Skip to main content
Log in

Application of Machine Learning to Investigation of Arcing on Geosynchronous Satellites

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The harsh space environment at geosynchronous orbit (GEO) induces differential charging of spacecraft surfaces due to fluxes of high energy electrons onto and through them. Thus, satellite surfaces can charge thousands of volts with respect to each other whereas entire satellites can charge tens of thousands of volts negative of their surrounding space plasma. The ensuing electric fields can cause local discharges (arcs), endangering the normal operation of the satellite. Remote detection of spacecraft arcing is important for the satellite operators in order to properly respond to anomalies caused by spacecraft charging due to the space weather conditions. However, analysis of satellite data is laborious due to the amount of data generated. In this work, we explored the application of machine learning for analysis of GEO satellite arcing behavior using the radio frequency observations by the Arecibo 305 m telescope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferguson, D.C., Murray-Krezan, J., Barton, D.A., Dennison, J.R., Gregory, S.A.: Feasibility of Detecting Spacecraft Charging and Arcing by Remote Sensing. J. Spacecr. Rocket. 6, 1907–1913 (2014)

    Article  Google Scholar 

  2. Garrett, H.B., Whittlesey, A.C.: Spacecraft Charging: an Update. IEEE Trans. Plasma Sci. 28(6), 2017–2028 (2000)

    Article  Google Scholar 

  3. Koons, H. C., Mazur, J. E., Selesnick, R. S., Blake, J. B., Fennell, J. F., Roeder, J. L., Anderson, P. C.: The impact of the space environment on space systems. In: Proceedings of the 6th Spacecraft Charging Conference. AFRL Science Center, Hanscom AFB, MA, USA pp. 7–11 (1998)

  4. Reed, C. C., Briët, R., Begert, M.: ESD Detection, Location and Mitigation, and Why they are Important for Satellite Development. In: Proc. 13th Spacecraft Charging Technol Conf pp. 1–27 (2014)

  5. Ferguson, D.C., Worden, S.P., Hastings, D.E.: The Space Weather Threat to Situational Awareness, Communications, and Positioning Systems. IEEE Trans. Plasma Sci. 43(9), 3086–3098 (2015)

    Article  Google Scholar 

  6. Toyoda, K., Okumura, T., Hosoda, S., Cho, M.: Degradation of High-Voltage Solar Array Due to Arcing in Plasma Environment. J. Spacecr. Rocket. 42(5), 947–953 (2005)

    Article  Google Scholar 

  7. T. Okumura, K. Nitta, M. Takahashi, T. Suzuki, and K. Toyoda. Flashover plasma characteristics on 5m2 solar array panels in a simulated plasma environment of geostationary orbit and low earth orbit. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition p. 1602 (2010)

  8. Ferguson, D., Crabtree, P., White, S., Vayner, B.: Anomalous Global Positioning System Power Degradation from Arc-Induced Contamination. J. Spacecr. Rocket. 53(3), 464–470 (2016)

    Article  Google Scholar 

  9. Engelhart, D., Ferguson, D., Hoffmann, R., Wellems, D., Artyushkova, K., Plis, E.: XPS investigation of the source of GPS arc contamination. IEEE Trans. Plasma Sci. 47(8), 3848–3851 (2019)

    Article  Google Scholar 

  10. Ferguson, D., Plis, E., Hoffmann, R., Engelhart, D.: A proven method to prevent solar array arcing in Geosynchronous Orbit – bulk-conductive coverglasses. In: AIAA Scitech 2020 Forum p. 2013 (2020). https://doi.org/10.2514/6.2020-2013

  11. Takahashi, A., Muraguchi, R., Iwata, M., Cho, M.: Charging and Arcing Test on Semiconductive Coated Solar Coupon Panel. IEEE Trans. Plasma Sci. 42(2), 384–390 (2014)

