Skip to main content
Log in

Polymorphisms in MIR122, MIR196A2, and MIR124A Genes are Associated with Clinical Phenotypes in Inflammatory Bowel Diseases

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC), are multifactorial disorders that result from a dysregulated inflammatory response to environmental factors in genetically predisposed individuals. Recently, microRNAs (miRNAs) have been shown to be involved in the development of IBDs.

Aims

We investigated common variants in five miRNA genes in a cohort of Italian IBD patients, to evaluate their possible role in the disease’s susceptibility and phenotype manifestations.

Methods

The analysis included 267 CD patients, 207 UC patients, and 298 matched healthy controls. Polymorphisms in the MIR122, MIR499, MIR146A, MIR196A2, and MIR124A genes were evaluated by allelic discrimination assay.

Results

We did not find associations between mir polymorphisms and IBD susceptibility. In both diseases, rs17669 and rs11614913 (MIR122 and MIR196A2) seem to contribute to clinical phenotypes: ileal location in CD (odds ratio [OR] = 1.82, p = 0.03; OR = 0.51, p = 0.01), and left-sided extent in UC (OR = 0.43, p = 0.05; OR = 0.28, p = 0.002). In CD, the MIR124A polymorphism (rs531564) contributed to colon location (p = 0.03, OR = 2.74). Finally, the variant allele of rs11614913 was associated with early age at onset in both diseases (p = 0.05 and p = 0.02).

Conclusions

We showed for the first time that polymorphisms in MIR122, MIR196A2, and MIR124A could play a role in clinical phenotype modulation in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haag LM, Siegmund B. Intestinal microbiota and the innate immune system: a crosstalk in Crohn’s disease pathogenesis. Front Immunol. 2015;6:489.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jostins L, Ripke S, Weersma RK, et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.

    Article  CAS  PubMed  Google Scholar 

  5. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  6. O’Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295–312.

    Article  PubMed  Google Scholar 

  7. Ventriglia G, Nigi L, Sebastiani G, Dotta F. MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int. 2015;2015:749734.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Z, Lu Y, Han J. Peripheral blood microRNAs: a novel tool for diagnosing disease? Intractable Rare Dis Res. 2012;1(3):98–102.

    PubMed  PubMed Central  Google Scholar 

  9. Wang P, Yang D, Zhang H, et al. Early detection of lung cancer in serum by a panel of microRNA biomarkers. Clin Lung Cancer. 2015;16(4):313–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pimentel F, Bonilla P, Ravishankar YG, et al. Technology in microRNA profiling: circulating microRNAs as noninvasive cancer biomarkers in breast cancer. J Lab Autom. 2015;20(5):574–88.

    Article  CAS  PubMed  Google Scholar 

  11. He Y, Lin J, Kong D, et al. Current state of circulating microRNAs as cancer biomarkers. Clin Chem. 2015;61(9):1138–55.

    Article  CAS  PubMed  Google Scholar 

  12. Seyhan AA. microRNAs with different functions and roles in disease development and as potential biomarkers of diabetes: progress and challenges. Mol Biosyst. 2015;11(5):1217–34.

    Article  CAS  PubMed  Google Scholar 

  13. Churov AV, Oleinik EK, Knip M. MicroRNAs in rheumatoid arthritis: altered expression and diagnostic potential. Autoimmun Rev. 2015;14(11):1029–37.

    Article  CAS  PubMed  Google Scholar 

  14. Deng X, Su Y, Wu H, et al. The role of microRNAs in autoimmune diseases with skin involvement. Scand J Immunol. 2015;81(3):153–65.

    Article  CAS  PubMed  Google Scholar 

  15. Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135(5):1624–35.

    Article  CAS  PubMed  Google Scholar 

  16. Takagi T, Naito Y, Mizushima K, et al. Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol. 2010;1:S129–33.

    Article  Google Scholar 

  17. Fasseu M, Tréton X, Guichard C, et al. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One. 2010;5(10):e13160s.

    Article  Google Scholar 

  18. Paraskevi A, Theodoropoulos G, Papaconstantinou I, et al. Circulating microRNA in inflammatory bowel disease. J Crohns Colitis. 2012;6(9):900–4.

    Article  PubMed  Google Scholar 

  19. Iborra M, Bernuzzi F, Correale C, et al. Identification of serum and tissue micro-RNA expression profiles in different stages of inflammatory bowel disease. Clin Exp Immunol. 2013;173(2):250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu F, Guo NJ, Tian H, et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2011;17(1):241–50.

    Article  PubMed  Google Scholar 

  21. Ciccacci C, Di Fusco D, Cacciotti L, et al. MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol. 2013;50(6):867–72.

    Article  CAS  PubMed  Google Scholar 

  22. Ghaedi H, Tabasinezhad M, Alipoor B, et al. The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort. J Endocrinol Invest. 2016;39(10):1187–93.

    Article  CAS  PubMed  Google Scholar 

  23. Ciccacci C, Morganti R, Di Fusco D, et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 2014;51(4):663–71.

    Article  CAS  PubMed  Google Scholar 

  24. Kaidonis G, Gillies MC, Abhary S, et al. A single-nucleotide polymorphism in the microRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients. Acta Diabetol. 2016;53(4):643–50.

    Article  CAS  PubMed  Google Scholar 

  25. Shen J, Zhang M, Sun M, et al. The relationship of miR-146a gene polymorphism with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus. Thromb Res. 2015;136(6):1149–55.

    Article  CAS  PubMed  Google Scholar 

  26. McAuley AK, Dirani M, Wang JJ, et al. A genetic variant regulating miR-126 is associated with sight threatening diabetic retinopathy. Diab Vasc Dis Res. 2015;12(2):133–8.

