Skip to main content
Log in

The Natriuretic Peptides for Hypertension Treatment

  • Review article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

Hypertension is a common pathological condition predisposing to a higher occurrence of cardiovascular diseases and events. Unfortunately, treatment of hypertension is still suboptimal worldwide. More efforts are needed to implement the availability of anti-hypertensive drugs. The family of natriuretic peptides, including atrial and brain natriuretic peptides (ANP and BNP), play a key role on blood pressure regulation through the natriuretic, diuretic and vasorelaxant effects. A large number of experimental and human studies, ranging from pathophysiological to genetic investigations, supported ANP as the most relevant component of the family able to modulate blood pressure and to contribute to hypertension development. On this background, it is expected that ANP-based therapeutic approaches may give a significant contribution to the development of efficacious therapies against hypertension. Since native ANP cannot be administered due to its short half-life, several approaches were attempted over the years to overcome the difficulties inherent to the ANP instability. These approaches included ANP recombinant and fusion peptides, gene therapy, inhibition of ANP degradation by neprilysin inhibition, and designer peptides. The most relevant achievements in the field are discussed in this article. Based on the available evidence, therapies targeting ANP represent efficacious and clinically applicable anti-hypertensive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143(8):e254–743.

    Article  Google Scholar 

  2. Ives CW, Oparil S. What is the first choice for blood pressure treatment? Lancet. 2019 Nov 16;394(10211):1782–4.

    Article  PubMed  Google Scholar 

  3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I, ESC Scientific Document Group 2018. ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104.

    Article  PubMed  Google Scholar 

  4. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021 (S0140-6736(21)01330-1).

  5. Muntner P, Hardy ST, Fine LJ, Jaeger BC, Wozniak G, Levitan EB, Colantonio LD. Trends in blood pressure control among US adults with hypertension, 1999–2000 to 2017–2018. JAMA. 2020;324(12):1190–200.

    Article  PubMed  Google Scholar 

  6. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28(1):89–94.

    Article  PubMed  Google Scholar 

  7. de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science. 1985;230(4727):767–70.

    Article  PubMed  Google Scholar 

  8. Goetze JP, Bruneau BG, Ramos HR, Ogawa T, de Bold MK, de Bold AJ. Cardiac natriuretic peptides. Nat Rev Cardiol. 2020;17(11):698–717.

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Cao P, Dong N, Peng J, Zhang C, Wang H, Zhou T, Yang J, Zhang Y, Martelli EE, Naga Prasad SV, Miller RE, Malfait AM, Zhou Y, Wu Q. PCSK6-mediated corin activation is essential for normal blood pressure. Nat Med. 2015;21(9):1048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Volpe M, Rubattu S. Novel insights into the mechanisms regulating pro-atrial natriuretic peptide cleavage in the heart and blood pressure regulation: proprotein convertase subtilisin/kexin 6 is the corin activating enzyme. Circ Res. 2016;118(2):196–8.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer M, Richter R, Forssmann WG. Urodilatin, a natriuretic peptide with clinical implications. Eur J Med Res. 1998;3(1–2):103–10.

    CAS  PubMed  Google Scholar 

  12. Skelton WP 4th, Pi GE, Vesely DL. Four cardiac hormones cause death of human cancer cells but not of healthy cells. Anticancer Res. 2011;31(2):395–402.

    CAS  PubMed  Google Scholar 

  13. Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genom. 2018;50(11):913–28.

    Article  CAS  Google Scholar 

  14. Martinez-Rumayor A, Richards AM, Burnett JC, Januzzi JL Jr. Biology of the natriuretic peptides. Am J Cardiol. 2008;101(3A):3–8.

    Article  PubMed  Google Scholar 

  15. Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18–25.

    Article  CAS  PubMed  Google Scholar 

  16. Moyes AJ, Hobbs AJ. C-type natriuretic peptide: a multifaceted paracrine regulator in the heart and vasculature. Int J Mol Sci. 2019;20(9):2281.

    Article  CAS  PubMed Central  Google Scholar 

  17. Schweitz H, Vigne P, Moinier D, Frelin C, Lazdunski M. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem. 1992;267(20):13928–32.

    Article  CAS  PubMed  Google Scholar 

  18. Lisy O, Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, Burnett JC. Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int. 1999;56(2):502–8.

    Article  CAS  PubMed  Google Scholar 

  19. de Bold AJ, Bruneau BG, Kuroskide Bold ML. Mechanical and neuroendocrine regulation of the endocrine heart. Cardiovasc Res. 1996;31(1):7–18.

    Article  PubMed  Google Scholar 

  20. Rubattu S, Stanzione R, Cotugno M, Bianchi F, Marchitti S, Forte M. Epigenetic control of natriuretic peptides: implications for health and disease. Cell Mol Life Sci. 2020;77(24):5121–30.

