Skip to main content
Log in

Applications of Extracellular RNAs in Oncology

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Extracellular RNAs consist of coding and non-coding transcripts released from all cell types, which are involved in multiple cellular processes, predominantly through regulation of gene expression. Recent advances have helped us better understand the functions of these molecules, particularly microRNAs (miRNAs). Numerous pre-clinical and human studies have demonstrated that miRNAs are dysregulated in cancer and contribute to tumorigenesis and metastasis. miRNA profiling has extensively been evaluated as a non-invasive method for cancer diagnosis, prognostication, and assessment of response to cancer therapies. Broader applications for miRNAs in these settings are currently under active development. Investigators have also moved miRNAs into the realm of cancer therapy. miRNA antagonists targeting miRNAs that silence tumor suppressor genes have shown promising pre-clinical activity. Alternatively, miRNA mimics that silence oncogenes are also under active investigation. These miRNA-based cancer therapies are in early development, but represent novel strategies for clinical management of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vlassov AV, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8.

    Article  CAS  PubMed  Google Scholar 

  2. Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  3. Gyorgy B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Toro J, et al. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. An T, et al. Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles. 2015;4:27522.

    Article  PubMed  CAS  Google Scholar 

  6. Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl. 2015;9(3–4):358–67.

    Article  CAS  PubMed  Google Scholar 

  7. Witwer KW, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.

  8. Lagos-Quintana M, et al. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Article  CAS  PubMed  Google Scholar 

  10. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862–4.

    Article  CAS  PubMed  Google Scholar 

  11. Lee Y, et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. RNA. 2003;9(1):112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lee Y, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Skog J, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mittelbrunn M, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pigati L, et al. Selective release of microRNA species from normal and malignant mammary epithelial cells. PloS One. 2010;5(10):e13515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ohshima K, et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PloS One. 2010;5(10):e13247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Guduric-Fuchs J, et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 2012;13:357.

    Article  CAS  Google Scholar 

  20. Jenjaroenpun P, et al. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ. 2013;1:e201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bolukbasi MF, et al. miR-1289 and “Zipcode”-like Sequence Enrich mRNAs in Microvesicles. Mol Ther Nucl Acids. 2012;1:e10.

    Article  CAS  Google Scholar 

  22. Villarroya-Beltri C, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kosaka N, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285(23):17442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crescitelli R, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.

  26. Huan J, et al. RNA trafficking by acute myelogenous leukemia exosomes. Cancer Res. 2013;73(2):918–29.

    Article  CAS  PubMed  Google Scholar 

  27. Arroyo JD, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gibbings DJ, et al. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009;11(9):1143–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hunter MP, et al. Detection of microRNA expression in human peripheral blood microvesicles. PloS one. 2008;3(11):e3694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhang Y, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010;39(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  31. Feng D, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11(5):675–87.

    Article  CAS  PubMed  Google Scholar 

  32. Fitzner D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci. 2011;124(Pt 3):447–58.

    Article  CAS  PubMed  Google Scholar 

  33. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.

  34. Morelli AE, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–66.

    Article  CAS  PubMed  Google Scholar 

  35. Tian T, et al. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem. 2010;111(2):488–96.

    Article  CAS  PubMed  Google Scholar 

  36. Vagin VV, et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313(5785):320–4.

    Article  CAS  PubMed  Google Scholar 

  37. Van Deun J, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3:24858.

  38. Yuan T, et al. Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep. 2016;6:19413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou B, et al. Extracellular miRNAs: origin, function and biomarkers in hepatic diseases. J Biomed Nanotechnol. 2014;10(10):2865–90.

    Article  CAS  PubMed  Google Scholar 

  40. Cortez MA, et al. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turchinovich A, Weiz L, Burwinkel B. Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci. 2012;37(11):460–5.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu C, et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110(9):2291–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai EC. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30(4):363–4.

