Skip to main content

Advertisement

Log in

Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Congenital Anemias

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Congenital anemias are a wide spectrum of diseases including hypoproliferative anemia syndromes, dyserythropoietic anemias, sideroblastic anemias, red blood cell membrane and enzymatic defects, hemoglobinopathies, and thalassemia syndromes. The various congenital anemia syndromes may have similar clinical and laboratory presentations, making the diagnosis challenging. The traditional work-up, which includes a complete blood count, blood smears, bone marrow studies, flow cytometry, and the osmotic fragility test, does not always lead to the diagnosis. Specialized tests such as red blood cell enzyme activity and ektacytometry are not widely available. In addition, red blood cell transfusions may mask some of the laboratory characteristics. Therefore, genetic testing is crucial for accurate diagnosis of patients with congenital anemias. However, gene-by-gene testing is labor intensive because of the large number of genes involved. Thus, targeted next-generation sequencing using custom-made gene panels has been increasingly utilized, with a high success rate of diagnosis. Accurate genetic diagnosis is important for determining specific therapeutic modalities, as well as for avoiding splenectomy when contraindicated. In addition, molecular diagnosis can allow for genetic counseling and prenatal diagnosis in severe cases. We suggest a work-up scheme for patients with congenital anemias, including early incorporation of targeted next-generation sequencing panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gilad O, Shemer OS, Dgany O, Krasnov T, Nevo M, Noy-Lotan S, et al. Molecular diagnosis of α-thalassemia in a multiethnic population. Eur J Haematol. 2017;98(6):553–62.

    CAS  PubMed  Google Scholar 

  2. Steinberg-Shemer O, Keel S, Dgany O, Walsh T, Noy-Lotan S, Krasnov T, et al. Diamond Blackfan anemia: a nonclassical patient with diagnosis assisted by genomic analysis. J Pediatr Hematol Oncol. 2016;38(7):e260–2.

    PubMed  PubMed Central  Google Scholar 

  3. Da Costa L, Narla A, Mohandas N. An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia. F1000Res. 2018;7:F1000 Faculty Rev-350.

  4. Ulirsch JC, Verboon JM, Kazerounian S, Guo MH, Yuan D, Ludwig LS, et al. The genetic landscape of Diamond-Blackfan anemia. Am J Hum Genet. 2018;103(6):930–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sankaran VG, Ghazvinian R, Do R, Thiru P, Vergilio J-A, Beggs AH, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 2012;122(7):2439–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gripp KW, Curry C, Olney AH, Sandoval C, Fisher J, Chong JX-L, et al. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am J Med Genet A. 2014;164A(9):2240–9.

  7. Kim AR, Ulirsch JC, Wilmes S, Unal E, Moraga I, Karakukcu M, et al. Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation. Cell. 2017;168(6):1053–1064.e15.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ludwig LS, Gazda HT, Eng JC, Eichhorn SW, Thiru P, Ghazvinian R, et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med. 2014;20(7):748–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Da Costa L, O’Donohue M-F, van Dooijeweert B, Albrecht K, Unal S, Ramenghi U, et al. Molecular approaches to diagnose Diamond-Blackfan anemia: the EuroDBA experience. Eur J Med Genet. 2018;61(11):664–73.

    PubMed  Google Scholar 

  10. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell. 2018;173(1):90–103.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117(9):2567–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Trainor CD, Mas C, Archambault P, Di Lello P, Omichinski JG. GATA-1 associates with and inhibits p53. Blood. 2009;114(1):165–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Vlachos A, Rosenberg PS, Atsidaftos E, Alter BP, Lipton JM. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood. 2012;119(16):3815–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008;142(6):859–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fargo JH, Kratz CP, Giri N, Savage SA, Wong C, Backer K, et al. Erythrocyte adenosine deaminase: diagnostic value for Diamond-Blackfan anaemia. Br J Haematol. 2013;160(4):547–54.

    CAS  PubMed  Google Scholar 

  16. Glader BE, Backer K. Elevated red cell adenosine deaminase activity: a marker of disordered erythropoiesis in Diamond-Blackfan anaemia and other haematologic diseases. Br J Haematol. 1988;68(2):165–8.

