Skip to main content
Log in

Tools for Analysis of the Microbiome

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Over the past decade, it has become exceedingly clear that the microbiome is a critical factor in human health and disease and thus should be investigated to develop innovative treatment strategies. The field of metagenomics has come a long way in leveraging the advances of next-generation sequencing technologies resulting in the capability to identify and quantify all microorganisms present in human specimens. However, the field of metagenomics is still in its infancy, specifically in regard to the limitations in computational analysis, statistical assessments, standardization, and validation due to vast variability in the cohorts themselves, experimental design, and bioinformatic workflows. This review summarizes the methods, technologies, computational tools, and model systems for characterizing and studying the microbiome. We also discuss important considerations investigators must make when interrogating the involvement of the microbiome in health and disease in order to establish robust results and mechanistic insights before moving into therapeutic design and intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Song EJ, Lee ES, Nam YD. Progress of analytical tools and techniques for human gut microbiome research. J Microbiol. 2018;56:693–705.

    PubMed  Google Scholar 

  2. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–1836.

    CAS  PubMed  Google Scholar 

  3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet. 2005;6:805–814.

    CAS  PubMed  Google Scholar 

  5. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38:525–552.

    CAS  PubMed  Google Scholar 

  6. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Integrative HMPRNC. The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16:276–289.

    Google Scholar 

  8. Bantock GG. The modern doctrine of bacteriology, or the germ theory of disease. Br Med J. 1997;1899:846–848.

    Google Scholar 

  9. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22:589–599.

    CAS  PubMed  Google Scholar 

  11. Jamshidi P, Hasanzadeh S, Tahvildari A, et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut Pathog. 2019;11:49.

    PubMed  PubMed Central  Google Scholar 

  12. Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32:761–766.

    PubMed  PubMed Central  Google Scholar 

  13. Scott AJ, Alexander JL, Merrifield CA, et al. International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68:1624–1632.

    CAS  PubMed  Google Scholar 

  14. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33:570–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen L, Ji HF. Associations between gut microbiota and Alzheimer’s disease: current evidences and future therapeutic and diagnostic perspectives. J Alzheimers Dis. 2019;68:25–31.

    PubMed  Google Scholar 

  16. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: a review. Brain Behav Immun. 2017;66:9–17.

    CAS  PubMed  Google Scholar 

  17. Vetrovsky T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue Z, Kable ME, Marco ML. Impact of DNA sequencing and analysis methods on 16S rRNA gene bacterial community analysis of dairy products. mSphere. 2018;3:e00410–e00418.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–849.

    CAS  Google Scholar 

  20. Yarza P, Yilmaz P, Pruesse E, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–645.

    CAS  PubMed  Google Scholar 

  21. Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.

    PubMed  PubMed Central  Google Scholar 

  22. Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–2375.

    CAS  PubMed  Google Scholar 

  23. Hamady M, Knight R. Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res. 2009;19:1141–1152.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618.

    CAS  PubMed  Google Scholar 

  26. Yilmaz P, Parfrey LW, Yarza P, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–D648.

    CAS  PubMed  Google Scholar 

  27. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Walker JN, Hanson BM, Pinkner CL, et al. Insights into the microbiome of breast implants and periprosthetic tissue in breast implant-associated anaplastic large cell lymphoma. Sci Rep. 2019;9:10393.

    PubMed  PubMed Central  Google Scholar 

  31. Zhou W, Sailani MR, Contrepois K, et al. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature. 2019;569:663–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Callahan BJ, Wong J, Heiner C, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103.

    PubMed  PubMed Central  Google Scholar 

  33. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017;35:833–844.

    CAS  PubMed  Google Scholar 

  34. Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5:209.

    PubMed  PubMed Central  Google Scholar 

  35. Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome. Trends Microbiol. 2013;21:334–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sam QH, Chang MW, Chai LY. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. 2017;18(2):E330.

    PubMed  Google Scholar 

  37. Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 2017;5:153.

