Skip to main content
Log in

Database of Planar and Three-Dimensional Periodic Orbits and Families Near the Moon

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The renewed interest in Lunar exploration prompts a need to better understand the dynamics of spacecraft in the vicinity of the Moon. Here, a detailed survey is conducted via a broad grid search to find, characterize, and archive symmetric periodic orbits. The resulting database contains over 13 million planar and three-dimensional solutions in the Earth–Moon circular restricted three-body problem, grouped into 33,980 family and sub-family clusters. The work is a direct follow-on to previous periodic orbit grid searches, with a focus on the Earth–Moon mass ratio, the addition of x–z symmetric orbits, and family clustering. Each periodic orbit successfully identified is evaluated for stability properties, perilune distance, number and center of revolutions, and other defining properties. DBSCAN, an unsupervised learning clustering algorithm, is used to isolate family curves in phase space and group orbits into family or sub-family clusters. The clustered orbits are then sorted to form smooth, ordered curves in phase space, allowing for arbitrary data resolution and improved labeling of the discrete grid solutions. A custom cluster confidence measure is introduced and applied. Over 80% of 3D data and over 62% of planar data are clustered with high confidence for all solutions regardless of number of revolutions, with better results at lower revolutions. Approximately 4.25% of 3D solutions and less than 0.5% of planar solutions are classified as outliers. The resulting database is an extension of several recent Lunar periodic orbit studies, and can be considered a modern update to Broucke’s seminal database of planar cislunar periodic orbits. This new public database is a tool for future mission design and has potential use in a variety of catalogue maintenance space situational awareness applications. The database, along with code and an interactive GUI to help parse it, is open source and available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. See footnote in the Database Section for the DOI and archival link to access.

  2. The database and accompanying software is open-source and archived here: https://doi.org/10.5281/zenodo.6411980. The following link will always point to the most recent version: https://doi.org/10.5281/zenodo.6411979.

  3. Approved for public release; distribution is unlimited. Public Affairs release approval # RV-45787 AFRL-2021-2876

References

  1. Mann, A.: NASA’s Artemis Program. Spacecom (2019)

  2. Mayfield, M.: China’s cislunar space ambitions draw scrutiny. Natl. Def. 104(799), 24–25 (2020)

    Google Scholar 

  3. Crane, L.: First private mission to the moon is launched on SpaceX rocket. NewScientist (2019)

  4. Bradley, N., Olikara, Z., Bhaskaran, S., Young, B.: Cislunar navigation accuracy using optical observations of natural and artificial targets. In: NASA Center for AeroSpace Information (CASI) Conference Proceedings (2016)

  5. Gao, Y., Wang, Z., Zhang, Y.: Low thrust Earth–Moon transfer trajectories via lunar capture set. Astrophys. Space Sci. (2019). https://doi.org/10.1007/s10509-019-3708-8

    Article  MathSciNet  Google Scholar 

  6. Parrish, N.L.O.: Low thrust trajectory optimization in cislunar and translunar space. PhD Thesis, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado (2018)

  7. Shirobokov, M.G., Trofimov, S.P.: Low-thrust transfers to lunar orbits from halo orbits around lunar libration points \(L_1\) and \(L_2\). Cosm. Res. 58(3), 223–234 (2020). https://doi.org/10.1134/S0010952520030065

    Article  Google Scholar 

  8. Guzman, E.: Generating Artemis 3 Trajectories to a 9:2 NRHO using Machine Learning. In: AIAA SciTech 2020 Forum (2020)

  9. LaFarge, N.B., Miller, D., Howell, K.C., Linares, R.: Guidance for closed-loop transfers using reinforcement learning with application to libration point orbits. In: AIAA SciTech 2020 Forum (2020)

  10. Blazquez, E., Beauregard, L., Lizy-Destrez, S.: Rendezvous design in a cislunar near rectilinear halo orbit. Aeronaut. J. 124, 821–837 (2020). https://doi.org/10.1017/aer.2019.126

    Article  Google Scholar 

  11. Bucchioni, G., Innocenti, M.: Rendezvous in Cis-Lunar Space near Rectilinear Halo Orbit: Dynamics and Control Issues. Aerospace 8(3), 68 (2021). https://doi.org/10.3390/aerospace8030068

  12. Franzini, G., Innocenti, M.: Relative motion dynamics in the restricted three-body problem. J. Spacecr. Rocket. 56(5), 1322–1337 (2019). https://doi.org/10.2514/1.A34390

    Article  Google Scholar 

  13. Ren, J., Li, M., Zheng, J.: Families of transfers from the Moon to Distant Retrograde Orbits in cislunar space. Astrophys. Space Sci. (2020). https://doi.org/10.1007/s10569-020-03901-7

