Skip to main content
Log in

Perturbed HEO Satellite Hovering Investigation in the Earth-Moon System

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

The relative hovering of satellites in highly elliptic orbits (HEO), as one of the most crucial space operations, is modeled and analyzed in this paper. The proposed modeling is based on the new perturbed relative dynamics equations, uses the time-varied parameters depending on the motion of the target satellite. This proposed model considered the dynamic air drag, oblateness of Earth (including all zonal harmonics coefficients) and the Lunar perturbation as an inclined third-body disturbing effect on both follower and target orbits. The non-simplified relative motion model has been obtained by employing the Lagrangian mechanics principals and completed along with the target satellite’s motion characteristic. Then the required thrust for relative hovering mission has been obtained without any simplifications to ensure the accuracy of long-duration flight analyses. To validate the presented model, another model has been built as an ECI based Relative Motion (ERM) model. Then, according to effective parameters on hovering mission design around HEOs such as the eccentricity and inclination of the target obit, the fuel consumption, optimal positioning of the follower, maximum required thrust, and the appropriate time to perform the operation, several examples are provided. Furthermore, the hybrid IWO/PSO algorithm has been used to find the location and the minimum/maximum amounts of thrust force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reinhardt, B.Z., Peck, M.A.: New electromagnetic actuator for on-orbit inspection. J. Spacecr. Rocket. 53, 241–248 (2016)

    Article  Google Scholar 

  2. Huang, X., Yan, Y., Zhou, Y.: Dynamics and control of spacecraft hovering using the geomagnetic Lorentz force. Adv. Sp. Res. 53, 518–531 (2014)

    Article  Google Scholar 

  3. Sawai, S., Scheeres, D.J., Broschart, S.B.: Control of hovering spacecraft using altimetry. J. Guid. Control. Dyn. 25, 786–795 (2002)

    Article  Google Scholar 

  4. Zeng, X.-Y., Jiang, F.-H., Li, J.-F.: Asteroid body-fixed hovering using nonideal solar sails. Res. Astron. Astrophys. 15, 597–607 (2015)

    Article  Google Scholar 

  5. Yang, H.-W., Zeng, X.-Y., Baoyin, H.: Feasible region and stability analysis for hovering around elongated asteroids with low thrust. Res. Astron. Astrophys. 15, 1571–1586 (2015)

    Article  Google Scholar 

  6. Zhang, J., Zhao, S., Yang, Y.: Characteristic analysis for elliptical orbit hovering based on relative dynamics. Aerosp. Electron. Syst. IEEE Trans. 49, 2742–2750 (2013)

    Article  Google Scholar 

  7. Wang, G.B., Meng, Y.H., Zheng, W., Tang, G.J.: Research of hovering method to elliptical orbit based on dynamics. J. Astronaut. 31, 1527–1532 (2010)

    Google Scholar 

  8. Dang, Z., Wang, Z., Zhang, Y.: Modeling and analysis of relative hovering control for spacecraft. J. Guid. Control. Dyn. 37, 1091–1102 (2014)

    Article  Google Scholar 

  9. Zhang, J., Zhao, S., Zhang, Y., Zhai, G.: Hovering control scheme to elliptical orbit via frozen parameter. Adv. Sp. Res. 55, 334–342 (2015)

    Article  Google Scholar 

  10. Huang, X., Yan, Y., Zhou, Y.: Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits. Acta Astronaut. 111, 37–47 (2015)

    Article  Google Scholar 

  11. Huang, X., Yan, Y., Zhou, Y., Zhang, H.: Sliding mode control for Lorentz-augmented spacecraft hovering around elliptic orbits. Acta Astronaut. 103, 257–268 (2014)

    Article  Google Scholar 

  12. Zhou, Y., Yan, Y., Huang, X., Zhang, H.: Multi-objective and reliable output feedback control for spacecraft hovering. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 0954410014561702, (2014)

  13. Huang, X., Yan, Y., Zhou, Y.: Nonlinear control of underactuated spacecraft hovering. J. Guid. Control. Dyn. 1–10 (2015)

  14. Domingos, R.C., de Almeida Prado, A.F.B., De Moraes, R.V.: Studying the behaviour of averaged models in the third body perturbation problem. In: Journal of Physics: Conference Series. p. 12017. IOP Publishing (2013)

