Skip to main content
Log in

State-Space System Identification Without a Hold Device by Lagrange Interpolation

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper presents a solution to the state-space system identification problem from discrete-time data without a hold device on the input. We consider the case where the inter-sampled input is approximated by 4-point Lagrange interpolation. The resultant discrete-time state-space model becomes non-standard and non-causal, but a mathematically equivalent discrete-time model is found so that standard system identification can be adapted to identify it. From the identified equivalent model, a continuous-time state-space model of the system is recovered. Results for the special case of 2-point linear interpolation are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Juang, J.-N.: Applied System Identification. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  2. Overschee, P.V., Moor, B.D.: Subspace Identification for Linear Systems: Theory, Implementation, Applications. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  3. Juang, J.-N., Horta, L.G., Phan, M.Q.: System/Observer/Controller Identification Toolbox, Tech. Rep. TM-107566, NASA, Langley VA (1992)

  4. Phan, M.Q., Horta, L.G., Juang, J.-N., Longman, R.W.: Linear system identification via an asymptotically stable observer. J. Optim. Theory Appl. 79(1), 59–86 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Juang, J.-N., Phan, M.Q., Horta, L.G., Longman, R.W.: Identification of observer/Kalman filter Markov parameters: Theory and experiments. J. Guid. Control Dyn. 16(2), 320–329 (1993)

    Article  MATH  Google Scholar 

  6. Phan, M.Q., Horta, L.G., Juang, J.-N., Longman, R.W.: Improvement of observer/Kalman filter identification (OKID) by residual whitening. J. Vibr. Acoust. 117(2), 232–238 (1995)

    Article  Google Scholar 

  7. Lin, P., Phan, M.Q., Ketcham, S.A.: State-Space Model and Kalman Filter Gain Identification by a Superspace Method, Modeling, Simulation, and Optimization of Complex Processes. In: Bock, H.G., Phu, H.X., Rannacher, R., Schloeder, J.R. (eds.) , pp 121–132. Springer (2014)

  8. Majji, M., Juang, J.-N., Junkins, J.L.: Observer/Kalman-filter time-varying system identification. J. Guid. Control Dyn. 33(3), 887–900 (2010)

    Article  Google Scholar 

  9. Aitken, J.M., Clarke, T.: Observer/Kalman filter identification with wavelets. IEEE Trans. Signal Process. 60(7), 3476–3485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, M., Pakzad, S.N.: Observer Kalman filter identification for output-only systems using interactive structural modal identification toolsuite (SMIT). J. Bridge Eng. 19(5), 04014002–1–04014002–11 (2014)

    Article  Google Scholar 

  11. Vicario, F., Phan, M.Q., Betti, R., Longman, R.W.: Output-only observer/Kalman filter identification (O3KID). Struct. Control. Health Monit. 22, 847–872 (2015)

    Article  Google Scholar 

  12. Phan, M.Q., Vicario, F., Longman, R.W., Betti, R.: State-space model and Kalman filter gain identification by a Kalman filter of a Kalman filter. J. Dyn. Syst. Measur. Control 140, 3 (2018)

    Article  Google Scholar 

  13. Overschee, P.V., Moor, B.D.: N4SID: Subspace algorithms for the identification of combined deterministic stochastic systems. Automatica 30(1), 75–93 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Qin, S.J.: An overview of subspace identification. Comput. Chem. Eng. 30 (10-12), 1502–1513 (2006)

    Article  Google Scholar 

  15. Chiuso, A.: The role of vector autoregressive modeling in predictor based subspace identification. Automatica 43(6), 1034–1048 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Qin, S.J., Ljung, L.: Closed-loop subspace identification with innovation estimation. In: Proceedings of the 13th IFAC Symposium on System Identification. Elsevier Science Ltd., Oxford (2003)

  17. Lin, W., Qin, S.J., Ljung, L.: On consistency of closed-loop subspace identification with innovation estimation. In: Proceedings of the 43rd IEEE Conference on Decision and Control. IEEE Publ., New York (2004)

