Skip to main content

Advertisement

Log in

An Automated Taxonomy for Human-Made Objects in Geosynchronous Orbits

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Taxonomies are useful for providing structure when categorizing large numbers of near-Earth space objects by the types of maneuvers they perform. In particular, lateral thrusting, longitudinal thrusting, and drifting may be directly linked to detectable changes in the orbital elements that affect object location and orientation. The purpose of this work is to develop a fully-automated taxonomy of the geosynchronous objects based on dynamical principles. Groups of objects are found using clustering methods, and two clustering methods are compared for constructing the taxonomy. The first is an adaptive k-means algorithm that does not require a priori information. It is compared to an agglomerative clustering algorithm that utilizes limits on cluster sizes to form distinct clusters. The effectiveness of the automated taxonomy is determined by comparison with the European Space Agency’s DISCOS database and clusters from the Geosynchronous yearly report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chu, J.: Space Weather’s Effects on Satellites: MIT study finds that high-energy electrons in space may be to blame for some satellite failures. MIT News Office, https://news.mit.edu/2013/space-weather-effects-on-satellites-0917. Date accessed: Feb. 13, 2021 (2013)

  2. Soop, E.M.: Handbook of Geostationary Orbits. Microcosm, Inc, Torrance (1994)

    Book  Google Scholar 

  3. Oltrogge, D. L., Alfano, S., Law, C., Cacioni, A., Kelso, T. S.: A comprehensive assessment of collision likelihood in geosynchronous earth orbit. Acta Astronaut. 147, 316–345 (2018)

    Article  Google Scholar 

  4. NOAA: Currrently Flying. National Environmental Satellite Data and Information Service: Department of Commerce, https://www.nesdis.noaa.gov/content/currently-flying, Date Accessed: Feb. 13, 2021

  5. Clark, S.: Lockheed Martin wins contract for Space Fence. Spaceflight now, http://spaceflightnow.com/news/n1406/02spacefence (2014)

  6. Garcia, M. (ed.): Space Debris and Human Spacecraft. NASA, http://www.nasa.gov/mission_pages/station/news/orbital_debris.html (2013)

  7. Tegler, E.: How the “Space Fence” will help keep orbital junk from killing satellites: You have to see it before you can avoid it. Popular mechanics, http://www.popularmechanics.com/space/satellites/a20285/air-force-space-fence-telescope-2018/ (2016)

  8. Rovetto, R.: An ontological architecture for orbital debris data. Earth Sci. Inform. 9, 67–82 (2015)

    Article  Google Scholar 

  9. Liu, X., Song, Y., Liu, S., Wang, H.: Automatic taxonomy construction from keywords. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2339530.2339754, pp 1433–1441. Association for Computing Machinery (2012)

  10. Noy, N. F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology. http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html (2001)

  11. Wilkins, M. P., Pfeffer, A., Schumacher, P. W., Jah, M.K.: Towards an artificial space object taxonomy. Maui, HI, United States. Advanced Maui Optical and Space Surveillance Technical Conference (2013)

  12. Berendsohn, W. G.: A taxonomic information model for botanical databases: The iopi model. Taxon 46(2), 283–309 (1997)

    Article  Google Scholar 

  13. Brigandt, I.: Natural kinds in evolution and systematics: Metaphysical and epistemological considerations. Acta Biotheor. 2009(57), 77–97 (2009)

    Article  Google Scholar 

  14. Brummitt, R. K.: Taxonomy versus cladonomy, a fundamental controversy in biological systematics. Taxon 46(4), 723–734 (1997)

    Article  Google Scholar 

  15. Franz, N.M.: Biological taxonomy and ontological development: Scope and limitations. Biodivers. Inform. 7(1), 45–66 (2010)

    Google Scholar 

  16. Smith, B.: The obo foundry: Coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25(11), 1251–1255 (2007)

    Article  Google Scholar 

  17. Stuart, J., Howell, K., Wilson, R.: Application of multi-agent coordination methods to the design of space debris mitigation tours. Advances in Space Research 57(8), 1680–1697 (2016)

    Article  Google Scholar 

  18. Cox, A. P., Nebelecky, C. K., Rudnicki, R., Tagliaferri, W. A., Crassidis, J. L., Smith, B.: The space object ontology. Heidelberg, Germany, Fusion 2016 (2016)

  19. Frueh, C., Jah, M., Valdez, E., Kervin, P., Kelecy, T.: Taxonomy and classification scheme for artificial space objects. Technical report, DTIC Document (2013)

