Skip to main content
Log in

Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Akatsuki (“dawn” in Japanese) is the JAXA Venus orbiter that was scheduled to enter orbit around Venus on Dec. 7th, 2010. Following the failure of the main engine during the orbit insertion maneuver, the spacecraft escaped Venus on a 200-day orbit around the Sun, only to return in early 2017. This paper presents the design and implementation of the recovery trajectory, which involves perihelion maneuvers to re-encounter Venus in late 2015. Relying only on the onboard propellant, the trajectory rescued the mission by (1) anticipating the beginning of the science phase within the nominal lifetime of the spacecraft, and (2) halving the Δv requirements for the orbit insertion maneuver. Several trajectories are designed with an innovative use of a technique called non-tangent V-Infinity Leveraging Transfers (VILTs). Candidate solutions are then recomputed in higher fidelity models, and one solution is finally selected for its low Δv requirements and for programmatic reasons. The results of the perihelion maneuver campaign are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The Tisserand graph is computed for a circular reference orbit with radius equal to the semimajor axis of Venus. One could also compute the graph for a circular orbit with a radius equal to Venus perihelion. In the latter case, however, the VILT phasing constraint would be solved for a shorter period than that of Venus. The VILT curves would be shifted to the bottom-left part of the graph (being scaled linearly with the reference semimajor axis), and no solution would be found for the Akatsuki recovery.

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.S.: Manifold, Tensor Analysis, and Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Brinkerhoff, A.T., Russell, R.P.: Pathfinding and V-infinity leveraging for planetary moon tour missions. In: Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Savannah, GA. Paper 09-222 (2009)

  3. Campagnola, S., Russell, R.P.: Endgame problem part 1: V-infinity leveraging technique and leveraging graph. J. Guid. Control. Dyn. 33(2), 463–475 (2010). doi:10.2514/1.44258

    Article  MathSciNet  Google Scholar 

  4. Campagnola, S., Russell, R.P.: Endgame problem part 2: multi-body technique and T-P graph. J. Guid. Control. Dyn. 33(2), 476–486 (2010). doi:10.2514/1.44290

    Article  MathSciNet  Google Scholar 

  5. Campagnola, S., Strange, N.J., Russell, R.P.: A fast tour design method using non-tangent v-infinity leveraging transfer. Celest. Mech. Dyn. Astron. 108(2), 165–186 (2010). doi:10.1007/s10569-010-9295-1

    Article  MATH  MathSciNet  Google Scholar 

  6. Campagnola, S., Strange, N.J., Russell, R.P.: A fast tour design method using non-tangent, v-infinity leveraging transfers. In: Advances in the Astronautical Sciences, vol. 136, PartI, pp. 983–1004. Univelt, San Diego (2010)

  7. Committee on the Planetary Science Decadal Survey (NRC): Vision and Voyages for Planetary Science in the Decade 20132022. http://solarsystem.nasa.gov/docs/Vision_and_Voyages-FINAL.pdf (2011)

  8. Heaton, A.F., Strange, N.J., Longuski, J.M., Bonfiglio, E.P.: Automated design of the Europa orbiter tour. J. Spacecr. Rocket. 39(1), 17–22 (2002)

    Article  Google Scholar 

  9. Hirose, C., Ishii, N., Kawakatsu, Y.: The trajectory control strategies of Akatsuki for venus orbit reinsertion. In: AAS 13–388, pp. 1–10 (2013)

  10. Hollenbeck, G.R.: New flight techniques for outer planet missions. In: AAS Microfishe Series, vol. 26 (1975)

  11. Kawakatsu, Y., Campagnola, S., Hirose, C., Ishii, N.: An orbit plan toward Akatsuki Venus reencounter and orbit injection. Adv. Astronaut. Sci. 143(II), 1535–1547 (2012). Also paper AAS 12-205

  12. Kowalkowski, T.D., Johannesen, J.R., Lam, T.: Launch period development for the Juno Mission to Jupiter. In: Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, AIAA/American Astronautical Society. AIAA Paper 2008-7369 (2008)

  13. Labunsky, A.V., Papkov, O.V., Sukhanov, K.G.: Multiple Gravity Assist Interplanetary Trajectories. Earth Space Institute Book Series, pp. 33–68. Gordon and Breach Publishers, London (1998)

  14. Lantukh, D.V., Russell, R.P., Campagnola, S.: Automated inclusion of v-infinity leveraging maneuvers in gravity-assist flyby tour design. Advances in the Astronautical Sciences 143(II), 865–884 (2012). Also paper AAS 12-162

