Skip to main content
Log in

Effects of Resistance Training to Muscle Failure on Acute Fatigue: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Proper design of resistance training (RT) variables is a key factor to reach the maximum potential of neuromuscular adaptations. Among those variables, the use of RT performed to failure (RTF) may lead to a different magnitude of acute fatigue compared with RT not performed to failure (RTNF). The fatigue response could interfere with acute adaptive changes, in turn regulating long-term adaptations. Considering that the level of fatigue affects long-term adaptations, it is important to determine how fatigue is affected by RTF versus RTNF.

Objective

The aim of this systematic review and meta-analysis was to compare the effects of RTF versus RTNF on acute fatigue.

Methods

The search was conducted in January 2021 in seven databases. Only studies with a crossover design that investigated the acute biomechanical properties (vertical jump height, velocity of movement, power output, or isometric strength), metabolic response (lactate or ammonia concentration), muscle damage (creatine kinase activity), and rating of perceived exertion (RPE) were selected. The data (mean ± standard deviation and sample size) were extracted from the included studies and were either converted into the standardized mean difference (SMD) or maintained in the raw mean difference (RMD) when the studies reported the results in the same scale. Random-effects meta-analyses were performed.

Results

Twenty studies were included in the systematic review and 12 were included in the meta-analysis. The main meta-analyses indicated greater decrease of biomechanical properties for RTF compared with RTNF (SMD − 0.96, 95% confidence interval [CI] − 1.43 to − 0.49, p < 0.001). Furthermore, there was a larger increase in metabolic response (RMD 4.48 mmol·L−1, 95% CI 3.19–5.78, p < 0.001), muscle damage (SMD 0.76, 95% CI 0.31–1.21, p = 0.001), and RPE (SMD 1.93, 95% CI 0.87–3.00, p < 0.001) for RTF compared with RTNF. Further exploratory subgroup analyses showed that training status (p = 0.92), timepoint (p = 0.89), load (p = 0.10), and volume (p = 0.12) did not affect biomechanical properties; however, greater loss in the movement velocity test occurred on upper limbs compared with lower limbs (p < 0.001). Blood ammonia concentration was greater after RTF than RTNF (RMD 44.66 μmol·L−1, 95% CI 32.27–57.05, p < 0.001), as was 48 h post-exercise blood creatine kinase activity (SMD 0.86, 95% CI 0.33–1.42, p = 0.002). Furthermore, although there was considerable heterogeneity in the overall analysis (I2 = 83.72%; p < 0.01), a significant difference in RPE after RTF compared with RTNF was only found for studies that did not equalize training volumes.

Conclusions

In summary, RTF compared with RTNF led to a greater decrease in biomechanical properties and a simultaneous increase in metabolic response, higher muscle damage, and RPE. The exploratory analyses suggested a greater impairment in the velocity of movement test for the upper limbs, more pronounced muscle damage 48 h post-exercise, and a greater RPE in studies with non-equalized volume after the RTF session compared with RTNF. Therefore, it can be concluded that RTF leads to greater acute fatigue compared with RTNF. The higher acute fatigue after RTF can also have an important impact on chronic adaptive processes following RT; however, the greater acute fatigue following RTF can extend the time needed for recovery, which should be considered when RTF is used.

Protocol Registration

The original protocol was prospectively registered (CRD42020192336) in the International Prospective Register of Systematic Reviews (PROSPERO).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48:765–85. https://doi.org/10.1007/s40279-018-0862-z.

    Article  PubMed  Google Scholar 

  2. American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41:687–708. https://doi.org/10.1249/MSS.0b013e3181915670.

    Article  Google Scholar 

  3. Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35:841–51. https://doi.org/10.2165/00007256-200535100-00002.

    Article  PubMed  Google Scholar 

  4. Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24:2857–72. https://doi.org/10.1519/JSC.0b013e3181e840f3.

    Article  PubMed  Google Scholar 

  5. Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, et al. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med. 2008;38:527–40. https://doi.org/10.2165/00007256-200838070-00001.