  15. Domingos, R.C., Prado, A., Gomes, V.M.: Effects of the eccentricity of a perturbing third body on the orbital correction maneuvers of a spacecraft. Math. Probl. Eng. 2014, 1–15 (2014)

    Article  Google Scholar 

  16. Carvalho, J.P., dos, S., De Moraes, R.V., Prado, A.: Some orbital characteristics of lunar artificial satellites. Celest. Mech. Dyn. Astron. 108, 371–388 (2010)

    Article  MathSciNet  Google Scholar 

  17. Domingos, R.C., Prado, A.F.B.D.A., De Moraes, R.V.: A study of the errors of the averaged models in the restricted three-body problem in a short time scale. Comput. Appl. Math. 34, 507–520 (2015)

    Article  MathSciNet  Google Scholar 

  18. Bertachini de Almeida Prado, A.F.: Third-body perturbation in orbits around natural satellites. J. Guid. Control. Dyn. 26, 33–40 (2003)

    Article  Google Scholar 

  19. Castelli, R.: Regions of prevalence in the coupled restricted three-body problems approximation. Commun. Nonlinear Sci. Numer. Simul. 17, 804–816 (2012)

    Article  MathSciNet  Google Scholar 

  20. Topputo, F.: Fast numerical approximation of invariant manifolds in the circular restricted three-body problem. Commun. Nonlinear Sci. Numer. Simul. 32, 89–98 (2016)

    Article  MathSciNet  Google Scholar 

  21. de Almeida Prado, A.F.B., Neto, E.V.: Study of the gravitational capture in the elliptical restricted three-body problem. J. Astronaut. Sci. 54, 567–582 (2006)

    Article  MathSciNet  Google Scholar 

  22. Ortore, E., Cinelli, M., Circi, C.: An analytical approach to retrieve the effects of a non-coplanar disturbing body. Celest. Mech. Dyn. Astron. 124, 163–175 (2016)

    Article  MathSciNet  Google Scholar 

  23. Roscoe, C.W.T., Vadali, S.R., Alfriend, K.T.: Third-body perturbation effects on satellite formations. J. Astronaut. Sci. 60, 408–433 (2013)

    Article  Google Scholar 

  24. Gim, D.-W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Control. Dyn. 26, 956–971 (2003)

    Article  Google Scholar 

  25. Yin, J., Han, C.: Elliptical formation control based on relative orbit elements. Chinese J. Aeronaut. 26, 1554–1567 (2013)

    Article  Google Scholar 

  26. Li, Y., Liu, X.: Series expansion-based state transition matrix for relative motion on eccentric orbits. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 0954410013482059, (2013)

  27. Wei, C., Park, S.-Y., Park, C.: Optimal H∞ robust output feedback control for satellite formation in arbitrary elliptical reference orbits. Adv. Sp. Res. 54, 969–989 (2014)

    Article  Google Scholar 

  28. Sinclair, A.J., Sherrill, R.E., Lovell, T.A.: Geometric interpretation of the Tschauner–Hempel solutions for satellite relative motion. Adv. Sp. Res. 55, 2268–2279 (2015)

    Article  Google Scholar 

  29. Schweighart, S.A., Sedwick, R.J., High-Fidelity Linearized, J.: Model for satellite formation flight. J. Guid. Control. Dyn. 25, 1073–1080 (2002)

    Article  Google Scholar 

  30. Huang, X., Yan, Y., Zhou, Y., Zhang, H.: Nonlinear relative dynamics of Lorentz spacecraft about J 2-perturbed orbit. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 229, 467–478 (2015)

    Article  Google Scholar 

  31. Wei, C., Park, S.-Y., Park, C.: Linearized dynamics model for relative motion under a J 2-perturbed elliptical reference orbit. Int. J. Non. Linear. Mech. 55, 55–69 (2013)

    Article  Google Scholar 

  32. Bakhtiari, M., Daneshjou, K., Abbasali, E.: A new approach to derive a formation flying model in the presence of a perturbing body in inclined elliptical orbit: relative hovering analysis. Astrophys. Space Sci. 362, 36 (2017)

    Article  MathSciNet  Google Scholar 

  33. Bakhtiari, M., Daneshjou, K.: Long-term evaluation of orbital dynamics in the sun-planet system considering axial-tilt. Mod. Phys. Lett. A. 33, 1850083 (2018)