  18. Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  19. Juang, J.-N., Cooper, J.E., Wright, J.R.: An eigensystem realization algorithm using data correlations (ERA/DC) for modal parameter identification. J. Control Theory Adv. Technol. 4(1), 5–14 (1988)

    MathSciNet  Google Scholar 

  20. Bernal, D.: Optimal discrete to continuous transfer for band limited inputs. J. Eng. Mech. 133, 1370–1377 (2007)

    Article  Google Scholar 

  21. Schoukens, J., Pintelon, R., Hamme, H.V.: Identification of linear dynamic systems using piecewise constant excitations: Use, misuse and alternatives. Automatica 30(7), 1153–1169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bingulac, S., Cooper, D.L.: Derivation of discrete and continuous time ramp invariant representations. Electronic Letters 26(10), 664–666 (1990)

    Article  Google Scholar 

  23. Bingulac, S., Sinha, N.K.: On the identification of continuous time multivariable systems from samples of input-output data. In: Proceedings of the 7th International Conference on Mathematical and Computer Modeling, pp 203–208, Chicago (1989)

  24. Phan, M.Q.: Interaction matrices in system identification and control. In: Proceedings of the 15th Yale Workshop on Adaptive and Learning Systems, New Haven (2011)

  25. Phan, M.Q., Vicario, F., Longman, R.W., Betti, R.: An All-Interaction Matrix Approach to Linear and Bilinear System Identification, Modeling, Simulation, and Optimization of Complex Processes. In: Bock, H.G., Phu, H.X., Rannacher, R., Schloeder, J.R. (eds.) , pp 165–177. Springer (2017)

  26. Phan, M.Q., Tseng, D.H., Longman, R.W.: Partial system identification of stiffness and damping matrices from output measurements only. In: The 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali (2019)

  27. Tseng, D.H., Phan, M.Q., Longman, R.W.: Identification of stiffness and damping matrices of high degree-of-freedom structural models. In: The 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali (2019)

  28. Li, Y., Longman, R.W.: Better holds can make worse intersample error in digital learning control. In: AIAA/AAS Astrodynamics Specialist Conference, Keystone (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Q. Phan.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Discrete-Time Model by Lagrange Interpolation

Consider a continuous-time state-space model

$$ \label {eq:continuous state-space} \begin{array}{lll} \dot{x}(t) &= A_{c}x(t) + B_{c}u(t) \\ y(t) &= Cx(t) + Du(t) \end{array} $$
(43)

where the continuous excitation input u(t) at any time t between kT and (k + 1)T follows a 4-point Lagrange interpolation according to Eqs. 36,

$$ u(t) = {c_{- 1}}(t)u(k - 1) + {c_{0}}(t)u(k) + {c_{1}}(t)u(k + 1) + {c_{2}}(t)u(k + 2) $$
(44)

In this Appendix, we explain how to convert the continuous-time state-space model to discrete time when the input between sampling instants is obtained from a 4-point Lagrange interpolation. Such a continuous-time model has an exact discrete-time representation of the form

$$ \begin{array}{@{}rcl@{}} x(k + 1) &=& Ax(k) + {B_{- 1}}u(k - 1) + {B_{0}}u(k) + {B_{1}}u(k + 1) + {B_{2}}u(k+2)\\ y(k) &=& Cx(k) + Du(k) \end{array} $$
(45)

where B− 1, B0, B1, and B2 are given in Eq. 10. The discrete-time model is derived by substituting u(t) into Eq. 7 and carrying out the integration

$$ \int\limits_{kT}^{(k + 1)T} {{e^{{A_{c}}((k + 1)T - \tau )}}} {B_{c}}u(\tau )d\tau $$