    Article  PubMed  Google Scholar 

  6. González-Hernández JM, García-Ramos A, Colomer-Poveda D, Tvarijonaviciute A, Cerón J, Jiménez-Reyes P, et al. Resistance training to failure vs. not to failure: acute and delayed markers of mechanical, neuromuscular, and biochemical fatigue. J Strength Cond Res. 2021;35:886–93. https://doi.org/10.1519/jsc.0000000000003921.

    Article  PubMed  Google Scholar 

  7. Morán-Navarro R, Pérez CE, Mora-Rodríguez R, Cruz-Sánchez E, González-Badillo JJ, Sánchez-Medina L, et al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117:2387–99. https://doi.org/10.1007/s00421-017-3725-7.

    Article  CAS  PubMed  Google Scholar 

  8. Pareja-Blanco F, Rodríguez-Rosell D, Aagaard P, Sánchez-Medina L, Ribas-Serna J, Mora-Custodio R, et al. Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res. 2020;34:2867–76. https://doi.org/10.1519/jsc.0000000000002756.

    Article  PubMed  Google Scholar 

  9. Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:1725–34. https://doi.org/10.1249/MSS.0b013e318213f880.

    Article  PubMed  Google Scholar 

  10. Willardson JM. The application of training to failure in periodized multiple-set resistance exercise programs. J Strength Cond Res. 2007;21:628–31. https://doi.org/10.1519/r-20426.1.

    Article  PubMed  Google Scholar 

  11. Willardson JM, Norton L, Wilson G. Training to failure and beyond in mainstream resistance exercise programs. Strength Cond J. 2010;32:21–9. https://doi.org/10.1519/SSC.0b013e3181cc2a3a.

    Article  Google Scholar 

  12. Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Sánchez-Medina L, Cusso R, Guerrero M, et al. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res. 2014;28:2775–85. https://doi.org/10.1519/jsc.0000000000000496.

    Article  PubMed  Google Scholar 

  13. Drinkwater EJ, Lawton TW, Lindsell RP, Pyne DB, Hunt PH, McKenna MJ. Training leading to repetition failure enhances bench press strength gains in elite junior athletes. J Strength Cond Res. 2005;19:382–8. https://doi.org/10.1519/r-15224.1.

    Article  PubMed  Google Scholar 

  14. Karsten B, Fu YL, Larumbe-Zabala E, Seijo M, Naclerio F. Impact of two high-volume set configuration workouts on resistance training outcomes in recreationally trained men. J Strength Cond Res. 2021;35:136–43. https://doi.org/10.1519/jsc.0000000000003163.

    Article  Google Scholar 

  15. Davies T, Orr R, Halaki M, Hackett D. Effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46:487–502. https://doi.org/10.1007/s40279-015-0451-3.

    Article  PubMed  Google Scholar 

  16. Davies T, Orr R, Halaki M, Hackett D. Erratum to: effect of training leading to repetition failure on muscular strength: a systematic review and meta-analysis. Sports Med. 2016;46:605–10. https://doi.org/10.1007/s40279-016-0509-x.

    Article  PubMed  Google Scholar 

  17. Grgic J, Schoenfeld BJ, Orazem J, Sabol F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: a systematic review and meta-analysis. J Sport Health Sci. 2021. https://doi.org/10.1016/j.jshs.2021.01.007 (Epub 23 Jan 2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vieira AF, Umpierre D, Teodoro JL, Lisboa SC, Baroni BM, Izquierdo M, et al. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: a systematic review with meta-analysis. J Strength Cond Res. 2021;35:1165–75. https://doi.org/10.1519/jsc.0000000000003936.

    Article  PubMed  Google Scholar 

  19. MacIntosh BR, Rassier DE. What is fatigue? Can J Appl Physiol. 2002;27:42–55. https://doi.org/10.1139/h02-003.

    Article  CAS  PubMed  Google Scholar 

  20. Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RH. Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med. 1978;54:609–14. https://doi.org/10.1042/cs0540609.

    Article  CAS  PubMed  Google Scholar 

  21. Debold EP, Beck SE, Warshaw DM. Effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am J Physiol Cell Physiol. 2008;295:C173–9. https://doi.org/10.1152/ajpcell.00172.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vøllestad NK. Measurement of human muscle fatigue. J Neurosci Methods. 1997;74:219–27. https://doi.org/10.1016/s0165-0270(97)02251-6.