    Article  MathSciNet  Google Scholar 

  34. Sun, L., Zheng, Z.: Adaptive sliding mode control of cooperative spacecraft rendezvous with coupled uncertain dynamics. J. Spacecr. Rocket. 54, 652–661 (2017)

    Article  Google Scholar 

  35. Vallado, D.A., McClain, W.D.: Fundamentals of Astrodynamics and Applications. Springer Science & Business Media, Berlin (2001)

    Google Scholar 

  36. Curtis, H.: Orbital Mechanics for Engineering Students. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  37. Kechichian, J.A.: Motion in general elliptic orbit with respect to a dragging and precessingcoordinate frame. J. Astronaut. Sci. 46, 25–45 (1998)

    MathSciNet  Google Scholar 

  38. Bakhtiari, M., Daneshjou, K., Fakoor, M.: Long-term effects of main-body’s obliquity on satellite formation perturbed by third-body gravity in elliptical and inclined orbit. Res. Astron. Astrophys. 17, 39 (2017)

    Article  Google Scholar 

  39. Haranas, I., Pagiatakis, S.: Satellite orbit perturbations in a dusty Martian atmosphere. Acta Astronaut. 72, 27–37 (2012)

    Article  Google Scholar 

  40. Abouelmagd, E.I., Guirao, J.L.G., Vera, J.A.: Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body. Commun. Nonlinear Sci. Numer. Simul. 20, 1057–1069 (2015)

    Article  MathSciNet  Google Scholar 

  41. Liu, X., Baoyin, H., Ma, X.: Long-term perturbations due to a disturbing body in elliptic inclined orbit. Astrophys. Space Sci. 339, 295–304 (2012)

    Article  Google Scholar 

  42. Lara, M., San-Juan, J.F., López, L.M., Cefola, P.J.: On the third-body perturbations of high-altitude orbits. Celest. Mech. Dyn. Astron. 113, 435–452 (2012)

    Article  Google Scholar 

  43. Fakoor, M., Bakhtiari, M., Soleymani, M.: Optimal design of the satellite constellation arrangement reconfiguration process. Adv. Sp. Res. (2016)

  44. Daneshjou, K., Mohammadi-Dehabadi, A.A., Bakhtiari, M.: Mission planning for on-orbit servicing through multiple servicing satellites: a new approach. Adv. Sp. Res. 60, 1148–1162 (2017)

    Article  Google Scholar 

  45. Tables, L.: Programs from 4000 BC to AD 8000, (1991)

  46. Brizard, A.J.: An introduction to Lagrangian mechanics. Dep. Chem. Phys. Saint Michael’s Coll. Colchester, VT. 5439, (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Bakhtiari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For completing of absolute and relative equations of motion of target and follower satellites, the displacement [xm, ym, zm] and velocity \( \left[{\dot{x}}_m,{\dot{y}}_m,{\dot{z}}_m\right] \) components of Moon in the LVLH frame must be known. These vectors are achieved by introducing procedure:

  1. 1-

    The Lunar classical orbital elements (am, im, em, ωm, Ωm, fm.) are obtained in the mean ecliptic and mean equinox of date coordinate system from [45]. The Moon’s orbital elements are provided in the form of time series, and based on some specific coefficients [36].

  2. 2-

    From classical orbital elements, the position and velocity vectors of the Moon in the Earth-Moon perifocal frame are obtained by:

$$ {\overline{r}}_m=\frac{h_m}{\mu_m}\frac{1}{1+{e}_m\ {c}_{f_m}}\left({c}_{f_m}\boldsymbol{p}+{s}_{f_m}\boldsymbol{q}\right) $$
(64)
$$ {\dot{\overline{r}}}_m={\overline{v}}_m=\frac{h_m}{\mu_m}\left[-{c}_{f_m}\boldsymbol{p}+\left({e}_m+{c}_{f_m}\right)\boldsymbol{q}\right] $$
(65)
  1. 3-

    the position and velocity vectors of the Moon in the ECI frame is obtained from the perifocal frame by:

$$ {Q}_p^E=\left[\begin{array}{ccc}{c}_{\omega_m}{c}_{\Omega_m}-{s}_{\omega_m}{c}_{{\mathrm{i}}_m}{s}_{\Omega_m}& -{s}_{\omega_m}{c}_{\Omega_m}-{c}_{\omega_m}{c}_{{\mathrm{i}}_m}{s}_{\Omega_m}& {s}_{\omega_m}{s}_{\Omega_m}\\ {}{c}_{\omega_m}{s}_{\Omega_m}+{s}_{\omega_m}{c}_{{\mathrm{i}}_m}{c}_{\Omega_m}& -{s}_{\omega_m}{s}_{\Omega_m}-{c}_{\omega_m}{c}_{{\mathrm{i}}_m}{c}_{\Omega_m}& -{s}_{i_m}{c}_{\Omega_m}\\ {}{s}_{\omega_m}{s}_{{\mathrm{i}}_m}& {c}_{\omega_m}{s}_{{\mathrm{i}}_m}& {c}_{{\mathrm{i}}_m}\end{array}\right] $$
(66)
$$ {r}_m^E={Q}_p^E{\overline{r}}_m $$
(67)
$$ {v}_m^E={Q}_p^E{\overline{v}}_m $$
(68)
  1. 4-

    Finally, the position and velocity of the Moon in the LVLH coordinate system (located on the target satellite) can be obtained by:

$$ {\Phi}_E^L=\left[-\begin{array}{ccc}{c}_{\theta }{c}_{\Omega}-{s}_{\theta }{c}_i{s}_{\Omega}& {c}_{\theta }{c}_{\Omega}+{s}_{\theta }{c}_i{c}_{\Omega}& {s}_{\theta }{s}_i\\ {}{s}_{\theta }{c}_{\Omega}-{c}_{\theta }{s}_i{s}_{\Omega}& -{s}_{\theta }{s}_{\Omega}-{c}_{\theta }{c}_i{c}_{\Omega}& {c}_{\theta }{s}_i\\ {}{s}_i{s}_{\Omega}& -{s}_i{c}_{\Omega}& {c}_i\end{array}\right] $$
(69)
$$ {r}_m={\Phi}_E^L\ {r}_m^E={\left[{x}_m\kern0.5em {y}_m\kern0.5em {z}_m\right]}^T $$
(70)
$$ {v}_m={\Phi}_E^L\ {v}_m^E={\left[{\dot{x}}_m\kern0.5em {\dot{y}}_m\kern0.5em {\dot{z}}_m\right]}^T $$
(71)

Appendix 2: Proof of relative motion equations

In this appendix, the procedure to obtain the proposed satellite relative motion by employing of the Lagrangian principle of is briefly summarized.

The Lagrange’s equation used for developing the relative motion model for satellite j is as follows [46]:

$$ \frac{d}{dt}\left(\frac{\partial {K}_j}{\partial {\dot{q}}_n}\right)-\frac{\partial {K}_j}{\partial {q}_n}+\frac{\partial {U}_j}{\partial {q}_n}={Q}_n $$
(72)

In this equation, \( {q}_j={\left[{x}_j\kern0.5em {y}_j\kern0.5em {z}_j\right]}^T \)is the generalized displacement and \( {\dot{q}}_j={\left[{\dot{x}}_j\kern0.5em {\dot{y}}_j\kern0.5em {\dot{z}}_j\right]}^T \) is the generalized velocity. Kj and Uj are kinetic and potential energy (per unit mass) for satellite j. Also, Qn represents the sum of the non-conservative forces (Here, includes the air drag and the control force) applied on controllable satellite. Now, by exactly computing the potential and kinetic functions for the jth satellite and the non-conservative forces applied on the jth satellite, the relative dynamic motion equations of satellite in the LVLH frame can be derived.

The kinetic energy (per unit mass) for satellite j is obtained by means of:

$$ {K}_j=\frac{1}{2}{\dot{\boldsymbol{r}}}_{\boldsymbol{j}}{\dot{\boldsymbol{r}}}_{\boldsymbol{j}}=\frac{1}{2}\left[{\left({v}_x-{\dot{x}}_j-{y}_i{\omega}_z\right)}^2+{\left(\frac{h}{r}+{\dot{y}}_j+{x}_j{\omega}_x\right)}^2+{\left({\dot{z}}_j+{y}_j{\omega}_x\right)}^2\right] $$
(73)