With the aid of the following integrals involving the matrix exponentials,

$$ \begin{array}{@{}rcl@{}} \int {{e^{{A_{c}}t}}} dt &=& A_{c}^{- 1}{e^{{A_{c}}t}} + c \end{array} $$
(46)
$$ \begin{array}{@{}rcl@{}} \int {{t}{e^{{A_{c}}{t}}}} d{t} &=& {t}A_{c}^{- 1}{e^{{A_{c}}{t}}} - A_{c}^{- 1}\int {{e^{{A_{c}}{t}}}} d{t}\\ &=& A_{c}^{- 1}{t}{e^{{A_{c}}{t}}} - A_{c}^{- 2}{e^{{A_{c}}{t}}} + c \end{array} $$
(47)
$$ \begin{array}{@{}rcl@{}} \int {{{t}^{2}}{e^{{A_{c}}{t}}}} d{t} &=& {{t}^{2}}A_{c}^{- 1}{e^{{A_{c}}{t}}} - 2A_{c}^{- 1}\int {{t}{e^{{A_{c}}{t}}}} d{t}\\ &=& A_{c}^{- 1}{{t}^{2}}{e^{{A_{c}}{t}}} - 2A_{c}^{- 2}{t}{e^{{A_{c}}{t}}} + 2A_{c}^{- 3}{e^{{A_{c}}{t}}} + c \end{array} $$
(48)
$$ \begin{array}{@{}rcl@{}} \int {{{t}^{3}}{e^{{A_{c}}{t}}}} d{t} &=& {{t}^{3}}A_{c}^{- 1}{e^{{A_{c}}{t}}} - 2A_{c}^{- 1}\int {{{t}^{2}}{e^{{A_{c}}{t}}}} d{t}\\ &=& A_{c}^{- 1}{{t}^{3}}{e^{{A_{c}}{t}}} - 3A_{c}^{- 2}{{t}^{2}}{e^{{A_{c}}{t}}} + 6A_{c}^{- 3}{t}{e^{{A_{c}}{t}}} - 6A_{c}^{- 4}{e^{{A_{c}}{t}}} + c \end{array} $$
(49)

it can be shown that for \(A = {e^{{A_{c}}T}}\),

$$ {\int\limits_{0}^{T}} {{e^{{A_{c}}t }}dt } = A_{c}^{- 1}{e^{{A_{c}}T}} - A_{c}^{- 1} = A_{c}^{- 1}A - A_{c}^{- 1} $$
(50)
$$ {\int\limits_{0}^{T}} {t {e^{{A_{c}}t }}dt } = TA_{c}^{- 1}A - A_{c}^{- 2}A + A_{c}^{- 2} $$
(51)
$$ {\int\limits_{0}^{T}} {{t^{2}}{e^{{A_{c}}t }}dt } = {T^{2}}A_{c}^{- 1}A - 2TA_{c}^{- 2}A + 2A_{c}^{- 3}A - 2A_{c}^{- 3} $$
(52)
$$ {\int\limits_{0}^{T}} {{t^{3}}{e^{{A_{c}}t }}dt } = {T^{3}}A_{c}^{- 1}A - 3{T^{2}}A_{c}^{- 2}A + 6TA_{c}^{- 3}A - 6A_{c}^{- 4}A + 6A_{c}^{- 4} $$
(53)

The following provides the details of the derivation.

$$ {B_{- 1}} = \left[ {\int\limits_{kT}^{(k + 1)T} {{e^{{A_{c}}((k+1)T - \tau )}}} {c_{- 1}}(\tau )d\tau } \right]{B_{c}} $$
(54)

where

$$ {c_{- 1}(\tau)} = \frac{{(\tau - kT)(\tau - (k + 1)T)(\tau - (k + 2)T)}}{{(- T)(- 2T)(- 3T)}} $$
(55)

Changing the variable of integration from τ to t where t = (k + 1)Tτ reveals that B− 1 is time-invariant. The expression for B− 1 becomes

$$ \begin{array}{lll} {B_{- 1}} &= - \frac{1}{{6{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {{e^{{A_{c}}t }}} \left( {T - t } \right)\left( { - t } \right)\left( { - T - t } \right)dt } \right]{B_{c}}\\ &= - \frac{1}{{6{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {\left( {{T^{2}}t - {t^{3}}} \right){e^{{A_{c}}t }}dt } } \right]{B_{c}}\\ &= \frac{1}{{6{T^{3}}}}\left( { - 2{T^{2}}A_{c}^{- 2}A + 6TA_{c}^{- 3}A - 6A_{c}^{- 4}A - {T^{2}}A_{c}^{- 2} + 6A_{c}^{- 4}} \right) B_{c} \end{array} $$
(56)