    Article  CAS  PubMed  Google Scholar 

  45. Lee I, et al. New class of microRNA targets containing simultaneous 5’-UTR and 3’-UTR interaction sites. Genome Res. 2009;19(7):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karube Y, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 2005;96(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  47. Pampalakis G, et al. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 2010;43(3):324–7.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu DX, et al. Downregulated Dicer expression predicts poor prognosis in chronic lymphocytic leukemia. Cancer Sci. 2012;103(5):875–81.

    Article  CAS  PubMed  Google Scholar 

  49. Chiosea S, et al. Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol. 2006;169(5):1812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen WX, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PloS One. 2014;9(4):e95240.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Rao X, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30(9):1082–97.

    Article  CAS  PubMed  Google Scholar 

  52. Miller TE, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Horie T, et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 2009;389(2):315–20.

    Article  CAS  PubMed  Google Scholar 

  54. Koh HJ, et al. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci USA. 2010;107(35):15541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davalos A, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA. 2011;108(22):9232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mersey BD, Jin P, Danner DJ. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005;14(22):3371–7.

    Article  CAS  PubMed  Google Scholar 

  57. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  58. Taverna S, et al. Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells. Mol Cancer. 2014;13:169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kucharzewska P, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013;110(18):7312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kosaka N, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem. 2013;288(15):10849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qin Q, Furong W, Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J Exp Clin Cancer Res. 2014;33:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhuang G, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012;31(17):3513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou W, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer cell. 2014;25(4):501–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rana S, Malinowska K, Zoller M. Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia. 2013;15(3):281–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peinado H, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Grange C, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71(15):5346–56.

    Article  CAS  PubMed  Google Scholar 

  67. Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell. 2007;26(5):603–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 2014;505(7483):353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang X, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 2013;14:319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bahn JH, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61(1):221–30.

    Article  CAS  PubMed  Google Scholar 

  71. Siomi MC, et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol. 2011;12(4):246–58.

    Article  CAS  PubMed  Google Scholar 

  72. Siddiqi S, Matushansky I. Piwis and piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem. 2012;113(2):373–80.

    Article  CAS  PubMed  Google Scholar 

  73. Robine N, et al. A broadly conserved pathway generates 3’UTR-directed primary piRNAs. Curr Biol. 2009;19(24):2066–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qiao D, et al. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene. 2002;21(25):3988–99.

    Article  CAS  PubMed  Google Scholar 

  75. Siddiqi S, Terry M, Matushansky I. Hiwi mediated tumorigenesis is associated with DNA hypermethylation. PloS One. 2012;7(3):e33711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee JH, et al. Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-XL pathway. Hum Mol Genet. 2006;15(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  77. Navarro A, et al. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer. Oncotarget. 2015;6(31):31544–56.

    PubMed  PubMed Central  Google Scholar 

  78. Sun G, et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res. 2011;1373:183–8.

    Article  CAS  PubMed  Google Scholar 

  79. Grochola LF, et al. The stem cell-associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death. Br J Cancer. 2008;99(7):1083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu C, et al. Combined phenotype of 4 markers improves prognostic value of patients with colon cancer. Am J Med Sci. 2012;343(4):295–302.

    Article  PubMed  Google Scholar 

  81. He W, et al. Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer. 2009;9:426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ratajczak J, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847–56.

    Article  CAS  PubMed  Google Scholar 

  83. Nishikawa R, et al. Immunohistochemical analysis of the mutant epidermal growth factor, deltaEGFR, in glioblastoma. Brain Tumor Pathol. 2004;21(2):53–6.

    Article  CAS  PubMed  Google Scholar 

  84. Al-Nedawi K, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–24.

    Article  CAS  PubMed  Google Scholar 

  85. Dhahbi JM, et al. 5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genom. 2013;14:298.

    Article  CAS  Google Scholar 

  86. Thompson DM, Parker R. Stressing out over tRNA cleavage. Cell. 2009;138(2):215–9.

    Article  CAS  PubMed  Google Scholar 

  87. Emara MM, et al. Angiogenin-induced tRNA-derived stress-induced RNAs promote stress-induced stress granule assembly. J Biol Chem. 2010;285(14):10959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Durdevic Z, et al. The RNA methyltransferase Dnmt2 is required for efficient Dicer-2-dependent siRNA pathway activity in Drosophila. Cell Rep. 2013;4(5):931–7.