By substituting Eq. (73) into the first two terms of the Lagrange’s equation (72) will have:

$$ {\displaystyle \begin{array}{l}\frac{d}{dt}\left(\frac{\partial {K}_j}{\partial {\dot{q}}_n}\right)-\frac{\partial {K}_j}{\partial {q}_n}=\\ {}\left[\begin{array}{c}{\ddot{x}}_j-2{\dot{y}}_j{\omega}_z-2{\dot{y}}_j{\omega}_z-{y}_j{\alpha}_z+{z}_j{\omega}_x{\omega}_z-r{\left({\omega}_z\right)}^2+\left({\dot{v}}_x\right)\\ {}{\ddot{y}}_j+2{\dot{x}}_j{\omega}_z-2{\dot{z}}_j{\omega}_x+{x}_j{\alpha}_z-{y}_j{\omega}_z^2-{y}_j{\omega}_x^2+{z}_j{\alpha}_x+2{V}_x\left({\omega}_z\right)+\mathrm{r}\left({\alpha}_z\right)\\ {}\ddot{z}+2{\dot{x}}_j{\omega}_z+{x}_j{\omega}_x{\omega}_z+{y}_j{\alpha}_x-{z}_j{\omega}_x^2-r\left({\omega}_z{\omega}_x\right)\end{array}\right]\end{array}} $$
(74)

By using Equations (2), (37), (38) and (40) and substituting into the expression within parenthesis in Eq. (74), the following expression is obtained:

$$ {\displaystyle \begin{array}{l}\frac{d}{dt}\left(\frac{\partial {K}_j}{\partial {\dot{q}}_n}\right)-\frac{\partial {K}_j}{\partial {q}_n}=\\ {}\left[\begin{array}{c}{\ddot{x}}_j-2{\dot{y}}_j{\omega}_z-{x}_j{\omega}_z^2-{y}_j{\alpha}_z+{z}_j{\omega}_x{\omega}_z-r{\eta}^2-\zeta {s}_i{s}_{\theta }-C\left\Vert {V}_a\right\Vert {v}_x-\frac{\mu_m}{d^3}-{\kappa}_m\ {x}_m\\ {}{\ddot{y}}_j+2{\dot{x}}_j{\omega}_z-2{\dot{z}}_j{\omega}_x+{x}_j{\alpha}_z-{y}_j{\omega}_z^2-{y}_j{\omega}_x^2-{z}_j{\alpha}_x-\zeta {s}_i{c}_{\theta }-C\left\Vert {V}_a\right\Vert \left(\frac{h}{r}-{\omega}_er{c}_i\right)-{\kappa}_m{y}_m\\ {}\ddot{z}+2{\dot{y}}_j{\omega}_x+{x}_j{\omega}_x{\omega}_z+{y}_j{\alpha}_x-{z}_j{\omega}_x^2-\zeta {c}_i-C\left\Vert {V}_a\right\Vert {\omega}_er{c}_{\theta }{s}_i-{\kappa}_m\ {z}_m\end{array}\right]\end{array}} $$
(75)

The sum of gravitational potential functions of satellite j due to the gravitational fields of Earth and Moon as a third-body is expressed as equation (76):

$$ {U}_j\left({r}_j,{c}_{\varphi_j}\right)=-\frac{\mu }{r_j}+\frac{\mu }{r_j}\left[\sum \limits_{n=2}^{\infty }{J}_n{\left(\frac{R_e}{r}\right)}^n\ {P}_n\left({c}_{\varphi_j}\right)\ \right]-{\mu}_m\left(\frac{1}{d_j}-\frac{1}{r_m^3}{\boldsymbol{r}}_{\boldsymbol{j}}\ {\boldsymbol{r}}_{\boldsymbol{m}}\right) $$
(76)

where rj = (r + xj)x + yj y + zj z.

Also, \( {c}_{\phi_j}={r}_{jZ}/{r}_j \); and rjz is the projection of satellite j’s position vector on the Z axis in the ECI frame.

$$ {\boldsymbol{r}}_{\boldsymbol{j}\boldsymbol{Z}}={\boldsymbol{r}}_{\boldsymbol{j}}\ \boldsymbol{Z}=\left(r+{x}_j\right){s}_i{s}_{\theta }+{y}_j{c}_{\theta }{s}_i+{z}_j{c}_i $$
(77)