    CAS  PubMed  Google Scholar 

  17. Farrar JE, Quarello P, Fisher R, O’Brien KA, Aspesi A, Parrella S, et al. Exploiting pre-rRNA processing in Diamond Blackfan anemia gene discovery and diagnosis. Am J Hematol. 2014;89(10):985–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Roy NBA, Wilson EA, Henderson S, Wray K, Babbs C, Okoli S, et al. A novel 33-Gene targeted resequencing panel provides accurate, clinical-grade diagnosis and improves patient management for rare inherited anaemias. Br J Haematol. 2016;175(2):318–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122(13):2162–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Amir AZ, Horev G, Yacobovich J, Bennett M, Tamary H. Distal limb anomalies in patients with congenital dyserythropoietic anemia. Am J Med Genet A. 2017;173(2):487–90.

    CAS  PubMed  Google Scholar 

  21. Arnaud L, Saison C, Helias V, Lucien N, Steschenko D, Giarratana M-C, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wickramasinghe SN. Dyserythropoiesis and congenital dyserythropoietic anaemias. Br J Haematol. 1997;98(4):785–97.

    CAS  PubMed  Google Scholar 

  23. Haija MAE, Qian Y-W, Muthukumar A. Dyserythropoiesis in a child with pyruvate kinase deficiency and coexistent unilateral multicystic dysplastic kidney. Pediatr Blood Cancer. 2014;61(8):1463–5.

    PubMed  Google Scholar 

  24. Russo R, Andolfo I, Manna F, Gambale A, Marra R, Rosato BE, et al. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol. 2018;93(5):672–82.

    CAS  PubMed  Google Scholar 

  25. Shefer Averbuch N, Steinberg-Shemer O, Dgany O, Krasnov T, Noy-Lotan S, Yacobovich J, et al. Targeted next generation sequencing for the diagnosis of patients with rare congenital anemias. Eur J Haematol. 2018;101(3):297–304.

    CAS  PubMed  Google Scholar 

  26. Roy NBA, Babbs C. The pathogenesis, diagnosis and management of congenital dyserythropoietic anaemia type I. Br J Haematol. 2019;185(3):436–49.

    PubMed  PubMed Central  Google Scholar 

  27. Fleming MD. Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology Am Soc Hematol Educ Program. 2011;2011:525–31.

    PubMed  Google Scholar 

  28. Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia. Blood. 2019;133(1):59–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bottomley SS, Fleming MD. Sideroblastic anemia: diagnosis and management. Hematol Oncol Clin North Am. 2014;28(4):653–70, v.

  30. Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol. 2019;187(1):13–24.

    PubMed  Google Scholar 

  31. Arora RD, Dass J, Maydeo S, Arya V, Radhakrishnan N, Sachdeva A, et al. Flow cytometric osmotic fragility test and eosin-5ʹ-maleimide dye-binding tests are better than conventional osmotic fragility tests for the diagnosis of hereditary spherocytosis. Int J Lab Hematol. 2018;40(3):335–42.

    CAS  PubMed  Google Scholar 

  32. More TA, Dalal B, Devendra R, Warang P, Shankarkumar A, Kedar P. Applications of imaging flow cytometry in the diagnostic assessment of red cell membrane disorders. Cytometry B Clin Cytom. 2020;98(3):238–49.

    CAS  PubMed  Google Scholar 

  33. Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Semin Hematol. 2004;41(2):142–64.

  34. Niss O, Chonat S, Dagaonkar N, Almansoori MO, Kerr K, Rogers ZR, et al. Genotype-phenotype correlations in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis. 2016;61:4–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Narla J, Mohandas N. Red cell membrane disorders. Int J Lab Hematol. 2017;39(Suppl. 1):47–52.

    PubMed  Google Scholar 

  36. Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: an underdiagnosed condition. Am J Hematol. 2018;93(1):107–21.

    PubMed  Google Scholar 

  37. Mohandas N. Inherited hemolytic anemia: a possessive beginner’s guide. Hematol Am Soc Hematol Educ Progr. 2018;2018(1):377–81.

    Google Scholar 

  38. Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H, Mathur J, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat Commun. 2013;4:1884.

    PubMed  PubMed Central  Google Scholar 

  39. More TA, Dongerdiye R, Devendra R, Warang PP, Kedar PS. Mechanosensitive PIEZO1 ion channel protein (PIEZO1 gene): update and extended mutation analysis of hereditary xerocytosis in India. Ann Hematol. 2020;99(4):715–27.

    CAS  PubMed  Google Scholar 

  40. Rapetti-Mauss R, Lacoste C, Picard V, Guitton C, Lombard E, Loosveld M, et al. A mutation in the Gardos channel is associated with hereditary xerocytosis. Blood. 2015;126(11):1273–80.