Similarly,

$$ {B_{0}} = \left[ {\int\limits_{kT}^{(k + 1)T} {{e^{{A_{c}}((k+1)T - \tau )}}} {c_{0}}(\tau )d\tau } \right]{B_{c}} $$
(57)
$$ {B_{1}} = \left[ {\int\limits_{kT}^{(k + 1)T} {{e^{{A_{c}}((k+1)T - \tau )}}} {c_{1}}(\tau )d\tau } \right]{B_{c}} $$
(58)
$$ {B_{2}} = \left[ {\int\limits_{kT}^{(k + 1)T} {{e^{{A_{c}}((k+1)T - \tau )}}} {c_{2}}(\tau )d\tau } \right]{B_{c}} $$
(59)

where

$$ {c_{0}(\tau)} = \frac{{(\tau - (k - 1)T)(\tau - (k + 1)T)(\tau - (k + 2)T)}}{{(T)(-T)(- 2T)}} $$
(60)
$$ {c_{1}}(\tau) = \frac{{(\tau - (k - 1)T)(\tau - kT)(\tau - (k + 2)T)}}{{(2T)(T)(- T)}} $$
(61)
$$ {c_{2}}(\tau) = \frac{{(\tau - (k - 1)T)(\tau - kT)(\tau - (k + 1)T)}}{{(3T)(2T)(T)}} $$
(62)

Changing the integration variable from τ to t where t = (k + 1)Tτ eliminates k from the integrals. The expressions for B0, B1, B2 become

$$ \begin{array}{@{}rcl@{}} {B_{0}} &=& \frac{1}{{2{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {{e^{{A_{c}}t }}} (2T - t )(- t )(- T - t )dt } \right]{B_{c}}\\ &=& - \frac{1}{{2{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {({t^{3}} - T{t^{2}} - 2{T^{2}}t ){e^{{A_{c}}t }}} dt } \right]{B_{c}} \end{array} $$
(63)
$$ \begin{array}{@{}rcl@{}} {B_{1}} &=& - \frac{1}{{2{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {{e^{{A_{c}}t }}} (2T - t )(T - t )(- T - t )dt } \right]{B_{c}}\\ &=& \frac{1}{{2{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {({t^{3}} - 2T{t^{2}} - T^{2}t + 2{T^{3}}){e^{{A_{c}}t }}} dt } \right]{B_{c}} \end{array} $$
(64)
$$ \begin{array}{@{}rcl@{}} {B_{2}} &=& \frac{1}{{6{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {{e^{{A_{c}}t }}} (2T - t )(T - t )(- t )dt } \right]{B_{c}}\\ &=& - \frac{1}{{6{T^{3}}}}\left[ {{\int\limits_{0}^{T}} {({t^{3}} - 3T{t^{2}} + 2{T^{2}}t ){e^{{A_{c}}t }}} dt } \right]{B_{c}} \end{array} $$
(65)

Substituting the definite integrals into these expressions produces the desired results.

Appendix B: Equivalent Discrete-Time State-Space Models

In this Appendix, we show that the input-output relationship of the system

$$ \begin{array}{@{}rcl@{}} x(k + 1) &=& Ax(k) + {B_{- 1}}u(k - 1) + {B_{0}}u(k) + {B_{1}}u(k + 1) + {B_{2}}u(k+2)\\ y(k) &=& Cx(k) + Du(k) \end{array} $$
(66)

with initial condition x(1) is identical to the input-output relationship of the system

$$ \begin{array}{@{}rcl@{}} w(k + 1) &=& Aw(k) + Bu(k)\\ y(k) &=& Cw(k) + {D_{- 1}}u(k - 1) + {D_{0}}u(k) + {D_{1}}u(k + 1) \end{array} $$
(67)

with initial condition w(1) where

$$ w(1)=x(1)+A^{-1}B_{-1}u(0)-B_{1}u(1)-B_{2}u(2)-AB_{2}u(1) $$
(68)