    Article  PubMed  Google Scholar 

  23. Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG 3rd, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48:787–97. https://doi.org/10.1007/s40279-017-0855-3.

    Article  PubMed  Google Scholar 

  24. Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching. Neuroendocrine responses Sports Med. 1997;23:106–29. https://doi.org/10.2165/00007256-199723020-00004.

    Article  CAS  PubMed  Google Scholar 

  25. Arent S, Landers D, Matt K, Etnier J. Dose-response and mechanistic issues in the resistance training and affect relationship. J Sport Exerc Psychol. 2005;27:92–110. https://doi.org/10.1123/jsep.27.1.92.

    Article  Google Scholar 

  26. González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Ribas J, López-López C, Mora-Custodio R, et al. Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37:295–304. https://doi.org/10.1055/s-0035-1564254.

    Article  PubMed  Google Scholar 

  27. Gorostiaga EM, Navarro-Amézqueta I, Calbet JA, Hellsten Y, Cusso R, Guerrero M, et al. Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS ONE. 2012;7: e40621. https://doi.org/10.1371/journal.pone.0040621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vasquez LM, McBride JM, Paul JA, Alley JR, Carson LT, Goodman CL. Effect of resistance exercise performed to volitional failure on ratings of perceived exertion. Percept Mot Skills. 2013;117:881–91. https://doi.org/10.2466/27.29.PMS.117x30z8.

    Article  PubMed  Google Scholar 

  29. Linnamo V, Häkkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol Occup Physiol. 1998;77:176–81. https://doi.org/10.1007/s004210050317.

    Article  CAS  PubMed  Google Scholar 

  30. Linnamo V, Pakarinen A, Komi PV, Kraemer WJ, Häkkinen K. Acute hormonal responses to submaximal and maximal heavy resistance and explosive exercises in men and women. J Strength Cond Res. 2005;19:566–71. https://doi.org/10.1519/r-15404.1.

    Article  PubMed  Google Scholar 

  31. Shibata K, Takizawa K, Tomabechi N, Nosaka K, Mizuno M. Comparison between two volume-matched squat exercises with and without momentary failure for changes in hormones, maximal voluntary isometric contraction strength, and perceived muscle soreness. J Strength Cond Res. 2019. https://doi.org/10.1519/jsc.0000000000003279 (Epub 24 Jul 2019).

    Article  Google Scholar 

  32. Pareja-Blanco F, Rodríguez-Rosell D, González-Badillo JJ. Time course of recovery from resistance exercise before and after a training program. J Sports Med Phys Fitness. 2019;59:1458–65. https://doi.org/10.23736/s0022-4707.19.09334-4.

    Article  CAS  PubMed  Google Scholar 

  33. Raastad T, Bjøro T, Hallén J. Hormonal responses to high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82:121–8. https://doi.org/10.1007/s004210050661.

    Article  CAS  PubMed  Google Scholar 

  34. Gorostiaga EM, Navarro-Amézqueta I, Cusso R, Hellsten Y, Calbet JA, Guerrero M, et al. Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise. PLoS ONE. 2010;5: e13486. https://doi.org/10.1371/journal.pone.0013486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Párraga-Montilla JA, García-Ramos A, Castaño-Zambudio A, Capelo-Ramírez F, González-Hernández JM, Cordero-Rodríguez Y, et al. Acute and delayed effects of a resistance training session leading to muscular failure on mechanical, metabolic, and perceptual responses. J Strength Cond Res. 2020;34:2220–6. https://doi.org/10.1519/jsc.0000000000002712.

    Article  PubMed  Google Scholar 

  36. Fonseca FS, Costa BDV, Ferreira MEC, Paes S, Lima-Junior D, Kassiano W, et al. Acute effects of equated volume-load resistance training leading to muscular failure versus non-failure on neuromuscular performance. J Exerc Sci Fit. 2020;18:6. https://doi.org/10.1016/j.jesf.2020.01.004.