    Article  Google Scholar 

  12. Ferguson, D.C., Hoffmann, R.C., Engelhart, D.P., Plis, E.A.: Voltage threshold and power degradation rate for GPS solar array arcing. IEEE Trans. Plasma Sci. 45(8), 1972–1975 (2017)

    Article  Google Scholar 

  13. Ferguson, D. C., Hoffmann, R. C. Engelhart, D.: Radio frequency Detection of Arcing on MEO and GEO Satellites. In AIAA SciTech 2019 Forum p. 0056 (2019). https://doi.org/10.2514/6.2019-0056

  14. Ferguson, D., Perillat, P., Plis, E., Vayner, B.: Statistical Properties of Arcing on GPS Pseudo Random Noise 28. J. Spacecr. Rocket. 57(3), 405–412 (2020)

    Article  Google Scholar 

  15. Ferguson, D., White, S., Rast, R., Holeman, E.: The case for global positioning system arcing and high satellite arc rates. IEEE Trans. Plasma Sci. 47(8), 3834–3841 (2019)

    Article  Google Scholar 

  16. Plis, E., Ferguson, D., Perillat, P., Vayner, B.: Remote detection of arcing on geosynchronous satellites. In: Sensors and Systems for Space Applications XIII 11422, 114220D (2020)

    Google Scholar 

  17. Richens, J.G., Lee, C.M., Johri, S.: Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 11(1), 1–9 (2020)

    Article  Google Scholar 

  18. Rokham, H., Pearlson, G., Abrol, A., Falakshahi, H., Plis, S., Calhoun, V.D.: Addressing inaccurate nosology in mental health: A multilabel data cleansing approach for detecting label noise from structural magnetic resonance imaging data in mood and psychosis disorders. Biol. Psych. Cogn. Neurosci. Neuroimaging 5(8), 819–832 (2020)

    Google Scholar 

  19. Lewis, N., Gazula, H., Plis, S.M., Calhoun, V.D.: Decentralized distribution-sampled classification models with application to brain imaging. J. Neurosci. Methods 329, 108418 (2020)

    Article  Google Scholar 

  20. Scarpazza, C., Baecker, L., Vieira, S., Mechelli, A.: Applications of machine learning to brain disorders. In: Machine Learning, p. 45–65. Academic Press (2020)

  21. Wang, C., Cheng, M., Hu, X. Huang, J.: EasyASR: A distributed machine learning platform for end-to-end automatic speech recognition (2020) arXiv preprint arXiv:2009.06487

  22. Kraus, M., Feuerriegel, S., Oztekin, A.: Deep learning in business analytics and operations research: Models, applications and managerial implications. Eur. J. Oper. Res. 281(3), 628–641 (2020)

    Article  Google Scholar 

  23. Bai, T., Li, D., Sun, K., Chen, Y., Li, W.: Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sens. 8(9), 715 (2016)

    Article  Google Scholar 

  24. Shakya, S., Kumar, S., Goswami, M.: Deep learning algorithm for satellite imaging based cyclone detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 827–839 (2020)

    Article  Google Scholar 

  25. Xiong, P., Tong, L., Zhang, K., Shen, X., Battiston, R., Ouzounov, D., Iuppa, R., Crookes, D., Long, C., Zhou, H.: Towards advancing the earthquake forecasting by machine learning of satellite data. Sci. Total Environ. 771, 145256 (2021)

    Article  Google Scholar 

  26. Sharifi, A.: Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agricult. 101(3), 891–896 (2021)

    Article  Google Scholar 

  27. Schwalbert, R.A., Amado, T., Corassa, G., Pott, L.P., Prasad, P.V., Ciampitti, I.A.: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agricult. Forest Meteorol. 284, 107886 (2020)

    Article  Google Scholar 

  28. Lee, S., Stroeve, J., Tsamados, M., Khan, A.L.: Machine learning approaches to retrieve pan-Arctic melt ponds from visible satellite imagery. Remote Sens. Environ. 247, 111919 (2020)