    Article  CAS  PubMed  Google Scholar 

  89. Gebetsberger J, et al. tRNA-derived fragments target the ribosome and function as regulatory non-coding RNA in Haloferax volcanii. Archaea. 2012;2012:260909.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sobala A, Hutvagner G. Small RNAs derived from the 5’ end of tRNA can inhibit protein translation in human cells. RNA Biol. 2013;10(4):553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Haussecker D, et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA. 2010;16(4):673–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maute RL, et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(4):1404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lafontaine DL. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 2015;22(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  94. Marcel V, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–30.

    Article  CAS  PubMed  Google Scholar 

  95. Derrien T, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shi X, et al. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  97. Ankerst DP, Thompson IM. Sensitivity and specificity of prostate-specific antigen for prostate cancer detection with high rates of biopsy verification. Arch Ital Urol Androl. 2006;78(4):125–9.

    PubMed  Google Scholar 

  98. Andriole GL, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2012;104(2):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schroder FH, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366(11):981–90.

    Article  PubMed  Google Scholar 

  100. Sharova E, et al. A circulating miRNA assay as a first-line test for prostate cancer screening. Br J Cancer. 2016;114(12):1362–6.

    Article  CAS  PubMed  Google Scholar 

  101. Aberle DR, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.

    Article  PubMed  Google Scholar 

  102. Halvorsen AR, et al. A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer. Oncotarget. 2016.

  103. Hou Y, et al. Appraising MicroRNA-155 as a noninvasive diagnostic biomarker for cancer detection: a meta-analysis. Medicine (Baltimore). 2016;95(2):e2450.

    Article  CAS  Google Scholar 

  104. Roth C, et al. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12(6):R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamada A, et al. Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res. 2015;21(18):4234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang S, et al. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer. 2015;136(1):152–61.

    Article  CAS  PubMed  Google Scholar 

  107. Wu J, Li L, Jiang C. Identification and evaluation of serum MicroRNA-29 family for glioma screening. Mol Neurobiol. 2015;52(3):1540–6.

    Article  CAS  PubMed  Google Scholar 

  108. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jepsen RK, et al. Intra-tumor heterogeneity of microRNA-92a, microRNA-375 and microRNA-424 in colorectal cancer. Exp Mol Pathol. 2016;100(1):125–31.

    Article  CAS  PubMed  Google Scholar 

  110. Yanaihara N, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer cell. 2006;9(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  111. Lawrie CH, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5.

    Article  PubMed  Google Scholar 

  112. Huang X, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  113. Mangolini A, et al. Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res. 2015;3:12.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Eissa S, et al. MicroRNA-10b and minichromosome maintenance complex component 5 gene as prognostic biomarkers in breast cancer. Tumour Biol. 2015;36(6):4487–94.

    Article  CAS  PubMed  Google Scholar 

  115. Toraih EA, et al. Pilot study of serum MicroRNA-21 as a diagnostic and prognostic biomarker in egyptian breast cancer patients. Mol Diagn Ther. 2015;19(3):179–90.

    Article  CAS  PubMed  Google Scholar 

  116. Usmani A, et al. Diagnostic, prognostic and predictive value of MicroRNA-21 in breast cancer patients, their daughters and healthy individuals. Am J Cancer Res. 2015;5(8):2484–90.

    PubMed  PubMed Central  Google Scholar 

  117. Eichelser C, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5(20):9650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chen W, et al. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34(1):455–62.