    Article  Google Scholar 

  37. McLester JR, Bishop PA, Smith J, Wyers L, Dale B, Kozusko J, et al. A series of studies—a practical protocol for testing muscular endurance recovery. J Strength Cond Res. 2003;17:259–73. https://doi.org/10.1519/1533-4287(2003)017%3c0259:asospp%3e2.0.co;2.

    Article  PubMed  Google Scholar 

  38. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6: e1000100. https://doi.org/10.1371/journal.pmed.1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown P, Brunnhuber K, Chalkidou K, Chalmers I, Clarke M, Fenton M, et al. How to formulate research recommendations. BMJ. 2006;333:804–6. https://doi.org/10.1136/bmj.38987.492014.94.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Benito PJ, Cupeiro R, Ramos-Campo DJ, Alcaraz PE, Rubio-Arias J. A systematic review with meta-analysis of the effect of resistance training on whole-body muscle growth in healthy adult males. Int J Environ Res Public Health. 2020;17:1–27. https://doi.org/10.3390/ijerph17041285.

    Article  Google Scholar 

  41. Petré H, Hemmingsson E, Rosdahl H, Psilander N. Development of maximal dynamic strength during concurrent resistance and endurance training in untrained, moderately trained, and trained individuals: a systematic review and meta-analysis. Sports Med. 2021;51:991–1010. https://doi.org/10.1007/s40279-021-01426-9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86:724–31. https://doi.org/10.1210/jcem.86.2.7219.

    Article  CAS  PubMed  Google Scholar 

  43. Labrie F, Bélanger A, Luu-The V, Labrie C, Simard J, Cusan L, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids. 1998;63:322–8. https://doi.org/10.1016/s0039-128x(98)00007-5.

    Article  CAS  PubMed  Google Scholar 

  44. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928. https://doi.org/10.1136/bmj.d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. https://doi.org/10.1002/jrsm.12.

    Article  PubMed  Google Scholar 

  46. Cohen J. The concepts of power analysis: Hillsdale. NJ: Academic Press, Inc; 1988.

    Google Scholar 

  47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34. https://doi.org/10.1136/bmj.315.7109.629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martorelli AS, de Lima FD, Vieira A, Tufano JJ, Ernesto C, Boullosa D, et al. The interplay between internal and external load parameters during different strength training sessions in resistance-trained men. Eur J Sport Sci. 2021;21(1):16–25. https://doi.org/10.1080/17461391.2020.1725646.

    Article  PubMed  Google Scholar 

  50. Koch AJ, Pereira R, Machado M. The creatine kinase response to resistance exercise. J Musculoskelet Neuronal Interact. 2014;14:68–77.

    CAS  PubMed  Google Scholar 

  51. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. https://doi.org/10.1136/bmj.328.7454.1490.

    Article  PubMed  Google Scholar 

  52. Hiscock DJ, Dawson B, Peeling P. Perceived exertion responses to changing resistance training programming variables. J Strength Cond Res. 2015;29:1564–9. https://doi.org/10.1519/jsc.0000000000000775.

    Article  PubMed  Google Scholar 

  53. McGuigan MR, Egan AD, Foster C. Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of resistance exercise. J Sports Sci Med. 2004;3:8–15.

    PubMed  PubMed Central  Google Scholar 

  54. Wilk M, Tufano JJ, Zajac A. The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise—a mini review. J Strength Cond Res. 2020;34:2369–83. https://doi.org/10.1519/jsc.0000000000003636.

    Article  PubMed  Google Scholar 

  55. Zajac A, Chalimoniuk M, Maszczyk A, Gołaś A, Lngfort J. Central and peripheral fatigue during resistance exercise – a critical review. J Hum Kinet. 2015;49:159–69. https://doi.org/10.1515/hukin-2015-0118.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Iglesias-Soler E, Carballeira E, Sánchez-Otero T, Mayo X, Jiménez A, Chapman ML. Acute effects of distribution of rest between repetitions. Int J Sports Med. 2012;33:351–8. https://doi.org/10.1055/s-0031-1299699.

    Article  CAS  PubMed  Google Scholar 

  57. Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol. 2004;97:1414–23. https://doi.org/10.1152/japplphysiol.00964.2003.