    CAS  PubMed  Google Scholar 

  41. Andolfo I, Rosato BE, Manna F, De Rosa G, Marra R, Gambale A, et al. Gain-of-function mutations in PIEZO1 directly impair hepatic iron metabolism via the inhibition of the BMP/SMADs pathway. Am J Hematol. 2020;95(2):188–97.

    CAS  PubMed  Google Scholar 

  42. Bruce LJ, Guizouarn H, Burton NM, Gabillat N, Poole J, Flatt JF, et al. The monovalent cation leak in overhydrated stomatocytic red blood cells results from amino acid substitutions in the Rh-associated glycoprotein. Blood. 2009;113(6):1350–7.

    CAS  PubMed  Google Scholar 

  43. Andolfo I, Russo R, Rosato BE, Manna F, Gambale A, Brugnara C, et al. Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients. Am J Hematol. 2018;93(12):1509–17.

    CAS  PubMed  Google Scholar 

  44. Picard V, Guitton C, Thuret I, Rose C, Bendelac L, Ghazal K, et al. Clinical and biological features in PIEZO1-hereditary xerocytosis and Gardos channelopathy: a retrospective series of 126 patients. Haematologica. 2019;104(8):1554–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Grace RF, Glader B. Red blood cell enzyme disorders. Pediatr Clin North Am. 2018;65(3):579–95.

    PubMed  Google Scholar 

  46. Grace RF, Mark Layton D, Barcellini W. How we manage patients with pyruvate kinase deficiency. Br J Haematol. 2019;184(5):721–34.

    PubMed  Google Scholar 

  47. Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet. 2013;14(6):415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gerrard G, Valgañón M, Foong HE, Kasperaviciute D, Iskander D, Game L, et al. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia. Br J Haematol. 2013;162(4):530–6.

    CAS  PubMed  Google Scholar 

  49. He Y, Jia S, Dewan RK, Liao N. Novel mutations in patients with hereditary red blood cell membrane disorders using next-generation sequencing. Gene. 2017;627:556–62.

    CAS  PubMed  Google Scholar 

  50. He Y, Luo J, Lei Y, Jia S, Liao N. A novel PKLR gene mutation identified using advanced molecular techniques. Pediatr Transpl. 2018;. https://doi.org/10.1111/petr.13143.

  51. Aydin Koker S, Karapinar TH, Oymak Y, Bianchi P, Fermo E, Gozmen S, et al. Identification of a novel mutation in the SEC23B gene associated with congenital dyserythropoietic anemia type II through the use of next-generation sequencing panel in an undiagnosed case of nonimmune hereditary hemolytic anemia. J Pediatr Hematol Oncol. 2018;40(7):e421–3.

    CAS  PubMed  Google Scholar 

  52. Li Y, Peng GX, Gao QY, Li Y, Ye L, Li JP, et al. Using target next-generation sequencing assay in diagnosing of 46 patients with suspected congenital anemias. Zhonghua Xue Ye Xue Za Zhi. 2018;39(5):414–9.

    CAS  PubMed  Google Scholar 

  53. Shin S, Jang W, Kim M, Kim Y, Park SY, Park J, et al. Targeted next-generation sequencing identifies a novel nonsense mutation in SPTB for hereditary spherocytosis: a case report of a Korean family. Medicine (Baltimore). 2018;97(3):e9677.

    PubMed  PubMed Central  Google Scholar 

  54. Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME, et al. Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol. 2016;174(5):806–14.

    CAS  PubMed  Google Scholar 

  55. Kedar PS, Harigae H, Ito E, Muramatsu H, Kojima S, Okuno Y, et al. Study of pathophysiology and molecular characterization of congenital anemia in India using targeted next-generation sequencing approach. Int J Hematol. 2019;110(5):618–26.

    CAS  PubMed  Google Scholar 

  56. Kedar PS, Gupta V, Dongerdiye R, Chiddarwar A, Warang P, Madkaikar MR. Molecular diagnosis of unexplained haemolytic anaemia using targeted next-generation sequencing panel revealed (p.Ala337Thr) novel mutation in GPI gene in two Indian patients. J Clin Pathol. 2019;72(1):81–5.

  57. Del Orbe Barreto R, Arrizabalaga B, De la Hoz AB, García-Orad Á, Tejada MI, Garcia-Ruiz JC, et al. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol. 2016;38(6):629–38.