    Article  CAS  PubMed  Google Scholar 

  21. Rubattu S, Calvieri C, Pagliaro B, Volpe M. Atrial natriuretic peptide and regulation of vascular function in hypertension and heart failure: implications for novel therapeutic strategies. J Hypertens. 2013;31(6):1061–72.

    Article  CAS  PubMed  Google Scholar 

  22. Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond). 2016;130(2):57–77.

    Article  CAS  Google Scholar 

  23. Špiranec Spes K, Chen W, Krebes L, Völker K, Abeßer M, Eder Negrin P, Cellini A, Nickel A, Nikolaev VO, Hofmann F, Schuh K, Schweda F, Kuhn M. Heart-microcirculation connection: effects of ANP (atrial natriuretic peptide) on pericytes participate in the acute and chronic regulation of arterial blood pressure. Hypertension. 2020;76(5):1637–48.

    Article  PubMed  Google Scholar 

  24. Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular pleiotropic effects of natriuretic peptides. Int J Mol Sci. 2019;20(16):3874.

    Article  CAS  PubMed Central  Google Scholar 

  25. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267(5198):679–81.

    Article  CAS  PubMed  Google Scholar 

  26. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378(6552):65–8.

    Article  CAS  PubMed  Google Scholar 

  28. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA. 2000;97(8):4239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujii T, Hirota K, Yasoda A, Takizawa A, Morozumi N, Nakamura R, Yotsumoto T, Kondo E, Yamashita Y, Sakane Y, Kanai Y, Ueda Y, Yamauchi I, Yamanaka S, Nakao K, Kuwahara K, Jindo T, Furuya M, Mashimo T, Inagaki N, Serikawa T, Nakao K. Rats deficient C-type natriuretic peptide suffer from impaired skeletal growth without early death. PLoS ONE. 2018;13(3):e0194812.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rubattu S, Evangelista A, Barbato D, Barba G, Stanzione R, Iacone R, Volpe M, Strazzullo P. Atrial natriuretic peptide (ANP) gene promoter variant and increased susceptibility to early development of hypertension in humans. J Hum Hypertens. 2007;21(10):822–4.

    Article  CAS  PubMed  Google Scholar 

  31. Cannone V, Cabassi A, Volpi R, Burnett JC Jr. Atrial natriuretic peptide: a molecular target of novel therapeutic approaches to cardio-metabolic disease. Int J Mol Sci. 2019;20(13):3265.

    Article  CAS  PubMed Central  Google Scholar 

  32. Volpe M, Rubattu S, Burnett J Jr. Natriuretic peptides in cardiovascular diseases: current use and perspectives. Eur Heart J. 2014;35(7):419–25.

    Article  CAS  PubMed  Google Scholar 

  33. Macheret F, Heublein D, Costello-Boerrigter LC, Boerrigter G, McKie P, Bellavia D, Mangiafico S, Ikeda Y, Bailey K, Scott CG, Sandberg S, Chen HH, Malatino L, Redfield MM, Rodeheffer R, Burnett J Jr, Cataliotti A. Human hypertension is characterized by a lack of activation of the antihypertensive cardiac hormones ANP and BNP. J Am Coll Cardiol. 2012;60(16):1558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rubattu S, Bigatti G, Evangelista A, Lanzani C, Stanzione R, Zagato L, Manunta P, Marchitti S, Venturelli V, Bianchi G, Volpe M, Stella P. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol. 2006;48(3):499–505.

    Article  CAS  PubMed  Google Scholar 

  35. Chen C, Zhao Z, Xu J, Cao X, Guo S, Li J, Wang H, Hou S. Prokaryotic expression, purification and identification of recombinant human atrial natriuretic peptide. Sheng Wu Gong Cheng Xue Bao. 2016;32(9):1273–85.

    CAS  PubMed  Google Scholar 

  36. Lin KF, Chao J, Chao L. Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension. 1995;26(6 Pt 1):847–53.

    Article  CAS  PubMed  Google Scholar 

  37. Lin KF, Chao J, Chao L. Atrial natriuretic peptide gene delivery reduces stroke-induced mortality rate in Dahl salt-sensitive rats. Hypertension. 1999;33(1 Pt 2):219–24.

    Article  CAS  PubMed  Google Scholar 

  38. Schillinger KJ, Tsai SY, Taffet GE, Reddy AK, Marian AJ, Entman ML, Oka K, Chan L, O’Malley BW. Regulatable atrial natriuretic peptide gene therapy for hypertension. Proc Natl Acad Sci USA. 2005;102(39):13789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. da Silva GJJ, Altara R, Booz GW, Cataliotti A. Atrial natriuretic peptide31–67: a novel therapeutic factor for cardiovascular diseases. Front Physiol. 2021;12:691407.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vesely DL, Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, Schocken DD. Three peptides from the atrial natriuretic factor prohormone amino terminus lower blood pressure and produce diuresis, natriuresis, and/or kaliuresis in humans. Circulation. 1994 Sep;90(3):1129–40.