    Article  CAS  PubMed  Google Scholar 

  58. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Ribas-Serna J, López-López C, Mora-Custodio R, et al. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin Physiol Funct Imaging. 2016;37:630–9. https://doi.org/10.1111/cpf.12348.

    Article  CAS  PubMed  Google Scholar 

  59. Izquierdo M, González-Badillo JJ, Häkkinen K, Ibáñez J, Kraemer WJ, Altadill A, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27:718–24. https://doi.org/10.1055/s-2005-872825.

    Article  CAS  PubMed  Google Scholar 

  60. Baumert P, Temple S, Stanley JM, Cocks M, Strauss JA, Shepherd SO, et al. Neuromuscular fatigue and recovery after strenuous exercise depends on skeletal muscle size and stem cell characteristics. Sci Rep. 2021;11:7733. https://doi.org/10.1038/s41598-021-87195-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lexell J, Henriksson-Larsén K, Winblad B, Sjöström M. Distribution of different fiber types in human skeletal muscles: effects of aging studied in whole muscle cross sections. Muscle Nerve. 1983;6:588–95. https://doi.org/10.1002/mus.880060809.

    Article  CAS  PubMed  Google Scholar 

  62. Gülch RW. Force-velocity relations in human skeletal muscle. Int J Sports Med. 1994;15(Suppl 1):S2-10. https://doi.org/10.1055/s-2007-1021103.

    Article  PubMed  Google Scholar 

  63. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558:5–30. https://doi.org/10.1113/jphysiol.2003.058701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cairns SP. Lactic acid and exercise performance: culprit or friend? Sports Med. 2006;36:279–91. https://doi.org/10.2165/00007256-200636040-00001.

    Article  PubMed  Google Scholar 

  65. Jansson E, Dudley GA, Norman B, Tesch PA. ATP and IMP in single human muscle fibres after high intensity exercise. Clin Physiol. 1987;7:337–45. https://doi.org/10.1111/j.1475-097x.1987.tb00177.x.

    Article  CAS  PubMed  Google Scholar 

  66. Kang MS, Kim J, Lee J. Effect of different muscle contraction interventions using an isokinetic dynamometer on muscle recovery following muscle injury. J Exerc Rehabil. 2018;14:1080–4. https://doi.org/10.12965/jer.1836440.220.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81:S52-69. https://doi.org/10.1097/00002060-200211001-00007.

    Article  PubMed  Google Scholar 

  68. Chen TC, Yang TJ, Huang MJ, Wang HS, Tseng KW, Chen HL, et al. Damage and the repeated bout effect of arm, leg, and trunk muscles induced by eccentric resistance exercises. Scand J Med Sci Sports. 2019;29:725–35. https://doi.org/10.1111/sms.13388.

    Article  PubMed  Google Scholar 

  69. O’Connor FG, Brennan FH Jr, Campbell W, Heled Y, Deuster P. Return to physical activity after exertional rhabdomyolysis. Curr Sports Med Rep. 2008;7:328–31. https://doi.org/10.1249/JSR.0b013e31818f0317.

    Article  PubMed  Google Scholar 

  70. Hubal MJ, Devaney JM, Hoffman EP, Zambraski EJ, Gordish-Dressman H, Kearns AK, et al. CCL2 and CCR2 polymorphisms are associated with markers of exercise-induced skeletal muscle damage. J Appl Physiol. 1985;2010(108):1651–8. https://doi.org/10.1152/japplphysiol.00361.2009.

    Article  CAS  Google Scholar 

  71. Rawson ES, Clarkson PM, Tarnopolsky MA. Perspectives on exertional rhabdomyolysis. Sports Med. 2017;47:33–49. https://doi.org/10.1007/s40279-017-0689-z.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Çakir-Atabek H, Dokumaci B, Aygün C. Strength loss after eccentric exercise is related to oxidative stress but not muscle damage biomarkers. Res Q Exerc Sport. 2019;90:385–94. https://doi.org/10.1080/02701367.2019.1603990.