    Google Scholar 

  58. Wang X, Mao L, Shen N, Peng J, Zhu Y, Hu Q, et al. An ANK1 IVS3-2A>C mutation causes exon 4 skipping in two patients from a Chinese family with hereditary spherocytosis. Oncotarget. 2017;8(68):113282–6.

    PubMed  PubMed Central  Google Scholar 

  59. Wang X, Yi B, Mu K, Shen N, Zhu Y, Hu Q, et al. Identification of a novel de novo ANK1 R1426* nonsense mutation in a Chinese family with hereditary spherocytosis by NGS. Oncotarget. 2017;8(57):96791–7.

    PubMed  PubMed Central  Google Scholar 

  60. Jang W, Kim J, Chae H, Kim M, Koh K-N, Park C-J, et al. Hereditary spherocytosis caused by copy number variation in SPTB gene identified through targeted next-generation sequencing. Int J Hematol. 2019;110(2):250–4.

    PubMed  Google Scholar 

  61. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35(11):1978–80.

    CAS  PubMed  Google Scholar 

  62. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.

    CAS  PubMed  Google Scholar 

  63. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    PubMed  PubMed Central  Google Scholar 

  64. Risinger M, Emberesh M, Kalfa TA. Rare hereditary hemolytic anemias: diagnostic approach and considerations in management. Hematol Oncol Clin North Am. 2019;33(3):373–92.

    PubMed  Google Scholar 

  65. Iolascon A, Andolfo I, Barcellini W, Corcione F, Garçon L, De Franceschi L, et al. Recommendations regarding splenectomy in hereditary hemolytic anemias. Haematologica. 2017;102(8):1304–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Stewart GW, Amess JA, Eber SW, Kingswood C, Lane PA, Smith BD, et al. Thrombo-embolic disease after splenectomy for hereditary stomatocytosis. Br J Haematol. 1996;93(2):303–10.

    CAS  PubMed  Google Scholar 

  67. Lavabre-Bertrand T, Blanc P, Navarro R, Saghroun M, Vannereau H, Braun M, et al. alpha-Interferon therapy for congenital dyserythropoiesis type I. Br J Haematol. 1995;89(4):929–32.

    CAS  PubMed  Google Scholar 

  68. Lavabre-Bertrand T, Ramos J, Delfour C, Henry L, Guiraud I, Carillo S, et al. Long-term alpha interferon treatment is effective on anaemia and significantly reduces iron overload in congenital dyserythropoiesis type I. Eur J Haematol. 2004;73(5):380–3.

    PubMed  Google Scholar 

  69. Rathe M, Møller MB, Greisen PW, Fisker N. Successful management of transfusion-dependent congenital dyserythropoietic anemia type 1b with interferon alfa-2a. Pediatr Blood Cancer. 2018. https://doi.org/10.1002/pbc.26866.

  70. Shalev H, Al-Athamen K, Levi I, Levitas A, Tamary H. Morbidity and mortality of adult patients with congenital dyserythropoietic anemia type I. Eur J Haematol. 2017;98(1):13–8.

    CAS  PubMed  Google Scholar 

  71. Grace RF, Rose C, Layton DM, Galactéros F, Barcellini W, Morton DH, et al. Safety and efficacy of mitapivat in pyruvate kinase deficiency. N Engl J Med. 2019;381(10):933–44.

    CAS  PubMed  Google Scholar 

  72. Kung C, Hixon J, Kosinski PA, Cianchetta G, Histen G, Chen Y, et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood. 2017;130(11):1347–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Garcia-Gomez M, Calabria A, Garcia-Bravo M, Benedicenti F, Kosinski P, López-Manzaneda S, et al. Safe and efficient gene therapy for pyruvate kinase deficiency. Mol Ther. 2016;24(7):1187–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ataga KI, Reid M, Ballas SK, Yasin Z, Bigelow C, James LS, et al. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043). Br J Haematol. 2011;153(1):92–104.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sharon Noy-Lotan from the Molecular Hematology Laboratory at the Schneider Children’s Medical Center of Israel for her valuable help in summarizing our results of the next-generation sequencing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah Tamary.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflict of interest

Orna Steinberg-Shemer and Hannah Tamary have no conflicts of interest that are directly relevant to the content of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberg-Shemer, O., Tamary, H. Impact of Next-Generation Sequencing on the Diagnosis and Treatment of Congenital Anemias. Mol Diagn Ther 24, 397–407 (2020). https://doi.org/10.1007/s40291-020-00478-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-020-00478-3

Navigation