Skip to main content
Log in

Generalized Least Squares and Newton’s Method Algorithms for Nonlinear Root-Solving Applications

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Many problems in science and engineering must solve nonlinear necessary conditions. For example, a standard problem in optimization involves solving for the roots of nonlinear functions defined by f(x) = 0, where x is the unknown variable. Classically one develops a first-order Taylor series model that defines the necessary condition that must be iteratively refined. The standard assumption is that the correction terms are small. Two classes of problems arise: (1) non-square systems that lead to least-squares solutions, and (2) square systems that are often handled by Newton-like methods. The accuracy of the starting guess impacts the number of iteration cycles required. To handle more nonlinear problems, both approaches are generalized to account for first- through fourth-order approximations. Computational differentiation tools are used for automatically formulating and numerically computing the partial derivatives. Two solution approaches are presented for inverting the tensor-valued necessary condition: (1) an integrated Legendre transformation, homotopy method, and high-order vector reversion of series algorithm; and (2) a computational differentiation-based generalized linear algebra approach. Several numerical examples are presented to demonstrate generalized multilinear Least-Squares and Newton-Raphson Methods. Accelerated convergence rates are demonstrated for scalar and vector root-solving problems. The integration of generalized algorithms and automatic differentiation is expected to have broad potential for impacting the design and use of mathematical programming tools for knowledge discovery applications in science and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wengert, R.E.: A simple automatic derivative evaluation program. Comm. AGM 7, 463–464 (1964)

    MATH  Google Scholar 

  2. Wilkins, R.D.: Investigation of a new analytical method for numerical derivative evaluation. Comm. ACM 7, 465–471 (1964)

    Article  MATH  Google Scholar 

  3. Griewank, A.: On automatic differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical programming: recent developments and applications, pp. 83–108. Kluwer Academic Publishers, Amsterdam (1989)

    Google Scholar 

  4. Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: ADIFOR: generating derivative codes from fortran programs. Sci. Program. 1, 1–29 (1992)

    Google Scholar 

  5. Bishchof, C., Carle, A., Khademi, P., Mauer, A., Hovland, P.: ADIFOR 2.0 User’s Guide Revision CO, “Technical Report ANL/MCS-TM-192, Mathematics and computer Science Division, Argonne National Laboratory, Argonne, IL. (1995)

  6. Eberhard, P., Bischof, C.: Automatic Differentiation of Numerical Integration Algorithms, Technical Report ANL/MCS-P621-1196, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (1996)

  7. Turner, J.D.: Automated generation of high-order partial derivative models. AIAA J. 41(8), 1590–1599 (2003)

    Article  Google Scholar 

  8. Turner, J.D.: Generalized gradient search and Newton’s method for multilinear algebra root-solving and optimization applications. In: Vadali, S. R., Mortari, D. (eds.) Paper No. AAS-03-261, Proceedings of the John L. Junkins Astrodynamics Symposium 2003, Vol. 115, Advances in the Astronautical Sciences, pp. 55–78. George Bush Conference Center, College Station (2003)

    Google Scholar 

  9. Griffith, D.T., Turner, J.D., Junkins, J.L.: Automatic generation and integration of equation of motion for flexible multibody dynamical systems. AAS J. Astronaut. Sci. 53(3), 251–279 (2005)

    MathSciNet  Google Scholar 

  10. Bani Younes, A. H., Turner, J.D., Majji, M., Junkins, J.L.: An Investigation of State Feedback Gain Sensitivity Calculations, Presented to AIAA/AAS Astrodynamics Specialist Conf. Held 2-5 August 2010, Toronto, Ontario, Canada

  11. Griffith, D.T., Turner, J.D., Junkins, J.L.: An embedded function tool for modeling and simulating estimation problems in aerospace engineering, AAS Journal of the Astronautical Sciences, AAS 04-148 (2004)