The equivalent model is obtained with the same A matrix and without increasing the state dimension. The coefficients of the two state-space models are related to each other by

$$ \begin{array}{@{}rcl@{}} B &=& A^{-1}B_{-1}+B_{0}+AB_{1}+A^{2}B_{2}\\ D_{-1} &=& -CA^{-1}B_{-1}\\ D_{0} &=& D+C(B_{1}+AB_{2})\\ D_{1} &=& CB_{2} \end{array} $$
(69)

The state of the original system at any time step k + 1 is the sum of the contribution due to the initial state x(1) and the contribution due to each of the four input terms B− 1u(k − 1), B0u(k), B1u(k + 1), B2u(k + 2) denoted by X− 1, X0, X1, X2,

$$ x(k + 1) = {A^{k}}x(1) + {X_{- 1}} + {X_{0}} + {X_{1}} + {X_{2}} $$
(70)

where

$$ \begin{array}{@{}rcl@{}} {X_{- 1}} &=& \sum\limits_{n = 1}^{k} {{A^{k - n}}} {B_{-1}}u(n - 1) = \sum\limits_{n = 0}^{k - 1} {{A^{k - n - 1}}} {B_{-1}}u(n)\\ &=& {A^{k - 1}}{B_{-1}}u(0) + \sum\limits_{n = 1}^{k - 1} {{A^{k - n - 1}}} {B_{-1}}u(n) + {A^{- 1}}{B_{-1}}u(k) - {A^{- 1}}{B_{-1}}u(k)\\ &=& {A^{k - 1}}{B_{-1}}u(0) + \sum\limits_{n = 1}^{k} {{A^{k - n - 1}}} {B_{-1}}u(n) - {A^{- 1}}{B_{-1}}u(k)\\ &=& {A^{k}}\left( {{A^{- 1}}{B_{-1}}u(0)} \right) + \sum\limits_{n = 1}^{k} {{A^{k - n}}} \left( {{A^{- 1}}{B_{-1}}} \right)u(n) - {A^{- 1}}{B_{-1}}u(k) \end{array} $$
(71)
$$ {X_{0}} = \sum\limits_{n = 1}^{k} {{A^{k - n}}} {B_{1}}u(n) $$
(72)
$$ \begin{array}{@{}rcl@{}} {X_{1}} &=& \sum\limits_{n = 1}^{k} {{A^{k - n}}} {B_{1}}u(n + 1) = \sum\limits_{n = 2}^{k + 1} {{A^{k - n + 1}}} {B_{1}}u(n) + {A^{k}}{B_{1}}u(1) - {A^{k}}{B_{1}}u(1)\\ &=& - {A^{k}}{B_{1}}u(1) + {A^{k}}{B_{1}}u(1) + \sum\limits_{n = 2}^{k} {{A^{k - n + 1}}} {B_{1}}u(n) + {B_{1}}u(k + 1)\\ &=& - {A^{k}}{B_{1}}u(1) + \sum\limits_{n = 1}^{k} {{A^{k - n + 1}}} {B_{1}}u(n) + {B_{1}}u(k + 1)\\ &=& {A^{k}}\left( {{B_{1}}u(1)} \right) + \sum\limits_{n = 1}^{k} {{A^{k - n}}} \left( {A{B_{1}}} \right)u(n) + {B_{1}}u(k + 1) \end{array} $$
(73)
$$ \begin{array}{@{}rcl@{}} {X_{2}} &=& \sum\limits_{n = 1}^{k} {{A^{k - n}}} {B_{2}}u(n + 2)\\ &=& \sum\limits_{n = 3}^{k + 2} {{A^{k - n + 2}}} {B_{2}}u(n) + {A^{k}}{B_{2}}u(2) - {A^{k}}{B_{2}}u(2) + {A^{k + 1}}{B_{2}}u(1) - {A^{k + 1}}{B_{2}}u(1)\\ &=& \sum\limits_{n = 1}^{k + 2} {{A^{k - n + 2}}} {B_{2}}u(n) - {A^{k}}{B_{2}}u(2) - {A^{k + 1}}{B_{2}}u(1)\\ &=& \sum\limits_{n = 1}^{k} {{A^{k - n + 2}}} {B_{2}}u(n) + A{B_{2}}u(k + 1) + {B_{2}}u(k + 2)\! \!- {A^{k}}{B_{2}}u(2) - {A^{k + 1}}{B_{2}}u(1)\\ &=& - {A^{k}}\left( {{B_{2}}u(2) + A{B_{2}}u(1)} \right) + \sum\limits_{n = 1}^{k} {{A^{k - n + 2}}} {B_{2}}u(n) + A{B_{2}}u(k + 1) +\! {B_{2}}u(k + 2)\\ \end{array} $$
(74)

