The Journal of the Astronautical Sciences

, Volume 62, Issue 4, pp 298–314 | Cite as

Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki



Akatsuki (“dawn” in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7 th , 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δv requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.


Akatsuki orbiter Recovery trajectory V-Infinity Leveraging Transfers 


  1. 1.
    Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifold, Tensor Analysis, and Applications. Springer, Berlin (1988)CrossRefMATHGoogle Scholar
  2. 2.
    Brinkerhoff, A.T., Russell, R.P.: Pathfinding and V-infinity leveraging for planetary moon tour missions. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Savannah, GA. Paper 09-222 (2009)Google Scholar
  3. 3.
    Campagnola, S., Russell, R.P.: Endgame problem part 1: V-infinity leveraging technique and leveraging graph. J. Guid. Control. Dyn. 33(2), 463–475 (2010). doi: 10.2514/1.44258 CrossRefMathSciNetGoogle Scholar
  4. 4.
    Campagnola, S., Russell, R.P.: Endgame problem part 2: multi-body technique and T-P graph. J. Guid. Control. Dyn. 33(2), 476–486 (2010). doi: 10.2514/1.44290 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Campagnola, S., Strange, N.J., Russell, R.P.: A fast tour design method using non-tangent v-infinity leveraging transfer. Celest. Mech. Dyn. Astron. 108(2), 165–186 (2010). doi: 10.1007/s10569-010-9295-1 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Campagnola, S., Strange, N.J., Russell, R.P.: A fast tour design method using non-tangent, v-infinity leveraging transfers. In: Advances in the Astronautical Sciences, vol. 136, PartI, pp. 983–1004. Univelt, San Diego (2010)Google Scholar
  7. 7.
    Committee on the Planetary Science Decadal Survey (NRC): Vision and Voyages for Planetary Science in the Decade 20132022. (2011)
  8. 8.
    Heaton, A.F., Strange, N.J., Longuski, J.M., Bonfiglio, E.P.: Automated design of the Europa orbiter tour. J. Spacecr. Rocket. 39(1), 17–22 (2002)CrossRefGoogle Scholar
  9. 9.
    Hirose, C., Ishii, N., Kawakatsu, Y.: The trajectory control strategies of Akatsuki for venus orbit reinsertion. In: AAS 13–388, pp. 1–10 (2013)Google Scholar
  10. 10.
    Hollenbeck, G.R.: New flight techniques for outer planet missions. In: AAS Microfishe Series, vol. 26 (1975)Google Scholar
  11. 11.
    Kawakatsu, Y., Campagnola, S., Hirose, C., Ishii, N.: An orbit plan toward Akatsuki Venus reencounter and orbit injection. Adv. Astronaut. Sci. 143(II), 1535–1547 (2012). Also paper AAS 12-205Google Scholar
  12. 12.
    Kowalkowski, T.D., Johannesen, J.R., Lam, T.: Launch period development for the Juno Mission to Jupiter. In: Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, AIAA/American Astronautical Society. AIAA Paper 2008-7369 (2008)Google Scholar
  13. 13.
    Labunsky, A.V., Papkov, O.V., Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Trajectories. Earth Space Institute Book Series, pp. 33–68. Gordon and Breach Publishers, London (1998)Google Scholar
  14. 14.
    Lantukh, D.V., Russell, R.P., Campagnola, S.: Automated inclusion of v-infinity leveraging maneuvers in gravity-assist flyby tour design. Advances in the Astronautical Sciences 143(II), 865–884 (2012). Also paper AAS 12-162Google Scholar
  15. 15.
    McAdams, J.V., Farquhar, R.W., Yen, C.W.: Improvements in trajectory optimization for MESSENGER: the first Mercury orbiter mission. Adv. Astronaut. Sci. 109(III), 2189–2203 (2002)Google Scholar
  16. 16.
    Nakamura, M., Imamura, T., Ishii, N.: Overview of Venus orbiter, Akatsuki. Earth Planets Space 63, 443–457 (2011)CrossRefGoogle Scholar
  17. 17.
    Peralta, F., Flanagan, S.: Cassini interplanetary trajectory design. Control. Eng. Pract. 3(11), 1603–1610 (1995)CrossRefGoogle Scholar
  18. 18.
    Sims, J.A., Longuski, J.M., Staugler, A.J.: V-infinity leveraging for interplanetary missions: multiple-revolution orbit techniques. J. Guid. Control. Dyn. 20(3), 409–415 (1997). doi: 10.2514/2.4064 CrossRefMATHGoogle Scholar
  19. 19.
    Strange, N.J., Campagnola, S., Russell, R.P.: Leveraging flybys of low mass moons to enable an enceladus orbiter. In: Astrodynamics Specialist Conference, Pittsburg, Pennsylvania, AIAA/American Astronautical Society, American Astronautical Society Paper AAS 09-453 (2009)Google Scholar
  20. 20.
    Yen, C.W.: Ballistic Mercury orbiter mission via venus gravity assist. J. Astronaut. Sci. 37, 417–432 (1989)Google Scholar

Copyright information

© American Astronautical Society 2015

Authors and Affiliations

  1. 1.Department of Space Flight SystemsISAS/JAXASagamiharaJapan

Personalised recommendations