Skip to main content
Log in

Control of Spacecraft Formations Around the Libration Points Using Electric Motors with One Bit of Resolution

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This paper investigates a formation control problem for two space vehicles in the vicinity of the L 2 libration point of the Sun-Earth/Moon system. The objective is to accurately regulate the relative position vector between the vehicles to a desired configuration, under tight tolerances. It is shown that the formation control problem is solvable using six constant thrust electric actuators requiring only one bit of resolution, and bounded switching frequency. The proposed control law is hybrid, and it coordinates the sequence of on-off switches of the thrusters so as to achieve the control objective and, at the same time, avoid high-frequency switching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The controller discussed in this section is also discussed in the conference proceedings [13].

References

  1. Carpenter, K.G., Schrijver, C.J., Karovska, M.: The stellar imager (SI) vision mission. In: Proceedings of the SPIE 6268, Advances in Stellar Interferometry (2006)

  2. Coulter, D.R.: NASA’s Terrestrial Planet Finder mission: the search for habitable planets. In: Proceedings of the SPIE 5487, Optical, Infrared, and Millimeter Space Telescopes (2003)

  3. Gendreau, K.C., Cash, W.C., Shipley, A.F., White, N.: MAXIM Pathfinder x-ray interferometry mission. In: Proceedings of the SPIE 4851, X-ray and Gamma-ray Telescopes and Instruments for astronomy (2003)

  4. Howell, K.C., Marchand, B.G.: Natural and non-natural spacecraft formations near the L 1 and L 2 libration points in the sunearth/moon ephemeris system. Dynam. Syst. 20(1), 149–173 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Millard, L.D., Howell, K.C.: Control of interferometric spacecraft arrays for (u, v) plane coverage in multi-body regimes. J. Astronaut. Sci. 56(1), 71–97 (2008)

    Article  Google Scholar 

  6. Qi, R., Xu, S., Xu, M.: Impulsive control for formation flight about libration points. J. Guid. Control Dyn. 35(2), 484–496 (2012)

    Article  MathSciNet  Google Scholar 

  7. Marchand, B.G., Howell, K.: Control strategies for formation flight in the vicinity of the libration points. J. Guid. Control Dyn. 28(6), 1210–1219 (2005)

    Article  Google Scholar 

  8. Gurfil, P., Kasdin, N.J.: Stability and control of spacecraft formation flying in trajectories of the restricted three-body problem. Acta Astronaut. 54(6), 433–453 (2004)

    Article  Google Scholar 

  9. Gurfil, P., Idan, M., Kasdin, N.J.: Adaptive neural control of deep-space formation flying. J. Guid. Control Dyn. 26(3), 491–501 (2003)

    Article  Google Scholar 

  10. Marchand, B.G., Stanton, S.A.: Actuator constrained optimal formation keeping near the libration points. J. Astronaut. Sci. 57(3), 607–632 (2010)

    Article  Google Scholar 

  11. Stanton, S.A., Marchand, B.: Actuator constrained optimal control of formations near the libration points. AIAA/AAS Astrodynamics Specialist Conference Honolulu, HI (2008)

  12. Serpelloni, E., Maggiore, M., Damaren, C.J.: Achieving rigid spacecraft formations using thrusters with one-bit resolution. AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA (2014)

  13. Serpelloni, E., Maggiore, M., Damaren, C.J.: Bang bang hybrid stabilization of perturbed double integrators. 53rd. IEEE Conference on Decision and Control, Los Angeles (2014)

    Google Scholar 

  14. Chaillet, A., Loria, A.: Uniform global practical asymptotic stability for time-varying cascaded systems. Automatica 12(6), 595–605 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Bryson, A.E., Ho, Y.: Applied optimal control: optimization, estimation, and control, pp 110–117. Hemisphere, New York (1975)

    Google Scholar 

  16. Rao, V.G., Bernstein, D.S.: Naive control of the double integrator. IEEE Control Syst. Mag. 21(5), 86–97 (2001)

    Article  Google Scholar 

  17. Maggiore, M., Rawn, B., Lehn, P.: Invariance kernels of single-input planar nonlinear systems. SIAM J. Control Optim. 50(2), 1012–1037 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Biagioni, L., Ceccanti, F., Saverdi, M., Saviozzi, M., Andrenucci, M.: Qualification status of the FEEP-150 electric micropropulsion subsystem. AIAA paper (2005)

  19. Folta, D., Hartman, K., Howell, K.C., Marchand, B.: Formation control of the MAXIM L 2 libration orbit mission. AIAA paper (2004)

  20. Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  Google Scholar 

  21. Marcuccio, S., Genovese, A., Andrenucci, M.: Experimental performance of field emission microthrusters. J. Propul. Power 14, 774–781 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfredi Maggiore.

Additional information

Preliminary versions of parts of this material appeared in the conference proceedings [12, 13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serpelloni, E., Maggiore, M. & Damaren, C.J. Control of Spacecraft Formations Around the Libration Points Using Electric Motors with One Bit of Resolution. J of Astronaut Sci 61, 367–390 (2014). https://doi.org/10.1007/s40295-014-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-014-0030-0

Keywords

Navigation