    PubMed  PubMed Central  Google Scholar 

  38. Stern J, Miller G, Li X, Saxena D. Virome and bacteriome: two sides of the same coin. Curr Opin Virol. 2019;37:37–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the ‘missing link’ between gut bacteria and host immunity? Therap Adv Gastroenterol. 2019;12:1756284819836620.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno-Gallego JL, Chou SP, Di Rienzi SC, et al. Virome diversity correlates with intestinal microbiome diversity in adult monozygotic twins. Cell Host Microbe. 2019;25:261.e5–272.e5.

    Google Scholar 

  41. Xia LC, Cram JA, Chen T, Fuhrman JA, Sun F. Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS ONE. 2011;6:e27992.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ayling, M., M.D. Clark, and R.M. Leggett, New approaches for metagenome assembly with short reads. Brief Bioinform. 2019. https://doi.org/10.1093/bib/bbz020

    Article  PubMed Central  Google Scholar 

  44. Compeau PE, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol. 2011;29:987–991.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012;40:e155.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng Y, Leung HC, Yiu SM, FY Chin. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–1428.

    CAS  PubMed  Google Scholar 

  47. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–1676.

    CAS  PubMed  Google Scholar 

  49. Claesson MJ, Clooney AG, O’Toole PW. A clinician’s guide to microbiome analysis. Nat Rev Gastroenterol Hepatol. 2017;14:585–595.

    PubMed  Google Scholar 

  50. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.

    PubMed  PubMed Central  Google Scholar 

  51. Truong DT, Franzosa EA, Tickle TL, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902–903.

    CAS  PubMed  Google Scholar 

  52. Bashiardes S, Zilberman-Schapira G, Elinav E. Use of metatranscriptomics in microbiome research. Bioinform Biol Insights. 2016;10:19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bikel S, Valdez-Lara A, Cornejo-Granados F, et al. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J. 2015;13:390–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie Y, Wu G, Tang J, et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30:1660–1666.

    CAS  PubMed  Google Scholar 

  56. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5:e01012–e01014.

    PubMed  PubMed Central  Google Scholar 

  57. Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe. Methods. 2018;149:3–12.

    CAS  PubMed  Google Scholar 

  58. Zierer J, Jackson MA, Kastenmüller G, et al. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018;50:790–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lai LA, Tong Z, Chen R, S Pan. Metaproteomics study of the gut microbiome. Methods Mol Biol. 2019;1871:123–132.

    CAS  PubMed  Google Scholar 

  60. Blakeley-Ruiz JA, Erickson AR, Cantarel BL, et al. Metaproteomics reveals persistent and phylum-redundant metabolic functional stability in adult human gut microbiomes of Crohn’s remission patients despite temporal variations in microbial taxa, genomes, and proteomes. Microbiome. 2019;7:18.

    PubMed  PubMed Central  Google Scholar 

  61. Kuczynski J, Lauber CL, Walters WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13:47–58.

    PubMed  PubMed Central  Google Scholar 

  62. Chao A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics. 1987;43:783–791.

    CAS  PubMed  Google Scholar 

  63. Kim BR, Shin J, Guevarra R, et al. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol. 2017;27:2089–2093.

    PubMed  Google Scholar 

  64. Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410–422.

    CAS  PubMed  Google Scholar 

  65. Bent SJ, Forney LJ. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J. 2008;2:689–695.

    CAS  PubMed  Google Scholar 

  66. Barwell LJ, Isaac NJ, Kunin WE. Measuring beta-diversity with species abundance data. J Anim Ecol. 2015;84:1112–1122.

    PubMed  PubMed Central  Google Scholar 

  67. Staley C, Kaiser T, Khoruts A. Clinician guide to microbiome testing. Dig Dis Sci. 2018;63:3167–3177. https://doi.org/10.1007/s10620-018-5299-6.

    Article  PubMed  Google Scholar 

  68. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–8235.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31:814–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Asshauer KP, et al. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–2884.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.