    Article  CAS  PubMed  Google Scholar 

  41. Kangawa K, Tawaragi Y, Oikawa S, Mizuno A, Sakuragawa Y, Nakazato H, Fukuda A, Minamino N, Matsuo H. Identification of rat gamma atrial natriuretic polypeptide and characterization of the cDNA encoding its precursor. Nature. 1984;312(5990):152–5.

    Article  CAS  PubMed  Google Scholar 

  42. Nishi K, Sato Y, Miyamoto T, Toma M, Taniguchi R, Fukuhara R, Saijo S, Fujiwara H, Takatsu Y. Intermittent infusions of carperitide or inotoropes in out-patients with advanced heart failure. J Cardiol. 2012;59(3):366–73.

    Article  PubMed  Google Scholar 

  43. Sato N, Kajimoto K, Asai K, Mizuno M, Minami Y, Nagashima M, Murai K, Muanakata R, Yumino D, Meguro T, Kawana M, Nejima J, Satoh T, Mizuno K, Tanaka K, Kasanuki H, Takano T; ATTEND Investigators. Acute decompensated heart failure syndromes (ATTEND) registry. A prospective observational multicenter cohort study: rationale, design, and preliminary data. Am Heart J. 2010;159(6):949–955.e1.

  44. Hattori H, Minami Y, Mizuno M, Yumino D, Hoshi H, Arashi H, Nuki T, Sashida Y, Higashitani M, Serizawa N, Yamada N, Yamaguchi J, Mori F, Shiga T, Hagiwara N. Differences in hemodynamic responses between intravenous carperitide and nicorandil in patients with acute heart failure syndromes. Heart Vessels. 2013;28(3):345–51.

    Article  PubMed  Google Scholar 

  45. Mitrovic V, Forssmann WG, Schnitker J, Felix SB. Randomized double-blind clinical studies of ularitide and other vasoactive substances in acute decompensated heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2018 Dec;5(6):1023–34.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G. Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J. 2015;36(12):715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meems LMG, Burnett JC Jr. Innovative therapeutics: designer natriuretic peptides. JACC Basic Transl Sci. 2016;1(7):557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  48. McKie PM, Ichiki T, Burnett JC Jr. M-atrial natriuretic peptide: a novel antihypertensive protein therapy. Curr Hypertens Rep. 2012;14(1):62–9.

    Article  CAS  PubMed  Google Scholar 

  49. McKie PM, Cataliotti A, Boerrigter G, Chen HH, Sangaralingham SJ, Martin FL, Ichiki T, Burnett JC Jr. A novel atrial natriuretic peptide based therapeutic in experimental angiotensin II mediated acute hypertension. Hypertension. 2010;56(6):1152–9.

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Wan SH, Iyer SR, Cannone V, Sangaralinghham J, Nuetel J, Burnett JC Jr. A first in human study of MANP: a novel atrial natriuretic peptide analogue in human hypertension. Hypertension 2021 (in press).

  51. Chen BY, Chen JK, Zhu MZ, Zhang DL, Sun JS, Pei JM, Feng HS, Zhu XX, Jin J, Yu J. AC-NP: a novel chimeric peptide with natriuretic and vasorelaxing actions. PLoS ONE. 2011;6(5):e20477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett JC Jr. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol. 2008;52(1):60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burnett JC Jr. Vasopeptidase inhibition: a new concept in blood pressure management. J Hypertens Suppl. 1999;17(1):S37-43.

    CAS  PubMed  Google Scholar 

  54. Bevan EG, Connell JM, Doyle J, Carmichael HA, Davies DL, Lorimer AR, McInnes GT. Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens. 1992;10(7):607–13.

    Article  CAS  PubMed  Google Scholar 

  55. Kentsch M, Otter W, Drummer C, Nötges A, Gerzer R, Müller-Esch G. Neutral endopeptidase 24.11 inhibition may not exhibit beneficial haemodynamic effects in patients with congestive heart failure. Eur J Clin Pharmacol. 1996;51(3–4):269–72.

    Article  CAS  PubMed  Google Scholar 

  56. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the omapatrilat cardiovascular treatment vs. enalapril (OCTAVE) trial. Am J Hypertens. 2004;17(2):103–11.

    Article  CAS  PubMed  Google Scholar 

  57. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375(9722):1255–66.