    Article  MathSciNet  Google Scholar 

  14. Zhang, R., Wang, Y., Zhang, H., Zhang, C.: Transfers from distant retrograde orbits to low lunar orbits. Celest. Mech. Dyn. Astron. (2020). https://doi.org/10.1007/s10569-020-09982-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Bolliger, M., Thompson, M.R., Ré, N.P., Ott, C., Davis, D.C.: Ground-based navigation trades for operations in gateway’s near rectilinear halo orbit. In: 31st AAS/AIAA Space Flight Mechanics Meeting (2021)

  16. Gao, Z.Y., Hou, X.Y.: Coverage analysis of lunar communication/navigation constellations based on halo orbits and distant retrograde orbits. J. Navig. 73, 932–952 (2020). https://doi.org/10.1017/S0373463320000065

    Article  Google Scholar 

  17. Wang, W., Shu, L., Liu, J., Gao, Y.: Joint navigation performance of distant retrograde orbits and cislunar orbits via LiAISON considering dynamic and clock model errors. Navigation 66, 781–802 (2019). https://doi.org/10.1002/navi.340

    Article  Google Scholar 

  18. Bradley, N., Olikara, Z., Bhaskaran, S., Young, B.: Cislunar navigation accuracy using optical observations of natural and artificial targets. J. Spacecr. Rocket. 57(4), 777–792 (2020)

    Article  Google Scholar 

  19. Fowler, E.E., Hurtt, S.B., Paley, D.A.: Observability metrics for space-based cislunar domain awareness. In: 31st AAS/AIAA Space Flight Mechanics Meeting (2021)

  20. Frueh, C., Howell, K., DeMars, K.J., Bhadauria, S.: Cislunar space situational awareness. In: 31st AAS/AIAA Space Flight Mechanics Meeting (2021)

  21. Knister, S.R.: Evalutation framework for cislunar space domain awareness systems. Theses and Dissertations (3243) (2020). https://scholar.afit.edu/etd/3243

  22. Restrepo, R.L., Russell, R.P.: Patched periodic orbits: a systematic strategy for low energy transfer design. In: AAS/AIAA Astrodynamics Specialist Conference (2017)

  23. Tan, M., Zhang, K., Wang, J.: Optimization of bi-impulsive Earth–Moon transfers using periodic orbits. Astrophys. Space Sci. (2021). https://doi.org/10.1007/s10509-021-03926-6

    Article  MathSciNet  Google Scholar 

  24. Dei Tos, D., Russell, R., Topputo, F.: Survey of mars ballistic capture trajectories using periodic orbits as generating mechanisms. J. Guid. Control Dyn. (2018). https://doi.org/10.1007/s10569-020-09968-2

    Article  Google Scholar 

  25. Vaquero, M., Howell, K.: Design of transfer trajectories between resonant orbits in the Earth–Moon restricted problem. Acta Astronaut. 94, 302–317 (2014). https://doi.org/10.1016/j.actaastro.2013.05.006

    Article  Google Scholar 

  26. Lantoine, G., Russell, R., Campagnola, S.: Optimization of low-energy resonant hopping transfers between planetary moons. Acta Astronaut. 68, 1361–1378 (2011). https://doi.org/10.1016/j.actaastro.2010.09.021

    Article  Google Scholar 

  27. Folta, D., Bosanac, N., Guzzetti, D., Howell, K.: An Earth–Moon system trajectory design reference catalog. Acta Astronaut. 110, 341–353 (2015). https://doi.org/10.1016/j.actaastro.2014.07.037

    Article  Google Scholar 

  28. Guzzetti, D., Bosanac, N., Haapala, A., Howell, K.C., Folta, D.C.: Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronaut. 126, 439–455 (2016). https://doi.org/10.1016/j.actaastro.2016.06.029

    Article  Google Scholar 

  29. NASA.: Gateway Memorandum for the Record (2018)

  30. Vendl, J.K.: Cislunar periodic orbit analysis for space object detection capability. Master’s Thesis, Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado (2019)

  31. Lara, M., Russell, R., Villac, B.: Classification of the distant stability regions at Europa. J. Guid. Control. Dyn. 30, 409–418 (2007). https://doi.org/10.2514/1.22372

    Article  Google Scholar 

  32. Koon, W., Lo, M., Marsden, J., Ross, S.: Resonance and capture of jupiter comets. Celest. Mech. Dyn. Astron. 81, 27–38 (2001). https://doi.org/10.1023/A:1013398801813

    Article  MathSciNet  MATH  Google Scholar 

  33. Howell, K., Marchand, B., Lo, M.: Temporary satellite capture of short-period jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49, 539–557 (2001). https://doi.org/10.1007/BF03546223