    CAS  PubMed  Google Scholar 

  73. Huerta-Cepas J, Szklarczyk D, Forslund K, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–D293.

    CAS  PubMed  Google Scholar 

  74. Tatusov RL, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf. 2003;4:41.

    Google Scholar 

  75. Finn RD, Bateman A, Clements P, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230.

    CAS  PubMed  Google Scholar 

  76. Selengut JD, et al. TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res. 2007;35:D260–D264.

    CAS  PubMed  Google Scholar 

  77. Hunter S, Apweilwer R, Attwood TK, et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37:D211–D215.

    CAS  PubMed  Google Scholar 

  78. Ulgen E, Ozisik O, Sezerman OU. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front Genet. 2019;10:858.

    PubMed  PubMed Central  Google Scholar 

  79. Nishida K, Ono K, Kanaya S, Takahashi K. KEGGscape: a Cytoscape app for pathway data integration. F1000Res. 2014;3:144.

    PubMed  PubMed Central  Google Scholar 

  80. Keegan KP, Glass EM, Meyer F. MG-RAST, a metagenomics service for analysis of microbial community structure and function. Methods Mol Biol. 2016;1399:207–233.

    CAS  PubMed  Google Scholar 

  81. Huson DH, Beier S, Flade I, et al. MEGAN community edition—interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.

    PubMed  PubMed Central  Google Scholar 

  82. Abubucker S, Segata N, Goll J, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8:e1002358.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Peters DL, Wang W, Zhang X, Ning Z, Mayne J, Figeys D. Metaproteomic and metabolomic approaches for characterizing the gut microbiome. Proteomics. 2019;19:e1800363.

    PubMed  Google Scholar 

  84. Verberkmoes NC, Russell Rl, Shah M, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–189.

    CAS  PubMed  Google Scholar 

  85. Galloway-Pena J, Guindani M. Editorial: novel approaches in microbiome analyses and data visualization. Front Microbiol. 2018;9:2274.

    PubMed  PubMed Central  Google Scholar 

  86. Sudarikov K, Tyakht A, Alexeev D. Methods for the metagenomic data visualization and analysis. Curr Issues Mol Biol. 2017;24:37–58.

    PubMed  Google Scholar 

  87. Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4:138–148.

    PubMed  PubMed Central  Google Scholar 

  88. Kelly BJ, Gross R, Bittinger K, et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics. 2015;31:2461–2468.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang ZZ, Chen G, Alekseyenko AV. PERMANOVA-S: association test for microbial community composition that accommodates confounders and multiple distances. Bioinformatics. 2016;32:2618–2625.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663.

    PubMed  Google Scholar 

  91. Staley C, Sadowsky MJ. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies. J Microbiol Methods. 2018;154:14–18.

    CAS  PubMed  Google Scholar 

  92. Segata N, Waldron L, Gevers D, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

    PubMed  PubMed Central  Google Scholar 

  93. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fang H, Huang C, Zhao H, Deng M. CCLasso: correlation inference for compositional data through Lasso. Bioinformatics. 2015;31:3172–3180.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.

    PubMed  PubMed Central  Google Scholar 

  96. Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. La Rosa PS, Brooks JP, Deych E, et al. Hypothesis testing and power calculations for taxonomic-based human microbiome data. PLoS ONE. 2012;7:e52078.

    PubMed  PubMed Central  Google Scholar 

  98. Karpinets TV, Park BH, Uberbacher EC. Analyzing large biological datasets with association networks. Nucleic Acids Res. 2012;40:e131.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Knights D, Costello EK, Knight R. Supervised classification of human microbiota. FEMS Microbiol Rev. 2011;35:343–359.

    CAS  PubMed  Google Scholar 

  100. Zhang Q, Abel H, Wells A, et al. Selection of models for the analysis of risk-factor trees: leveraging biological knowledge to mine large sets of risk factors with application to microbiome data. Bioinformatics. 2015;31:1607–1613.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kennedy EA, King KY, Baldridge MT. Mouse microbiota models: comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front Physiol. 2018;9:1534.

    PubMed  PubMed Central  Google Scholar 

  102. Gootenberg DB, Turnbaugh PJ. Companion animals symposium: humanized animal models of the microbiome. J Anim Sci. 2011;89:1531–1537.

