. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 42, p. 49.31 (2010)

  45. Sotin, C., et al.: Oceanus: a new frontiers orbiter to study Titan’s potential habitability. In: Lunar and Planetary Science Conference, p. 2306 (2017)

  46. Spencer, J.: Enceladus orbiter. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  47. Stanbridge, D., Williams, K., Williams, B., Adam, C., Weaver, H., Berry, K., Sutter, B., Englander, J.: Lucy: navigating a jupiter trojan tour. In: AAS/AIAA Astrodynamics Specialist Conference, Stevenson, WA (2017). AAS 17-632

  48. Strange, N., Spilker, T., Landau, D., Lam, T., Lyons, D., Guzman, J.: Mission design for the Titan Saturn system mission concept. In: AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, PA, pp. 919–934 (2009). AAS 09-356

  49. Sutherland, O., Stramaccioni, D., Benkhoff, J., Wallace, N., Feili, D., Rocchi, A., Jehn, R.: BepiColombo: ESA’s interplanetary electric propulsion mission to Mercury. In: 36th International Electric Propulsion Conference, Vienna, Austria (2019). IEPC 2019-824

  50. Uphoff, C., Roberts, P., Friedman, L.: Orbit design concepts for Jupiter orbiter missions. J. Spacecr. Rocket. 13(6), 348–355 (1976). https://doi.org/10.2514/3.57096

    Article  Google Scholar 

  51. Waite, J.H.: Titan lake probe. In: Council, N.R. (ed.) Vision and Voyages for Planetary Science in the Decade 2013–2022. The National Academies Press, Washington, DC (2011). https://doi.org/10.17226/13117

    Chapter  Google Scholar 

  52. Walton, J.M., Marchal, C., Culp, R.D.: Synthesis of the types of optimal transfers between hyperbolic asymptotes. AIAA J. 13(8), 980–988 (1975). https://doi.org/10.2514/3.60495

    Article  MATH  Google Scholar 

  53. Weissman, P.R., Bradley, J., Smythe, W.D., Brophy, J.R., Lisano, M.E., Syvertson, M.L., Cangahuala, L.A., Liu, J., Carlisle, G.L.: Comet odyssey: comet surface sample return. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 42, p. 49.18 (2010)

  54. Wenkert, D., Elkins-Tanton, L.T., Asphaug, E.I., Bairstow, S., Bell, J.F., Bercovici, D.A., Bills, B.G., Binzel, R.P., Bottke, W.F., Jun, I., Landau, D., Marchi, S., Oh, D., Weiss, B.P., Zuber, M.T.: Journey to a metal world: concept for a discovery mission to Psyche. In: AGU Fall Meeting Abstracts, pp. P51A–1729 (2013)

Download references

Acknowledgements

We thank Jon Sims for first encouraging the application of Star at JPL, and Keith Grogan, Chet Borden, Steve Matousek, and Tim McElrath for supporting its continued development. The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright \(\copyright\) 2022 California Institute of Technology. U.S Government sponsorship acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damon Landau.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landau, D., Campagnola, S. & Pellegrini, E. Star Searches for Patched-Conic Trajectories. J Astronaut Sci 69, 1613–1648 (2022). https://doi.org/10.1007/s40295-022-00350-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00350-y

Keywords

Navigation