    Article  Google Scholar 

  29. Dirscherl, M., Dietz, A. J., Kneisel, C. Kuenzer, C.: Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach. Remote Sens. 12, 1203 (2020). https://doi.org/10.3390/rs12071203

  30. Liu, Y., Morton, Y.: Automatic detection of ionospheric scintillation-like GNSS satellite oscillator anomaly using a machine-learning algorithm. Navigation 67(3), 651–662 (2020)

    Article  Google Scholar 

  31. Shen, D., Sheaff, C., Chen, G., Guo, M., Sullivan, N., Blasch, E., Pham, K.: Game Theoretic Synthetic Data Generation for Machine Learning Based Satellite Behavior Detection. In: The Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference (2020)

  32. Hassanien, A.E., Darwish, A., Abdelghafar, S.: Machine learning in telemetry data mining of space mission: basics, challenging and future directions. Artif. Intell. Rev. 53(5), 3201–3230 (2020)

    Article  Google Scholar 

  33. Li, D., Pan, Z.: The Five-hundred-meter Aperture Spherical Radio Telescope project. Radio Sci. 51, 1060–1064 (2016)

    Article  Google Scholar 

  34. Ferguson, D., White, S., Rast, R., Thompson, D., Suszcynsky, D., Balasubramaniam, K., Holeman, E.: Ground-Based Surveillance Campaign to Detect Global Positioning System Arcing—First Preliminary Results. J. Spacecr. Rocket. 54(3), 566–571 (2017)

    Article  Google Scholar 

  35. Ferguson, D.C., Holeman, E.: Arcing on GEO Satellites in the Arecibo Sidelobes. In: AIAA SCITECH 2022 Forum p. 1991 (2022). https://doi.org/10.2514/6.2022-1991

  36. Berrar, D.: Bayes’ theorem and naive Bayes classifier. In: Ranganathan, S. et al. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 403–412. Elsevier, Amsterdam (2018)

  37. Zareapoor, M., Shamsolmoali, P., Jain, D.K., Wang, H., Yang, J.: Kernelized support vector machine with deep learning: an efficient approach for extreme multiclass dataset. Pattern Recognit. Lett. 115, 4–13 (2018)

    Article  Google Scholar 

  38. Triguero, I., García, G.D., Maillo, J., Luengo, J., García, S., Herrera, F.: Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data. WIREs Data Mining Knowl. Discov. 9(2), e1289 (2019)

    Google Scholar 

  39. Menard, S.: Applied logistic regression analysis. Sage; 2nd Edition (2002). https://doi.org/10.4135/9781412983433

  40. Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer perceptron. J. Neural Network Comput. 2(2), 40–48 (1990)

    Google Scholar 

  41. Chang, Y. W., Lin, C. J.: Feature ranking using linear SVM. In: Causation and prediction challenge, pp. 53–64. PMLR (2008)

  42. Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005)

    Article  Google Scholar 

  43. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Bergstra, J., Yamins, D. Cox, D. D.: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In: International conference on machine learning, pp. 115–123. PMLR (2013). https://github.com/alvarouc/polyssifier

  46. Bergstra, J. Yamins, D. Cox, D. D.: Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In International conference on machine learning pp. 115–123. PMLR (2013)

  47. Ferguson, D., Crabtree, P., White, S., Vayner, B.: Anomalous global positioning system power degradation from arc-induced contamination. J. Spacecr. Rocket. 53(3), 464–70 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Air Force Office of Scientific Research, Remote Sensing and Imaging Physics Portfolio (Dr. Arje Nachmann) Grant 17RVCOR414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Plis.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Emerging Techniques in Space Domain Awareness

Guest Editors: Elena Plis, Daniel P Engelhart, Ryan C Hoffmann, Vishnu Reddy, Roberto Furfaro, James Frith

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plis, S.M., Ferguson, D.C. & Plis, E.A. Application of Machine Learning to Investigation of Arcing on Geosynchronous Satellites. J Astronaut Sci 69, 570–580 (2022). https://doi.org/10.1007/s40295-022-00314-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00314-2

Navigation