Molecular Diagnosis & Therapy

, Volume 18, Issue 3, pp 309–314 | Cite as

Detection of Biofilm Production of Yersinia enterocolitica Strains Isolated from Infected Children and Comparative Antimicrobial Susceptibility of Biofilm Versus Planktonic Forms

  • A. Ioannidis
  • A. Kyratsa
  • V. Ioannidou
  • S. Bersimis
  • S. Chatzipanagiotou
Short Communication


Background and Objectives

The ability of Yersinia species to produce biofilms has not been hitherto systematically studied, although there is evidence, that Y. enterocolitica is able to form biofilms on inanimate surfaces. The present study aimed to detect the production of biofilms by 60 clinical strains of Y. enterocolitica and to compare the antimicrobial susceptibility of planktonic versus biofilm-forming bacteria.


Y. enterocolitica strains were collected from stool and blood cultures collected from β-thalassaemic children, with gastroenteritis and/or septicemia. The isolated bacterial strains were grouped by biotyping and serotyping and the antimicrobial susceptibility of the planktonic forms was investigated by MIC determination. Biofilm formation was detected by the use of silicone disks and for the biofilm forming strains the minimum inhibitory concentration for bacterial regrowth (MICBR) of 11 clinically important antimicrobials was determined. The presence of the waaE, a gene reported to be related with biofilm formation was investigated in all the strains.


All of 60 strains were positive for biofilm production by the use of silicone disks. The great majority of the biofilm forms were resistant to all the antimicrobials. In antimicrobial concentrations far higher than the CLSI breakpoints, bacterial regrowth from the biofilms was still possible. None of the strains bore the waaE gene.


These results, indicate that biofilm formation by Y. enterocolitica might be an inherent feature. The presence of biofilms increased dramatically the MICBR in all antimicrobials. The way in which biofilms could contribute to Y. enterocolitica pathogenicity in humans is a matter needing further investigation.


Antimicrobial Susceptibility Netilmicin Yersinia Enterocolitica Clinical Laboratory Standard Institute Planktonic Form 



This study was financially supported by the Aeginition Hospital of the Athens Medical School of the National and Kapodistrian University (Athens, Greece). We thank Dr. Eleftheria Trikka-Grafakos, Head of the Department of Clinical Microbiology of the Thriassio General Hospital of Elefsina in Attica Greece, for providing us with the collection of the bacterial clinical isolates.

The authors have no conflicts of interest that are directly relevant to the content of this study.