    Google Scholar 

  15. McAdams, J.V., Farquhar, R.W., Yen, C.W.: Improvements in trajectory optimization for MESSENGER: the first Mercury orbiter mission. Adv. Astronaut. Sci. 109(III), 2189–2203 (2002)

    Google Scholar 

  16. Nakamura, M., Imamura, T., Ishii, N.: Overview of Venus orbiter, Akatsuki. Earth Planets Space 63, 443–457 (2011)

    Article  Google Scholar 

  17. Peralta, F., Flanagan, S.: Cassini interplanetary trajectory design. Control. Eng. Pract. 3(11), 1603–1610 (1995)

    Article  Google Scholar 

  18. Sims, J.A., Longuski, J.M., Staugler, A.J.: V-infinity leveraging for interplanetary missions: multiple-revolution orbit techniques. J. Guid. Control. Dyn. 20(3), 409–415 (1997). doi:10.2514/2.4064

    Article  MATH  Google Scholar 

  19. Strange, N.J., Campagnola, S., Russell, R.P.: Leveraging flybys of low mass moons to enable an enceladus orbiter. In: Astrodynamics Specialist Conference, Pittsburg, Pennsylvania, AIAA/American Astronautical Society, American Astronautical Society Paper AAS 09-453 (2009)

  20. Yen, C.W.: Ballistic Mercury orbiter mission via venus gravity assist. J. Astronaut. Sci. 37, 417–432 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Campagnola.

Appendix: Non-tangent VILT Computation

Appendix: Non-tangent VILT Computation

This Appendix shows the expression of phasing constraint (Eq. 2) for AKATSUKI’s interior, non-tangent VILT (EI = −1). In this Appendix, non-dimensioal units are used in all the equations, where the lengths are normalized by a VE , and the velocity are normalized by \(v_{VE}=\sqrt {\mu _{SUN}/a_{VE}}\).

The leveraging apse is the pericenter of both legs of the transfer, and it is equal to \(\bar {r}_{p}=9.150e7/a_{VE}\). The v 1 is also fixed by the exit flyby conditions, and is equal to \(\bar {v}_{\infty }=2.653/v_{VE}\) (we assume coplanar motion). The apocenter of the first leg is computed with the formula

$$ \bar{v}_{p}(\bar{r}_{p},\bar{v}_{\infty})=\bar{r}_{p}+\sqrt{\bar{r}_{P}^{2}-3+\frac{2}{\bar{r}_{p}}+\bar{v}_{\infty}} $$
(4)
$$ \bar{r}_{a}(\bar{r}_{p},\bar{v}_{\infty})=\left( \frac{2}{\left( \bar{r}_{p}\bar{v}_{p}(\bar{r}_{p},\bar{v}_{\infty})\right)^{2}}-\frac{1}{\bar{r}_{p}}\right)^{-1} $$
(5)

The second vacant apse is the apocenter of the second leg r a2, and is solution of the phasing constraint (Eq. 2) with

$$\begin{array}{@{}rcl@{}} f^{(s)}\left( \bar{r}_{p},r_{a2},\bar{v}_{\infty}\right) & \doteq & {\Delta}\theta\left( \bar{r}_{a}(\bar{r}_{p},\bar{v}_{\infty}),\bar{r}_{p},\sigma_{1},k_{1}\right)+{\Delta}\theta_{2}\left( r_{a2},\bar{r}_{p},\sigma_{2},k_{1}\right)+ \end{array} $$
(6)
$$\begin{array}{@{}rcl@{}} && -2\pi\left( k_{1}+k_{2}+1-n\right) \end{array} $$
(7)

and with

$$\begin{array}{@{}rcl@{}} &&{\Delta}\theta(r_{a},r_{p}\sigma,k)=2\pi k-\sigma\arccos\left( \frac{2r_{a}r_{p}-r_{a}-r_{p}}{r_{a}-r_{p}}\right)+\pi(1-\sigma)+\\ &&-\sqrt{\frac{\left( r_{a}+r_{p}\right)^{3}}{8}}\left( 2\pi k-\sigma\left( 2\arctan\left( \sqrt{\frac{1-r_{p}}{r_{a}-1}}\right)-2\sqrt{\frac{(r_{a}-1)(1-r_{p})}{r_{a}+r_{p}}}+\pi(1-\sigma)\right)\right) \end{array} $$
(8)

Deteails on the generic formulas and on the derivation of Eqs. 48 are found in [5].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campagnola, S., Kawakatsu, Y. Design of the Recovery Trajectory for JAXA Venus Orbiter Akatsuki. J of Astronaut Sci 62, 298–314 (2015). https://doi.org/10.1007/s40295-015-0074-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0074-9

Keywords

Navigation