    CAS  PubMed  Google Scholar 

  103. Douglas, A.E., Simple animal models for microbiome research. Nat Rev Microbiol 2019;17(12):764–775.

    CAS  PubMed  Google Scholar 

  104. Hacquard S, Garrido-Oter R, González A, et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe. 2015;17:603–616.

    CAS  PubMed  Google Scholar 

  105. Pearce SC, Coia HG, Karl JP, et al. Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors. Front Physiol. 2018;9:1584.

    PubMed  PubMed Central  Google Scholar 

  106. Dutton JS, Hinman SS, Kim R, Wang Y, Allbritton NL. Primary cell-derived intestinal models: recapitulating physiology. Trends Biotechnol. 2019;37:744–760.

    CAS  PubMed  Google Scholar 

  107. McDonald JA, Fuentes S, Schroeter K, et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods. 2015;108:36–44.

    CAS  PubMed  Google Scholar 

  108. Van den Abbeele P, roos S, Eeckhaut V, et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb Biotechnol. 2012;5:106–115.

    PubMed  Google Scholar 

  109. Auchtung JM, Robinson CD, Britton RA. Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome. 2015;3:42.

    PubMed  PubMed Central  Google Scholar 

  110. Stevens LJ, van Lipzig MM, Erpelinck SL, et al. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci. 2019;137:104989.

    PubMed  Google Scholar 

  111. Nigro G, Hanson M, Fevre C, Lecuit M, Sansonetti PJ. Intestinal organoids as a novel tool to study microbes-epithelium interactions. Methods Mol Biol. 2019;1576:183–194.

    CAS  PubMed  Google Scholar 

  112. Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217.

    PubMed  PubMed Central  Google Scholar 

  113. Poussin C, Sierro N, Boué S, et al. Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discov Today. 2018;23:1644–1657.

    CAS  PubMed  Google Scholar 

  114. David LA, Materna AC, Friedman J, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 2014;15:R89.

    PubMed  PubMed Central  Google Scholar 

  115. Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. Genome Biol. 2011;12:R50.

    PubMed  PubMed Central  Google Scholar 

  116. Mehta RS, Abu-Ali GS, Drew DA, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol. 2018;3:347–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.

    PubMed  PubMed Central  Google Scholar 

  118. Martinez I, Muller CE, Walter J. Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS ONE. 2013;8:e69621.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Baksi KD, Kuntal BK, Mande SS. ‘TIME’: a web application for obtaining insights into microbial ecology using longitudinal microbiome data. Front Microbiol. 2018;9:36.

    PubMed  PubMed Central  Google Scholar 

  120. Lugo-Martinez J, Ruiz-Perez D, Narasimhan D, Bar-Joseph Z. Dynamic interaction network inference from longitudinal microbiome data. Microbiome. 2019;7:54.

    PubMed  PubMed Central  Google Scholar 

  121. Cleary JG, Littin R, Trigg L, Irvine S, Hilbush B. Quantitative analysis of shotgun metagenomic data with the real time genomics platform. J Biomol Tech: JBT. 2013;24:S33.

    PubMed Central  Google Scholar 

  122. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–D212.

    Google Scholar 

  123. Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances, and future approaches. J Mol Endocrinol. 2018;62:R21–R45.

    Google Scholar 

  124. Noor E, Cherkaoui S, Sauer U. Biological insights through omics data integration. Current Opinion in Systems Biology. 2019;15:39–47.

    Google Scholar 

  125. Baron SA, Diene SM, Rolain J-M. Human microbiomes and antibiotic resistance. Human Microbiome Journal. 2018;10:43–52.

    Google Scholar 

  126. Escudeiro P, Pothier J, Dionisio F, Nogueira T. Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes. mSphere. 2019;4:e00135-19.

    PubMed  PubMed Central  Google Scholar 

  127. Thomas AM, Segata N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019;17:48.

    PubMed  PubMed Central  Google Scholar 

  128. Bernard G, Pathmanathan JS, Lannes R, Lopez R, Bapteste E. Microbial dark matter investigations: how microbial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol Evol. 2018;10:707–715.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Galloway-Peña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galloway-Peña, J., Hanson, B. Tools for Analysis of the Microbiome. Dig Dis Sci 65, 674–685 (2020). https://doi.org/10.1007/s10620-020-06091-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06091-y

Keywords

Navigation