    Article  PubMed  Google Scholar 

  73. Emanuel A, Smukas I, Halperin I. An analysis of the perceived causes leading to task-failure in resistance-exercises. PeerJ. 2020;8: e9611. https://doi.org/10.7717/peerj.9611.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kraemer WJ, Noble BJ, Clark MJ, Culver BW. Physiologic responses to heavy-resistance exercise with very short rest periods. Int J Sports Med. 1987;8:247–52. https://doi.org/10.1055/s-2008-1025663.

    Article  CAS  PubMed  Google Scholar 

  75. Hardee JP, Lawrence MM, Utter AC, Triplett NT, Zwetsloot KA, McBride JM. Effect of inter-repetition rest on ratings of perceived exertion during multiple sets of the power clean. Eur J Appl Physiol. 2012;112:3141–7. https://doi.org/10.1007/s00421-011-2300-x.

    Article  PubMed  Google Scholar 

  76. Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 1985;2009(106):857–64. https://doi.org/10.1152/japplphysiol.91324.2008.

    Article  Google Scholar 

  77. Fisher JP, Ironside M, Steele J. Heavier and lighter load resistance training to momentary failure produce similar increases in strength with differing degrees of discomfort. Muscle Nerve. 2017;56:797–803. https://doi.org/10.1002/mus.25537.

    Article  PubMed  Google Scholar 

  78. Wilk M, Golas A, Stastny P, Nawrocka M, Krzysztofik M, Zajac A. Does tempo of resistance exercise impact training volume? J Hum Kinet. 2018;62:241–50. https://doi.org/10.2478/hukin-2018-0034.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wilk M, Zajac A, Tufano JJ. The inluence of movement tempo during resistance training on muscular strength and hypertrophy responses: a review. Sports Med. 2021. https://doi.org/10.1007/s40279-021-01465-2.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Guilherme Vieira.

Ethics declarations

Funding

João Guilherme Veira was financed in part by a BSc scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasil—finance code 001. Amanda Veiga Sardeli was supported by the Academy of Medical Sciences through the UK Government's Newton Fund Programme [NIFR7\1031]. Luis Leitão received funding from the Portuguese Foundation for Science and Technology, I.P., Grant/award number UIDP/04748/2020. Victor Reis received funding from the Portuguese Foundation for Science and Technology, I.P., Grant/award number UID04045/2020.

Conflicts of interest

João Guilherme Vieira, Amanda Veiga Sardeli, Marcelo Ricardo Dias, José Elias Filho, Yuri de Almeida Campos, Leandro de Oliveira Sant’Ana, Luis Leitão, Victor Machado Reis, Michal Wilk, Jefferson da Silva Novaes, and Jeferson Macedo Vianna declare that they have no conflicts of interest relevant to the content of this systematic review and meta-analysis.

Availability of data and material

The database that supports the conclusions of this systematic review is available from the corresponding author upon request.

Ethics approval

Not applicable.

Consent

Not applicable.

Author contributions

João Guilherme Vieira, Amanda Veiga Sardeli, Marcelo Ricardo Dias, Jefferson Novaes, and Jeferson Vianna designed the manuscript, and João Guilherme Vieira wrote the first draft. João Guilherme Vieira and Marcelo Ricardo Dias conducted the literature search. João Guilherme Vieira and Marcelo Ricardo Dias wrote the Methods and Results, and prepared the tables/figures. Amanda Veiga Sardeli conducted the meta-analysis. João Guilherme Vieira and José Elias Filho reviewed the Methods and helped choose the tool to assess the quality of the articles used in this systematic review. Amanda Veiga Sardeli, José Elias Filho, Jefferson Novaes, and Jeferson Vianna systematically guided João Guilherme Vieira during the article writing process. Yuri Campos, Leandro Sant’Ana, Luis Leitão, Victor Reis, and Michal Wilk reviewed the manuscript and the English language and contributed technically to the quality of the manuscript. All authors read and approved the final manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.G., Sardeli, A.V., Dias, M.R. et al. Effects of Resistance Training to Muscle Failure on Acute Fatigue: A Systematic Review and Meta-Analysis. Sports Med 52, 1103–1125 (2022). https://doi.org/10.1007/s40279-021-01602-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01602-x

Navigation