    Article  MathSciNet  Google Scholar 

  34. de la Fuente, M.C., de la Fuente, M.R.: Asteroid (469219) 2016 \(\text{ HO}_3\), the smallest and closest Earth quasi-satellite. Mon. Not. R. Astron. Soc. 462, 3441–3456 (2016). https://doi.org/10.1093/mnras/stw1972

    Article  Google Scholar 

  35. Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006). https://doi.org/10.1007/BF03256483

    Article  MathSciNet  Google Scholar 

  36. Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the solar system. Celest. Mech. Dyn. Astron. (2018). https://doi.org/10.1007/s10569-018-9844-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Szebehely, V.: Theory of Orbits—The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  38. Henon, M.: Numerical exploration of the restricted problem. V. Hill’s case: periodic orbits and their stability. Astron. Astrophys. 1, 223–238 (1969)

    MATH  Google Scholar 

  39. Henon, M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003). https://doi.org/10.1023/A:1022518422926

    Article  MathSciNet  MATH  Google Scholar 

  40. Markellos, V.V., Black, W., Moran, P.E.: A grid search for families of periodic orbits in the restricted problem of three bodies. Celest. Mech. 9, 507–512 (1974). https://doi.org/10.1007/BF01329331

    Article  MATH  Google Scholar 

  41. Zagouras, C., Markellos, V.V.: Axisymmetric periodic orbits of the restricted problem in three dimensions. Astron. Astrophys. 59(1), 79–89 (1977)

    MATH  Google Scholar 

  42. Broucke, R.: Periodic orbits in the restricted three-body problem with Earth–Moon masses. Tech. Rep. TR 32-1168, Jet Propulsion Laboratory (1968)

  43. Tsirogiannis, G.A., Perdios, E.A., Markellos, V.V.: Improved grid search method: an efficient tool for global computation of periodic orbits. Celest. Mech. Dyn. Astron. 103, 49–78 (2008). https://doi.org/10.1007/s10569-008-9165-2

    Article  MathSciNet  MATH  Google Scholar 

  44. Anderson, R.L., Campagnola, S., Lantoine, G.: Broad search for unstable resonant orbits in the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 124, 177–199 (2015). https://doi.org/10.1007/s10569-015-9659-7

    Article  MathSciNet  Google Scholar 

  45. Papadakis, K.E., Rodi, M.I.: Asymmetric periodic solutions in the restricted problem of three bodies. Earth Moon Planet. 106, 37–53 (2010). https://doi.org/10.1007/s11038-009-9345-4

    Article  MATH  Google Scholar 

  46. Henon, M.: Families of asymmetric periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 93, 87–100 (2005). https://doi.org/10.1007/s10569-005-3641-8

    Article  MathSciNet  MATH  Google Scholar 

  47. Markellos, V.V.: Asymmetric periodic orbits in three dimensions. Mon. Not. R. Astron. Soc. 184, 273–281 (1978). https://doi.org/10.1093/mnras/184.2.273

    Article  MATH  Google Scholar 

  48. Howell, K.: Three-dimensional, periodic, ‘Halo’ orbits. Celest. Mech. 32, 53–71 (1984). https://doi.org/10.1007/BF01358403

    Article  MathSciNet  MATH  Google Scholar 

  49. Howell, K., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41, 107–124 (1987). https://doi.org/10.1007/BF01238756

    Article  MATH  Google Scholar 

  50. Grebow, D.J.: Generating periodic orbits in the circular restricted three-body problem with applications to lunar south pole coverage. Master’s Thesis, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (2006)

  51. Zimovan-Spreen, E.M., Howell, K., Davis, D.: Near Rectilinear Halo Orbit and nearby higher-period dynamical structures: orbital stability and resonance properties. Celest. Mech. Dyn. Astron. (2020). https://doi.org/10.1007/s10569-020-09968-2

    Article  MathSciNet  MATH  Google Scholar 

  52. Schlei, W.R.: Interactive spacecraft trajectory design strategies featuring Poincaré map topology. PhD Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana (2017)

  53. Palacios, M., Arribas, M., Abad, A., Elipe, A.: Symmetric periodic orbits in the Moulton-Copenhagen problem. Celest. Mech. Dyn. Astron. (2019). https://doi.org/10.1007/s10569-019-9893-5

    Article  MathSciNet  MATH  Google Scholar 

  54. Shi, Y., Wang, Y., Xu, S.: Global search for periodic orbits in the irregular gravity field of a binary asteroid system. Acta Astronaut. 163, 11–23 (2019). https://doi.org/10.1016/j.actaastro.2018.10.014