  12. Griffith, D.J., Turner, J.D., Junkins, J.L.: Some Applications of Automatic Differentiation to Rigid, Flexible, and Constrained Multibody Dynamics, Paper No. DETC2005-85640, Proceedings of the 5th International Conference on Multibody Systems, Nonlinear Dynamics and Control At The ASME 2005 International Design Engineering Technical Conferences, Symposia Title: MSNDC-7-1 Symposium on Applications of Automatic Differentiation for Nonlinear Multibody Dynamics, Control, and Optimization, Long Beach, California, September 24–28 (2005)

  13. Junkins, J.L., Turner, J.D., Majji, M.: Generalizations and applications of the lagrange implicit function theorem, Special issue: The F. Landis Markley Astronautics Symposium. J. Astronaut. Sci. 57(1 and 2), 313–345 (2009)

    Article  Google Scholar 

  14. Majji, M., Junkins, J.L., Turner, J.D.: A Perturbation Method For Estimation Of Dynamic Systems, Nonlinear Dynamics, Online First (2009)

  15. Gauss, C.F.: (1809) Theoria Motus Corporum Coelestium. Perthes, Hamburg. Translation reprinted as Theory of the Motions of the Heavenly bodies moving about the Sun in JConic Sections. Dover, New York (1963)

  16. Crassidis, J.L., Junkins, J.L.: Optimal estimation of dynamical systems. Chapman & Hall/CRC, Boca Raton (2004)

    Book  Google Scholar 

  17. Griffith, T. D.: New methods for estimation, modeling and validation of dynamical systems using automatic differentiation, Ph.D. Dissertation. Texas A&M University, Department of Aerospace Engineering (2004)

  18. Wang, L., Leblanc, A.: Second-order nonlinear least squares estimation. Ann. Inst Stat. Math. 60, 883–900

  19. Wu, C.-F.: Asymptotic theory of nonlinear least squares estimation. Ann. Stat. 9(3), 501–513 (1981)

    Article  MATH  Google Scholar 

  20. Zhao, Q., Caiafa, C. F., Mandic, D. P., Chao, Z. C., Nagasaka, Y., Fujii, N., Zhang, L., Cichocki, A.: Higher-Order Partial Least Squares (HOPLS): A Generalized Multi-Linear Regression Method. Cornell University Library. arXiv: 1207.1230 [cs.AL]

  21. Bellman, R. E.: Perturbation Techniques in Mathematics. Engineering & Physics, Holt, Rinehart and Winston, Inc., New York (1964). Part 1, sections 2-5

  22. Liao, S. J.: An approximate solution technique not depending on small parameters: A special example. Int. J. Nonlinear Mech. 30(3), 371–380 (1995)

    Article  MATH  Google Scholar 

  23. Newton, Methodus fluxionum et serierum infinitarum, 1664–1671

  24. Raphson, J.: Analysis Aequationum universalis, London (1690)

  25. Kantorovich, L. V., Akilov, G. P.: Functional analysis in normed spaces. Pergamon Press, New York (1982)

    Google Scholar 

  26. Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables (1970)

  27. Householder, A. S.: The numerical treatment of a single nonlinear equation. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  28. Tranter, C.J.: Legendre transforms. Q. J. Math. 1(1), 1–8. doi:10.1093/qmath/1.1.1,1950

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Bani Younes.

Appendix: Legendre Transformation for Developing a Reversion of Series Solution

Appendix: Legendre Transformation for Developing a Reversion of Series Solution

All of the nonlinear necessary conditions developed in this work lead to n-tuple sets of algebraic equations. The challenge is that these variables fundamentally lack an independent variable, which can be used for developing an analytic continuation solution for the approximate root solution. An artificial independent variable is introduced into the n-tuple algebraic equations by invoking the following Legendre transformation [28]:

$$ H=x-sx_{0} =0\Rightarrow x=\left. {x_{0} } \right|_{s=1}\, \text{and} \,x=\left. 0 \right|_{s=0} $$
(A.1)

where s∈[1, 0] is the artificial independent variable and H represents a homotopy embedding equation. The equation implies that x = x(s). Repeated differentiation of Eq. A.1, with respect to s, yields the cascade of sensitivity necessary conditions