    Article  CAS  PubMed  Google Scholar 

  58. Wang TD, Tan RS, Lee HY, Ihm SH, Rhee MY, Tomlinson B, Pal P, Yang F, Hirschhorn E, Prescott MF, Hinder M, Langenickel TH. Effects of sacubitril/valsartan (LCZ696) on natriuresis, diuresis, blood pressures, and NT-proBNP in salt-sensitive hypertension. Hypertension. 2017;69(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahim NE, McCarthy CP, Shrestha S, Gaggin HK, Mukai R, Szymonifka J, Apple FS, Burnett JC Jr, Iyer S, Januzzi JL Jr. Effect of neprilysin inhibition on various natriuretic peptide assays. J Am Coll Cardiol. 2019;73(11):1273–84.

    Article  CAS  PubMed  Google Scholar 

  60. Nougué H, Pezel T, Picard F, Sadoune M, Arrigo M, Beauvais F, Launay JM, Cohen-Solal A, Vodovar N, Logeart D. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: a mechanistic clinical study. Eur J Heart Fail. 2019;21(5):598–605.

    Article  PubMed  Google Scholar 

  61. Chua SK, Lai WT, Chen LC, Hung HF. The antihypertensive effects and safety of LCZ696 in patients with hypertension: a systemic review and meta-analysis of randomized controlled trials. J Clin Med. 2021;10(13):2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spannella F, Marini M, Giulietti F, Rosettani G, Francioni M, Perna GP, Sarzani R. Renal effects of Sacubitril/Valsartan in heart failure with reduced ejection fraction: a real life 1-year follow-up study. Intern Emerg Med. 2019;14(8):1287–97.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Spannella F, Giulietti F, Filipponi A, Sarzani R. Effect of sacubitril/valsartan on renal function: a systematic review and meta-analysis of randomized controlled trials. ESC Heart Fail. 2020;7:3487–96.

    Article  PubMed Central  Google Scholar 

  64. Rubattu S, Cotugno M, Forte M, Stanzione R, Bianchi F, Madonna M, Marchitti S, Volpe M. Effects of dual angiotensin type 1 receptor/neprilysin inhibition vs. angiotensin type 1 receptor inhibition on target organ injury in the stroke-prone spontaneously hypertensive rat. J Hypertens. 2018;36(9):1902–14.

    Article  CAS  PubMed  Google Scholar 

  65. Pu Q, Brassard P, Javeshghani DM, Iglarz M, Webb RL, Amiri F, Schiffrin EL. Effects of combined AT1 receptor antagonist/NEP inhibitor on vascular remodeling and cardiac fibrosis in SHRSP. J Hypertens. 2008;26(2):322–33.

    Article  CAS  PubMed  Google Scholar 

  66. Volpe M, Gallo G. Sacubitril/valsartan for heart failure with preserved ejection fraction and resistant hypertension: one shot for a double strike? Eur Heart J. 2021;42(36):3753–5.

    Article  PubMed  Google Scholar 

  67. Volpe M, Tocci G, Battistoni A, Rubattu S. Angiotensin II receptor blocker neprilysin inhibitor (ARNI): new avenues in cardiovascular therapy. High Blood Press Cardiovasc Prev. 2015;22(3):241–6.

    Article  CAS  PubMed  Google Scholar 

  68. Tikkanen I, Tikkanen T, Cao Z, Allen TJ, Davis BJ, Lassila M, Casley D, Johnston CI, Burrell LM, Cooper ME. Combined inhibition of neutral endopeptidase with angiotensin converting enzyme or endothelin converting enzyme in experimental diabetes. J Hypertens. 2002;20(4):707–14.

    Article  CAS  PubMed  Google Scholar 

  69. Kalk P, Sharkovska Y, Kashina E, von Websky K, Relle K, Pfab T, Alter M, Guillaume P, Provost D, Hoffmann K, Fischer Y, Hocher B. Endothelin-converting enzyme/neutral endopeptidase inhibitor SLV338 prevents hypertensive cardiac remodeling in a blood pressure-independent manner. Hypertension. 2011;57(4):755–63.

    Article  CAS  PubMed  Google Scholar 

  70. Mulder P, Barbier S, Monteil C, Jeng AY, Henry JP, Renet S, Thuillez C. Sustained improvement of cardiac function and prevention of cardiac remodeling after long-term dual ECE-NEP inhibition in rats with congestive heart failure. J Cardiovasc Pharmacol. 2004;43(4):489–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Speranza Rubattu.

Ethics declarations

Conflict of interest

None to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubattu, S., Gallo, G. The Natriuretic Peptides for Hypertension Treatment. High Blood Press Cardiovasc Prev 29, 15–21 (2022). https://doi.org/10.1007/s40292-021-00483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-021-00483-5

Keywords

Navigation