    Article  Google Scholar 

  55. Dichmann, D.J., Doedel, E.J., Paffenroth, R.C.: The computation of periodic solutions of the 3-body problem using the numerical computation software AUTO. In: Libration Point Orbits and Applications, pp. 489–528 (2002)

  56. Villac, B.F., Anderson, R.L., Pini, A.J.: Computer aided ballistic orbit classification around small bodies. J. Astronaut. Sci. 63(3), 175–205 (2016). https://doi.org/10.1007/s40295-016-0089-x

    Article  Google Scholar 

  57. Furfaro, R., Drozd, K., Linares, R., Gaudet, B., Scorsoglio, A.: Deep imitation learning and clustering in astrodynamics. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 3567–3584 (2019)

  58. Nakhjiri, N., Villac, B.: Automated stable region generation, detection, and representation for applications to mission design. Celest. Mech. Dyn. Astr. 123, 63–83 (2015). https://doi.org/10.1007/s10569-015-9629-0

  59. Bosanac, N.: Data-mining approach to poincare maps in multi-body trajectory design. J. Guid. Control Dyn. (2020). https://doi.org/10.2514/1.G004857

    Article  Google Scholar 

  60. Davis, J.C., Pernicka, H.J.: Spacecraft identification leveraging unsupervised learning techniques for formation and swarm missions. In: AIAA SciTech 2020 Forum (2020). https://doi.org/10.2514/6.2020-1195

  61. Soto, J., Aguiar, M.I.V., Flores-Sintas, A.: A fuzzy clustering application to precise orbit determination. J. Comput. Appl. Math. 204(1), 137–143 (2007). https://doi.org/10.1016/j.cam.2006.04.050

    Article  MATH  Google Scholar 

  62. Zhu, F., Ba, T., Zhang, Y., Gao, X., Wang, J.: Terminal location method with NLOS exclusion based on unsupervised learning in 5G-LEO satellite communication systems. Int. J. Satell. Commun. Network. 38(5), 425–436 (2020)

    Article  Google Scholar 

  63. Martin, G., Wetterer, C.J., Lau, J., Case, J., Toner, N., Chow, C.C., Dao, P.: Cislunar periodic orbit family classification from astrometric and photometric observations using machine learning. In: 2020 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) (2020)

  64. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised edition. American Institute of Aeronautics and Astronautics, Washington, DC (1999). https://doi.org/10.2514/4.861543

  65. Poincaré, H.: New methods of celestial mechanics; edited and introduced by Daniel L. Goroff. American Institute of Physics (1892/1993)

  66. Broucke, R.: Stability of periodic orbits in the elliptic. Restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969). https://doi.org/10.2514/3.5267

    Article  MATH  Google Scholar 

  67. Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395–434 (1980). https://doi.org/10.1007/BF01231276

    Article  MathSciNet  MATH  Google Scholar 

  68. Roy, A.E., Ovenden, M.W.: On the occurrence of commensurable mean motions in the solar system. Mon. Not. R. Astron. Soc. 115, 296–309 (1955). https://doi.org/10.1093/mnras/115.3.296

    Article  MATH  Google Scholar 

  69. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

  70. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics (1971). https://doi.org/10.2307/2528823

    Article  Google Scholar 

  71. Geron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Sebastopol (2017)

    Google Scholar 

  72. Campello, R.J.G.B., Moulavi, D., Zimek, A.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data (2015). https://doi.org/10.1145/2733381

    Article  Google Scholar 

  73. Kim, J.H., Choi, J.H., Yoo, K.H., Nasridinov, A.: AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities. J. Supercomput. 75, 142–169 (2018)

    Article  Google Scholar 

  74. McArdle, S., Russell, R.P.: Circulating, eccentric periodic orbits at the Moon. Celest. Mech. Dyn. Astron. 133(4), 18 (2021). https://doi.org/10.1007/s10569-021-10013-z

    Article  MathSciNet  MATH  Google Scholar 

  75. Ely, T.A.: Stable constellations of frozen elliptical inclined lunar orbits. J. Astronaut. Sci. 53(3), 301–316 (2005). https://doi.org/10.1007/BF03546355

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank both anonymous reviewers for their insightful comments that greatly improved the quality of this paper. This work was funded in part by the Air Force Research Laboratory award number FA9451-18-2-0105 under a subcontract through the University of Arizona. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing high performance computing resources that contributed to the research results reported within this paper. http://www.tacc.utexas.edu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carter J. Franz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franz, C.J., Russell, R.P. Database of Planar and Three-Dimensional Periodic Orbits and Families Near the Moon. J Astronaut Sci 69, 1573–1612 (2022). https://doi.org/10.1007/s40295-022-00361-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-022-00361-9

Keywords

Navigation