The expression for x(k + 1) becomes

$$ \begin{array}{@{}rcl@{}} x(k + 1) &=& {A^{k}}\left[ {x(1) + {A^{- 1}}{B_{- 1}}u(0) - {B_{0}}u(1) - {B_{2}}u(2) - A{B_{2}}u(1)} \right]\\ &&+\sum\limits_{n = 1}^{k} {{A^{k - n}}} \left( {{A^{- 1}}{B_{- 1}} + {B_{0}} + A{B_{2}} + {A^{2}}{B_{2}}} \right)u(n)\\ &&-{A^{- 1}}{B_{- 1}}u(k) + {B_{1}}u(k + 1) + A{B_{2}}u(k + 1) + {B_{2}}u(k + 2) \end{array} $$
(75)

Since y(k + 1) = Cx(k + 1) + Du(k + 1), it follows that

$$ \begin{array}{@{}rcl@{}} y(k + 1) &=& C\left[ {{A^{k}}w(1) + \sum\limits_{n = 1}^{k} {{A^{k - n}}} Bu(n)} \right] + D_{0}u(k + 1)\\ &&- C{A^{- 1}}{B_{- 1}}u(k) + C{B_{2}}u(k + 2) \end{array} $$
(76)

where

$$ w(1)=x(1)+A^{-1}B_{-1}u(0)-B_{1}u(1)-B_{2}u(2)-AB_{2}u(1) $$
(77)
$$ B = {A^{- 1}}{B_{- 1}} + {B_{0}} + A{B_{2}} + {A^{2}}{B_{2}} $$
(78)
$$ {D_{0}} = D + C\left( {{B_{1}} + A{B_{2}}} \right) $$
(79)

The portion defined as

$$ z(k+1)=C\left[ {{A^{k}}w(1) + \sum\limits_{n = 1}^{k} {{A^{k - n}}} Bu(n)} \right] +D_{0}u(k + 1) $$
(80)

can be generated by an (A,B,C,D0) model with initial state w(1) and a single input term B,

$$ \begin{array}{lll} w(k + 1) &=& Aw(k) + Bu(k)\\ {\kern20pt}z(k) &=& Cw(k) + {D_{0}}u(k) \end{array} $$
(81)

Therefore,

$$ y(k + 1) = z(k + 1) - C{A^{- 1}}{B_{- 1}}u(k) + C{B_{2}}u(k + 2) $$
(82)

Equivalently,

$$ \begin{array}{lll} y(k) &= z(k) + {D_{- 1}}u(k - 1) + {D_{1}}u(k + 1)\\ &= Cw(k) + {D_{- 1}}u(k - 1) + {D_{0}}u(k) + {D_{1}}u(k + 1) \end{array} $$
(83)

where

$$ \begin{array}{lll} {D_{- 1}} &= - C{A^{- 1}}{B_{- 1}}\\ {D_{1}} &= C{B_{2}} \end{array} $$
(84)

The state equation for w(k) together with the final output equation define a state-space model with a single input matrix B that has identical input-output relationship to the original state-space model with four input matrices B− 1, B0, B1, and B2, where the initial state w(1) is related to x(1) by Eq. ??. In system identification we do not need to know that initial state w(1).