$$\begin{array}{@{}rcl@{}} H_{,s} =&&\nabla x\cdot x_{,s} -x_{0} =0 \\ H_{,ss} =&&\nabla^{2}x\cdot x_{,s} \cdot x_{,s} +\nabla x\cdot x_{,ss} =0 \\ H_{,sss} =&&\nabla^{3}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,s} +2\nabla^{2}x\cdot x_{,ss} \cdot x_{,s} +\nabla^{2}x\cdot x_{,s} \cdot x_{,ss} +\nabla x\cdot x_{,sss} =0 \\ H_{,ssss} =&&\nabla^{4}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,s} \cdot x_{,s} +3\nabla^{3}x\cdot x_{,ss} \cdot x_{,s} \cdot x_{,s} +2\nabla^{3}x\cdot x_{,s} \cdot x_{,ss} \cdot x_{,s} + \\ \;\;&&\nabla^{3}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,ss} +3\nabla^{2}x\cdot x_{,sss} \cdot x_{,s} +3\nabla^{2}x\cdot x_{,ss} \cdot x_{,ss}\\ &&+\nabla^{2}x\cdot x_{,s} \cdot x_{,sss} +\nabla x\cdot x_{,ssss} \end{array} $$
(A.2)

where ∇x,∇2 x,⋯,∇m x are generated by OCEA, and the unknown rates are presented in the red font. Inverting cascade for the rates yields

$$\begin{array}{@{}rcl@{}} x_{,s} &=&\quad \left({\nabla x} \right)^{-1}x_{0} \\ x_{,ss} &=&-\left({\nabla x} \right)^{-1}\nabla^{2}x\cdot x_{,s} \cdot x_{,s} \\ x_{,sss} &=&-\left({\nabla x} \right)^{-1}\left({\nabla^{3}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,s} +2\nabla^{2}x\cdot x_{,ss} \cdot x_{,s} +\nabla^{2}x\cdot x_{,s} \cdot x_{,ss} } \right) \\ x_{,ssss} &=&-\left({\nabla x} \right)^{-1}\left({\begin{array}{l} \nabla^{4}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,s} \cdot x_{,s} +3\nabla^{3}x\cdot x_{,ss} \cdot x_{,s} \cdot x_{,s} +2\nabla^{3}x\cdot x_{,s} \cdot x_{,ss} \cdot x_{,s} + \\ \nabla^{3}x\cdot x_{,s} \cdot x_{,s} \cdot x_{,ss} +3\nabla^{2}x\cdot x_{,sss} \cdot x_{,s} +3\nabla^{2}x\cdot x_{,ss} \cdot x_{,ss} +\nabla^{2}x\cdot x_{,s} \cdot x_{,sss} \end{array}} \right) \\ \end{array} $$
(A.3)

The solution for x is now analytically continued to fourth order, as a function of the artificial independent variable s, as

$$ x(s)=x_{0} +x_{,s} {\Delta} s+\frac{1}{2!}x_{,ss} {\Delta} s^{2}+\frac{1}{3!}x_{,sss} {\Delta} s^{3}+\frac{1}{4!}x_{,ssss} {\Delta} s^{4} $$
(A.4)

Recalling the homotopy parameters defined in Eq. A.1, it follows that the change in the s-variable is

$$ {\Delta} s=s_{f} -s_{0} =0-1=-1 $$
(A.5)

which permits (A.4) to be expressed as the reversion-of-series solution given by

$$ x=x_{0} -x_{,s} +\frac{1}{2!}x_{,ss} -\frac{1}{3!}x_{,sss} +\frac{1}{4!}x_{,ssss} $$
(A.6)

Equation A.6, when combined with Eqs. A.3 and A.4, makes full use of the sensitivity data recovered by the generalized Matrix-vector solution of Eq. 16. A significant advantage of this approach is that the reversion-of-series approach does not depend on the algebraic complexity of the original nonlinear problem, as well as scaling to arbitrary order expansions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younes, A.B., Turner, J. Generalized Least Squares and Newton’s Method Algorithms for Nonlinear Root-Solving Applications. J of Astronaut Sci 60, 517–540 (2013). https://doi.org/10.1007/s40295-015-0071-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-015-0071-z

Keywords

Navigation