  20. Bowell, E., Chapman, C. R., Gradie, J. C., Morrison, D., Zellner, B.: Taxonomy of asteroids. Icarus 35(3), 313–335 (1978)

    Article  Google Scholar 

  21. Chapman, C. R., Morrison, D., Zellner, B.: Surface properties of asteroids: A synthesis of polarimetry, radiometry, and spectrophotometry. Icarus 25(1), 104–130 (1975)

    Article  Google Scholar 

  22. Davies, J. K., Eaton, N., Green, S. F., McCheyne, R. S., Meadows, A. J.: The classification of asteroids. Vistas in astronomy 26, 243–251 (1982)

    Article  Google Scholar 

  23. Howell, E. S., Merenyi, E., Lebofsky, L. A.: Classification of asteroid spectra using a neural network. Journal of Geophysical Research: Planets 99 (E5), 10847–10865 (1994)

    Article  Google Scholar 

  24. Tholen, D.J.: Asteroid taxonomy from cluster analysis of photometry. https://repository.arizona.edu/handle/10150/187738 (1984)

  25. Fred, A. L. N., Leitao, J. M. N.: A new cluster isolation criterion based on dissimilarity increments. IEEE Trans. Pattern Anal. Mach. Intell. 25 (8), 1–15 (2003)

    Article  Google Scholar 

  26. Gath, I., Geva, A. B.: Unsuperivsed optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 773–781 (1989)

    Article  Google Scholar 

  27. Fischer, B., Zoller, T., Buhmann, J.M.: Path Based Pairwise Data Clustering with Application to Texture Segmentation. In: Figueiredo M., Zerubia J., Jain A.K. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2001. Lecture Notes in Computer Science, vol 2134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44745-8_16 (2001)

  28. Jain, A. K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666 (2009)

    Article  Google Scholar 

  29. Flohrer, T.: Classification of geosynchronous objects. issue 17. GEN-DB-LOG-00074-OPS-GR, ESA/ESOC. Darmstadt, Germany (2015)

  30. ESA. DISCOSweb. https://discosweb.esoc.esa.int/, Date Accessed: Feb. 12, 2021

  31. Galactics: Communications satellites. Galactics, http://satellites.spacesim.org/english/function/communic/index.html (1997)

  32. NOAA NESDIS OSPO: Imagery at a Glance. NOAA, http://www.goes.noaa.gov/(2016)

  33. Flohrer, T., Choc, R., Bastida, B.: Classification of geosynchronous objects. Issue 13. GEN-DB-LOG-00074-OPS-GR, ESA/ESOC. Darmstadt, Germany (2011)

  34. Hernández, C., Jehn, R.: Classification of geostationary objects. Space Debris 1 (4), 235–337 (1999). https://doi.org/10.1023/A:1013399804776

    Article  Google Scholar 

  35. Flohrer, T.: Classification of geosynchronous objects. GEN-DB-LOG-00074-OPS-GR, ESA/ESOC. Darmstadt, Germany, 15 (2013)

  36. Mellish, R., Frueh, C.: Adaptive taxonomy modeling for earth-orbiting object differentiation. In: AAS/AIAA Astrodynamics Specialist Conference (2016)

  37. Abbot, R. I., Wallace, T. P.: Decision support in space situational awareness. Lincoln Laboratory Journal 16(2), 297–335 (2007)

    Google Scholar 

  38. Vallado, D.: Fundamentals of Astrodynamics and Applications, 2nd edn. Microcosm Press, Portland (2001)

    MATH  Google Scholar 

  39. Coates, A., Ng, A. Y.: Learning feature representations with k-means. In: Neural Networks: Tricks of the Trade, pp 561–580. Springer (2012)

  40. Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences 42(5), 487–517 (2010)

    Article  Google Scholar 

  41. Fred, A.: Unsupervised learning: From single clustering to ensemble methods (2009)

  42. Walter, B., Bala, K., Kulkarni, M., Pingali, K.: Fast agglomerative clustering for rendering. In: IEEE Symposium on Interactive Ray Tracing, 2008. RT 2008, pp 81–86 (2008)

  43. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 407–416. ACM (2000)

Download references

Acknowledgements

This article was originally composed while the first author was a graduate student at Purdue University. She gratefully acknowledges the Gates Millennium Scholarship for the academic support that made the writing of this article possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochelle Mellish.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mellish, R., Frueh, C. An Automated Taxonomy for Human-Made Objects in Geosynchronous Orbits. J Astronaut Sci 68, 480–502 (2021). https://doi.org/10.1007/s40295-021-00259-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-021-00259-y

Keywords

Navigation