Appendix C: Discrete-Time Models by Linear Interpolation

Consider a continuous-time state-space system

$$ \label {eq:continuous state-space} \begin{array}{lll} \dot{x}(t) &= A_{c}x(t) + B_{c}u(t) \\ y(t) &= Cx(t) + Du(t) \end{array} $$
(85)

with a linear interpolation for u(t) between kT and (k + 1)T,

$$ u(t) = u(k) +\left[ \frac{{u(k + 1) - u(k)}}{T}\right] \left( {t - kT} \right)\\ $$
(86)

This relationship can be re-expressed as

$$ u(t) = {c_{0}}(t)u(k) + {c_{1}}(t)u(k + 1) $$
(87)

where the two coefficients c0(t) and c1(t) are

$$ {c_{0}}(t) = \frac{{t - \left( {k + 1} \right)T}}{{(- T)}} {c_{1}}(t) = \frac{{\left( {t - kT} \right)}}{T} $$
(88)

The corresponding discrete-time model can be shown to be [28]

$$ \begin{array}{@{}rcl@{}} x(k + 1) &=& Ax(k) + {B_{0}}u(k) + {B_{1}}u(k + 1)\\ y(k) &=& Cx(k) + Du(k) \end{array} $$
(89)

where A,B0,B1 are related to the original model Ac,Bc and the sampling interval T by

$$ \begin{array}{lll} A &= {e^{{A_{c}}T}}\\ {B_{0}} &= \frac{1}{T}\left( {TAA_{c}^{- 1} - AA_{c}^{- 2} + A_{c}^{- 2}} \right){B_{c}}\\ {B_{1}} &= \frac{1}{T}\left( {AA_{c}^{- 2} - A_{c}^{- 2} - TA_{c}^{- 1}} \right){B_{c}} \end{array} $$
(90)

Discretization with the linear interpolation assumption results in a state-space model in non-standard form. However, this non-standard two-input model with B0u(k) and B1u(k + 1) is identical to the following standard and mathematically equivalent model with a single B,

$$ \begin{array}{lll} w(k + 1) &=& Aw(k) + Bu(k)\\ {\kern20pt} y(k) &=& Cw(k) + {D_{0}}u(k) \end{array} $$
(91)

where B and D0 are related to the (A,B0,B1,C,D) model by

$$ \begin{array}{lll} {\kern14pt}B &=& {B_{0}} + A{B_{1}}\\ {\kern10pt}{D_{0}} &=& D + C{B_{1}} \end{array} $$
(92)

where w(0) = x(0) − B1u(0). Note that the equivalent model is obtained with the same A matrix and without increasing the state dimension. This single B state-space model can be identified from input-output data, then the original continuous-time state-space model can be recovered. First, Ac can be easily computed from A since \(A = {e^{{A_{c}}T}}\). To find Bc, define

$$ \begin{array}{lll} {G_{0}} &= \frac{1}{T}\left( {TAA_{c}^{- 1} - AA_{c}^{- 2} + A_{c}^{- 2}} \right)\\ {G_{1}} &= \frac{1}{T}\left( {AA_{c}^{- 2} - A_{c}^{- 2} - TA_{c}^{- 1}} \right) \end{array} $$
(93)

so that B0 = G0Bc, and B1 = G1Bc, from which Bc and D can be solved from

$$ \begin{array}{lll} {B_{c}} &= {\left( {{G_{0}} + A{G_{1}}} \right)^{- 1}}B\\ D&=D_{0}-CG_{1}B_{c} \end{array} $$
(94)

Note that the equivalent model is in standard form for which an existing state-space system identification algorithm such as OKID can be directly applied without modification to find A,B,C,D0 from which the original continuous-time state-space model Ac,Bc,C,D can be recovered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, M.Q., Tseng, DH. & Longman, R.W. State-Space System Identification Without a Hold Device by Lagrange Interpolation. J Astronaut Sci 67, 794–813 (2020). https://doi.org/10.1007/s40295-019-00197-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00197-w

Keywords

Navigation