    Article  CAS  PubMed  Google Scholar 

  27. Wan D, Gu W, Xu G, et al. Effects of common polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on susceptibility to colorectal cancer: a systematic review meta-analysis. Clin Transl Oncol. 2014;16(9):792–800.

    Article  CAS  PubMed  Google Scholar 

  28. Feng Y, Duan F, Song C, et al. Systematic evaluation of cancer risk associated with rs2292832 in miR-149 and rs895819 in miR-27a: a comprehensive and updated meta-analysis. Oncotarget. 2016;7(16):22368–84.

    PubMed  PubMed Central  Google Scholar 

  29. Pauley KM, Cha S, Chan EK. MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun. 2009;32(3–4):189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev. 2012;11(9):636–41.

    Article  CAS  PubMed  Google Scholar 

  31. Gazouli M, Papaconstantinou I, Stamatis K, et al. Association study of genetic variants in miRNAs in patients with inflammatory bowel disease: preliminary results. Dig Dis Sci. 2013;58(8):2324–8.

    Article  CAS  PubMed  Google Scholar 

  32. Okubo M, Tahara T, Shibata T, et al. Association study of common genetic variants in pre-microRNAs in patients with ulcerative colitis. J Clin Immunol. 2011;31(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu M, Li D, Jin M, Li M. Association between microRNA polymorphisms and the risk of inflammatory bowel disease. Mol Med Rep. 2016;13(6):5297–308.

    CAS  PubMed  Google Scholar 

  34. Chen Y, Wang C, Liu Y, et al. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun. 2013;438(1):133–9.

    Article  CAS  PubMed  Google Scholar 

  35. Li WJ, Wang Y, Gong Y, et al. MicroRNA-124 rs531564 polymorphism and cancer risk: a meta-analysis. Asian Pac J Cancer Prev. 2015;16(17):7905–9.

    Article  PubMed  Google Scholar 

  36. Gao XR, Wang HP, Zhang SL, et al. Pri-miR-124 rs531564 polymorphism and colorectal cancer risk. Sci Rep. 2015;5:14818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koukos G, Polytarchou C, Kaplan JL, et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology. 2013;145:842–852e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dignass A, Van Assche G, Lindsay JO, et al. The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: current management. J Crohns Colitis. 2010;4(1):28–62.

    Article  CAS  PubMed  Google Scholar 

  39. Dignass A, Eliakim R, Magro F, et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis. Part 1: definitions and diagnosis. J Crohn’s Colitis. 2012;6(10):965–90.

    Article  Google Scholar 

  40. Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19:5A–36A.

    Article  PubMed  Google Scholar 

  41. Iborra M, Bernuzzi F, Invernizzi P, Danese S. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev. 2012;11(5):305–14.

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  43. Wang S, Tao G, Wu D, et al. A functional polymorphism in MIR196A2 is associated with risk and prognosis of gastric cancer. Mol Carcinog. 2013;52:E87–95.

    Article  CAS  PubMed  Google Scholar 

  44. Du W, Ma XL, Zhao C, et al. Associations of single nucleotide polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with colorectal cancer susceptibility. Asian Pac J Cancer Prev. 2014;15(2):1047–55.

    Article  PubMed  Google Scholar 

  45. Wei Y, Li L, Gao J. The association between two common polymorphisms (miR-146a rs2910164 and miR-196a2 rs11614913) and susceptibility to gastric cancer: a meta-analysis. Cancer Biomark. 2015;15(3):235–48.

    Article  CAS  PubMed  Google Scholar 

  46. Qi P, Wang L, Zhou B, et al. Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. Genet Mol Res. 2015;14(2):6289–96.

    Article  CAS  PubMed  Google Scholar 

  47. Su YM, Li J, Guo YF, et al. A functional single-nucleotide polymorphism in pre-microRNA-196a2 is associated with atrial fibrillation in Han Chinese. Clin Lab. 2015;61(9):1179–85.

    CAS  PubMed  Google Scholar 

  48. Buraczynska M, Zukowski P, Wacinski P, et al. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J Diabetes Complicat. 2014;28(5):617–20.

    Article  PubMed  Google Scholar 

  49. Hu Z, Chen J, Tian T, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118(7):2600–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kanaan Z, Rai SN, Eichenberger MR, et al. Differential microRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat. 2012;33(3):551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fang C, Zeng H, Li A, et al. Association of the pri-miR-124-1 rs531564 polymorphism with cancer risk: a meta-analysis. Mol Clin Oncol. 2015;3(4):892–6.

    PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Huang X, Xiao J, et al. Pri-miR-124 rs531564 and pri-miR-34b/c rs4938723 polymorphisms are associated with decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS One. 2014;9(6):e100055.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu H, Zhang J. miR-124 rs531564 polymorphism influences genetic susceptibility to cervical cancer. Int J Clin Exp Med. 2014;7(12):5847–51.

    PubMed  PubMed Central  Google Scholar 

  54. Li Y, Zhang Y, Li X, et al. Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int J Med Sci. 2015;12(11):875–80.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qi L, Hu Y, Zhan Y, et al. A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer’s disease in a Mongolian population. Neurosci Lett. 2012;515(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  56. Koukos G, Polytarchou C, Kaplan JL, et al. A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis. 2015;21(5):996–1005.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Borgiani.

Ethics declarations

Conflict of interest

The authors (CC, CP, LB, AL, GN, EC, and PB) have no conflicts of interest to declare.

Funding

No funding was received for the preparation of this study.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciccacci, C., Politi, C., Biancone, L. et al. Polymorphisms in MIR122, MIR196A2, and MIR124A Genes are Associated with Clinical Phenotypes in Inflammatory Bowel Diseases. Mol Diagn Ther 21, 107–114 (2017). https://doi.org/10.1007/s40291-016-0240-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0240-1

Keywords

Navigation