  1. 1.
    Butler T. Yersinia infections: centennial of the discovery of the plague bacillus. Clin Infect Dis. 1994;19(4):655–61 (quiz 62–3).PubMedCrossRefGoogle Scholar
  2. 2.
    Kechagia N, Nicolaou C, Ioannidou V, Kourti E, Ioannidis A, Legakis NJ, et al. Detection of chromosomal and plasmid-encoded virulence determinants in Yersinia enterocolitica and other Yersinia spp. isolated from food animals in Greece. Int J Food Microbiol. 2007;118(3):326–31.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosner BM, Stark K, Werber D. Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001–2008. BMC Publ Health. 2010;10:337.CrossRefGoogle Scholar
  4. 4.
    Mikula KM, Kolodziejczyk R, Goldman A. Yersinia infection tools—characterization of structure and function of adhesins. Front Cell Infect Microbiol. 2012;2:169.PubMedCentralPubMedGoogle Scholar
  5. 5.
    Rosner BM, Werber D, Hohle M, Stark K. Clinical aspects and self-reported symptoms of sequelae of Yersinia enterocolitica infections in a population-based study, Germany 2009–2010. BMC Infect Dis. 2013;13:236.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Grigull L, Linderkamp C, Sander A, Schmid H, Mutschler U, Welte K, et al. Multiple spleen and liver abscesses due to Yersinia enterocolitica septicemia in a child with congenital sideroblastic anemia. J Pediatr Hematol Oncol. 2005;27(11):624–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Wanachiwanawin W. Infections in E-beta thalassemia. J Pediatr Hematol Oncol. 2000;22(6):581–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev MMBR. 1998;62(4):1315–52.Google Scholar
  9. 9.
    Cover TL, Aber RC. Yersinia enterocolitica. N Engl J Med. 1989;321(1):16–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Prosser BL, Taylor D, Dix BA, Cleeland R. Method of evaluating effects of antibiotics on bacterial biofilm. Antimicrob Agents Chemother. 1987;31(10):1502–6.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Kunin CM, Steele C. Culture of the surfaces of urinary catheters to sample urethral flora and study the effect of antimicrobial therapy. J Clin Microbiol. 1985;21(6):902–8.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Nickel JC, Ruseska I, Wright JB, Costerton JW. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother. 1985;27(4):619–24.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gristina AG, Hobgood CD, Webb LX, Myrvik QN. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials. 1987;8(6):423–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Costerton JW, Khoury AE, Ward KH, Anwar H. Practical measures to control device-related bacterial infections. Int J Artif Organs. 1993;16(11):765–70.PubMedGoogle Scholar
  18. 18.
    Izquierdo L, Abitiu N, Coderch N, Hita B, Merino S, Gavin R, et al. The inner-core lipopolysaccharide biosynthetic waaE gene: function and genetic distribution among some Enterobacteriaceae. Microbiology. 2002;148(Pt 11):3485–96.PubMedGoogle Scholar
  19. 19.
    Regue M, Climent N, Abitiu N, Coderch N, Merino S, Izquierdo L, et al. Genetic characterization of the Klebsiella pneumoniae waa gene cluster, involved in core lipopolysaccharide biosynthesis. J Bacteriol. 2001;183(12):3564–73.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Skorek K, Raczkowska A, Dudek B, Mietka K, Guz-Regner K, Pawlak A, et al. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane. PloS one. 2013;8(11):e79525.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Raczkowska A, Skorek K, Brzostkowska M, Lasinska A, Brzostek K. Pleiotropic effects of a Yersinia enterocolitica ompR mutation on adherent-invasive abilities and biofilm formation. FEMS Microbiol Lett. 2011;321(1):43–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bladel I, Wagner K, Beck A, Schilling J, Alexander Schmidt M, Heusipp G. The H-NS protein silences the pyp regulatory network of Yersinia enterocolitica and is involved in controlling biofilm formation. FEMS Microbiol Lett. 2013;340(1):41–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Truchado P, Gimenez-Bastida JA, Larrosa M, Castro-Ibanez I, Espin JC, Tomas-Barberan FA, et al. Inhibition of quorum sensing (QS) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem. 2012;60(36):8885–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Wauters G, Kandolo K, Janssens M. Revised biogrouping scheme of Yersinia enterocolitica. Contributions Microbiol Immunol. 1987;9:14–21.Google Scholar
  25. 25.
    Kyriazi Z, Chatzipanagiotou S, Trikka-Graphakos E, Legakis NJ, Tassios PT. Serotype, biotype and genomic DNA XbaI restriction fragment analysis of Yersinia enterocolitica, isolated from infected beta-thalassemic and nonthalassemic children in Greece. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2000;6(3):157–8.Google Scholar
  26. 26.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    CLSI. M100-S23: performance standards for antimicrobial susceptibility testing; twenty third informational supplement. Clinical and Laboratory Standard Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA. 2013.Google Scholar
  28. 28.
    CLSI. M07-A9: methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th edn. Clinical and Laboratory Standard Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA. 2013.Google Scholar
  29. 29.
    Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T. Depolymerization of beta-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol. 2005;187(1):382–7.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Guasch JF, Pique N, Climent N, Ferrer S, Merino S, Rubires X, et al. Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. J Bacteriol. 1996;178(19):5741–7.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Stock I, Wiedemann B. An in-vitro study of the antimicrobial susceptibilities of Yersinia enterocolitica and the definition of a database. J Antimicrob Chemother. 1999;43(1):37–45.PubMedCrossRefGoogle Scholar
  32. 32.
    Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155–66.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Coquet L, Junter GA, Jouenne T. Resistance of artificial biofilms of Pseudomonas aeruginosa to imipenem and tobramycin. J Antimicrob Chemother. 1998;42(6):755–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhanel GG, Wiebe R, Dilay L, Thomson K, Rubinstein E, Hoban DJ, et al. Comparative review of the carbapenems. Drugs. 2007;67(7):1027–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982;37(1):318–26.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Bottone EJ. Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev. 1997;10(2):257–76.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • A. Ioannidis
    • 1
  • A. Kyratsa
    • 2
  • V. Ioannidou
    • 2
  • S. Bersimis
    • 3
  • S. Chatzipanagiotou
    • 2
  1. 1.Department of Nursing, Faculty of Human Movement and Quality of Life SciencesUniversity of PeloponneseSpartaGreece
  2. 2.Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical SchoolAthensGreece
  3. 3.Department of Statistics and Insurance ScienceUniversity of PiraeusPiraeusGreece

Personalised recommendations