Therefore, by using Equations (48), (51) and (77) will have:

$$ \frac{\partial {U}_j}{\partial {q}_j}=\left[\begin{array}{c}{\eta}_j^2\left(r+{x}_i\right)+\zeta {s}_i{s}_{\theta }+{\kappa}_j{x}_m+{\mu}_m\left(r+{x}_m\right)/{d}_j^3\\ {}{\eta}_j^2{y}_j+\zeta {s}_i{c}_{\theta }+{\kappa}_j{y}_m+{\mu}_m{x}_m/{d}_j^3\\ {}{\eta}_j^2{z}_j+{\zeta}_j{c}_i+{\kappa}_j{z}_m+{\mu}_m{z}_m/{d}_j^3\end{array}\right] $$
(78)

At this point, the effects of the non-conservative air drag and control forces should be considered in the relative nonlinear equations of motion. So in this paper, in addition to the gravitational effect, the effects of the control force and the air drag have been incorporated into the Lagrange’s equations as Qn terms. To extract the drag force, the relative velocity of satellite j should be determined first. This term is expressed as follows:

$$ {\boldsymbol{V}}_{\boldsymbol{j}}=\boldsymbol{V}+{\boldsymbol{\rho}}_{\boldsymbol{j}}+\boldsymbol{\omega} \times {\boldsymbol{\rho}}_{\boldsymbol{j}} $$
(79)
$$ {\boldsymbol{V}}_{\boldsymbol{aj}}={\boldsymbol{V}}_{\boldsymbol{j}}-{\boldsymbol{\omega}}_{\boldsymbol{e}}\times {\boldsymbol{r}}_{\boldsymbol{j}} $$
(80)

Now by using Equations (18) and (78) and substituting into Eq. (79), the velocity vector of the jth satellite will be obtained:

$$ {\boldsymbol{V}}_{{\boldsymbol{a}}_{\boldsymbol{j}}}=\left[\begin{array}{c}{v}_x+{\dot{x}}_j-{y}_j{\omega}_z-{\omega}_e{z}_j{c}_{\theta }{s}_i+{\omega}_e{y}_j{c}_i\\ {}\frac{h}{r}+{\dot{y}}_j+{x}_j{\omega}_x-{z}_j{\omega}_x+{z}_j{\omega}_e{s}_i{s}_{\theta }-{\omega}_e\left(r+{x}_j\right){c}_i\\ {}{\dot{z}}_j+{\omega}_e{y}_j{s}_i{s}_{\theta }+{\omega}_e\left(r+{x}_j\right){c}_{\theta }{s}_i\end{array}\right] $$
(81)

Now, the radial, along-track and cross-track components of non-conservative force can be obtained with consideration of drag force \( {F}_{drag}=-{C}_j\ \left\Vert {\mathbf{V}}_{a_j}\right\Vert {\mathbf{V}}_{a_j} \) as follows:

$$ {Q}_{xj}={C}_j\left\Vert {\boldsymbol{V}}_{\boldsymbol{aj}}\right\Vert \left({v}_x+{\dot{x}}_j-{y}_j{\omega}_z-{\omega}_e{z}_j{c}_{\theta }{s}_i+{\omega}_e{y}_j{c}_i\right)+{T}_{xj} $$
(82)
$$ {Q}_{yj}={C}_j\left\Vert {\boldsymbol{V}}_{\boldsymbol{aj}}\right\Vert \left(\frac{h}{r}+{\dot{y}}_j+{x}_j{\omega}_x-{z}_j{\omega}_x+{z}_j{\omega}_e{s}_i{s}_{\theta }-{\omega}_e\left(r+{x}_j\right){c}_i\right)+{T}_{yj} $$
(83)
$$ {Q}_{zj}={C}_j\left\Vert {\boldsymbol{V}}_{\boldsymbol{aj}}\right\Vert \left({\dot{z}}_j+{\omega}_e{y}_j{s}_i{s}_{\theta }+{\omega}_e\left(r+{x}_j\right){c}_{\theta }{s}_i\right)+{T}_{zj} $$
(84)

Finally, by substituting Equations (75), (78) and (8284) into Eq. (72) and considering the conditions of the hovering operation and with consideration of Appendix1, Equations (4547) will be proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, M., Daneshjou, K. Perturbed HEO Satellite Hovering Investigation in the Earth-Moon System. J Astronaut Sci 66, 506–536 (2019). https://doi.org/10.1007/s40295-018-00145-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-018-00145-0

Keywords

Navigation