    Article  CAS  PubMed  Google Scholar 

  119. Muller V, et al. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat. 2014;147(1):61–8.

    Article  PubMed  CAS  Google Scholar 

  120. Meng X, et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016;7(13):16923–35.

    PubMed  PubMed Central  Google Scholar 

  121. Yoo B, et al. Combining miR-10b-Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res. 2015;75(20):4407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaboli PJ, et al. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.

    Article  CAS  PubMed  Google Scholar 

  123. Pu XX, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25(10):1674–80.

    Article  CAS  PubMed  Google Scholar 

  124. Yamamoto H, et al. Interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J Gastroenterol. 2012;18(22):2745–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rocci A, et al. Circulating miRNA markers show promise as new prognosticators for multiple myeloma. Leukemia. 2014;28(9):1922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hansen TF, et al. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br J Cancer. 2013;109(5):1243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Garcia V, et al. Extracellular tumor-related mRNA in plasma of lymphoma patients and survival implications. PloS one. 2009;4(12):e8173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Wu X, et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J Transl Med. 2012;10:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Summerer I, et al. Circulating microRNAs as prognostic therapy biomarkers in head and neck cancer patients. Br J Cancer. 2015;113(1):76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Huang L, et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int J Cancer. 2011;128(8):1758–69.

    Article  CAS  PubMed  Google Scholar 

  131. Shi XB, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 2007;104(50):19983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nelson PT, et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA. 2006;12(2):187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.

    Article  CAS  PubMed  Google Scholar 

  134. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ghosh R, et al. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials. 2013;34(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  136. Tivnan A, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PloS one. 2012;7(5):e38129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pecot CV, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer. 2011;11(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  138. Wiggins JF, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Trang P, et al. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther. 2011;19(6):1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fabbri M, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109(31):E2110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lehmann SM, et al. An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. 2012;15(6):827–35.

    Article  CAS  PubMed  Google Scholar 

  142. Geng Q, et al. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res. 2014;15:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Jiang L, et al. Plasma microRNA might as a potential biomarker for hepatocellular carcinoma and chronic liver disease screening. Tumour Biol. 2015;36(9):7167–74.

    Article  CAS  PubMed  Google Scholar 

  144. Li G, et al. Identification of circulating MicroRNAs as novel potential biomarkers for hepatocellular carcinoma detection: a systematic review and meta-analysis. Clin Transl Oncol. 2015;17(9):684–93.

    Article  CAS  PubMed  Google Scholar 

  145. Huang JT, et al. Systematic review and meta-analysis: circulating miRNAs for diagnosis of hepatocellular carcinoma. J Cell Physiol. 2016;231(2):328–35.

    Article  CAS  PubMed  Google Scholar 

  146. Wang RJ, et al. Serum miR-125a-5p, miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(1):765–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mitchell PS, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yue X, et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J Neurosurg. 2016;124(1):122–8.

    Article  PubMed  Google Scholar 

  149. Chen Y, et al. Plasma miR-15b-5p, miR-338-5p, and miR-764 as Biomarkers for Hepatocellular Carcinoma. Med Sci Monit. 2015;21:1864–71.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Liu N, et al. A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int J Cancer. 2014;134(6):1359–68.

    Article  CAS  PubMed  Google Scholar 

  151. Lin HM, et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br J Cancer. 2014;110(10):2462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Ethics declarations

Conflict of interest

The authors JRT, JZ, DK, and LW disclose no potential conflicts of interest.

Funding

This work was supported by the Advancing a Healthier Wisconsin fund (Project# 5520227) to LW, by the State of Wisconsin Income Tax Check-Off Program in Prostate Cancer Research to DK, by the National Natural Science Foundation of China (grant # 81301752) and China Scholarship Council (CSC) to JZ, and by the Mazie Froedtert Willms & Sue Froedtert Endowed Cancer Fellowship for JRT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J.R., Zhu, J., Kilari, D. et al. Applications of Extracellular RNAs in Oncology. Mol Diagn Ther 21, 1–11 (2017). https://doi.org/10.1007/s40291-016-0239-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0239-7

Keywords

Navigation