Skip to main content
Log in

Recommendations for Movement Re-training After ACL Reconstruction

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

It is important to optimise the functional recovery process to enhance patient outcomes after major injury such as anterior cruciate ligament reconstruction (ACLR). Restoring movement quality during sporting-type movements is important prior to return-to-sport (RTS) after ACLR. Alterations in movement quality during an array of functional tasks are common amongst ACLR patients at or near the time of RTS and are associated with worse outcomes after ACLR. The inability to correct movement issues prior to RTS is likely due to the use of incomplete programmes or a lack of volume and intensity of movement re-training programmes. Although most clinicians and researchers understand that re-training movement after ACLR is important (e.g., the ‘why’), there is often a disconnect with understanding the ‘how’ and ‘what’ of movement re-training post ACLR. The aim of this paper was to discuss factors relevant to movement dysfunction and re-training after ACLR and provide recommendations for clinicians to restore movement quality of patients after ACLR, prior to RTS. The paper recommends: (i) considering the factors which influence the expression of movement quality, which revolve around individual (e.g., neuromuscular, biomechanical, sensorimotor and neurocognitive factors), task-specific and environmental constraints; (ii) incorporating a three-staged movement re-training approach aligned to the ACLR functional recovery process: (1) addressing the neuromuscular and biomechanical and sensorimotor control factors which affect movement quality and motor learning, (2) including a progressive movement re-training approach to re-learn an array of functional tasks optimising coordination and motor learning (3) performing the final aspect of rehabilitation and movement training on the field, in realistic environments progressively simulating the sporting movement demands and environmental constraints; and (iii) effectively designing the movement programme for optimal load management, employing effective coach and feedback techniques and utilising qualitative movement analysis for transition between exercises, stages and for RTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced from Buckthorpe and Della Villa [6]

Similar content being viewed by others

References

  1. Ardern CL, Webster KE, Taylor NF, et al. Return to pre-injury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med. 2011;39:538–43.

    Article  PubMed  Google Scholar 

  2. Waldén M, Hägglund M, Magnusson H, Ekstrand J. ACL injuries in men’s professional football: a 15-year prospective study on time trends and return-to-play rates reveals only 65% of players still play at the top level 3 years after ACL rupture. Br J Sports Med. 2016;50(12):744–50.

    Article  PubMed  Google Scholar 

  3. Lai CCH, Feller JA, Webster KE. Fifteen-year audit of anterior cruciate ligament reconstructions in the Australian Football League from 1999 to 2013: return to play and subsequent ACL injury. Am J Sports Med. 2018;46(14):3353–60.

    Article  PubMed  Google Scholar 

  4. Webster KE, Feller JA. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(11):2827–32.

    Article  PubMed  Google Scholar 

  5. Buckthorpe M. Optimising the late-stage rehabilitation and return-to-sport training and testing process after ACL reconstruction. Sports Med. 2019;49(7):1043–58.

    Article  PubMed  Google Scholar 

  6. Buckthorpe M, Della VF. Optimising the “mid-stage” training and testing process after ACL reconstruction. Sports Med. 2020;50(4):657–78.

    Article  PubMed  Google Scholar 

  7. Ardern CL, Kvist J, Webster KE. Psychological aspects of anterior cruciate ligament injuries. Oper Tech Sports Med. 2016;24(1):77–83.

    Article  Google Scholar 

  8. Adams D, Logerstedt DS, Hunter-Giordano A, et al. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bien DP, Dubuque TJ. Considerations for late stage ACL rehabilitation and return to sport to limit re-injury risk and maximize athletic performance. Int J Sports Phys Ther. 2015;10(2):256–71.

    PubMed  PubMed Central  Google Scholar 

  10. Diermeier T, Rothrauff BB, Engebretsen, et al. Treatment after anterior cruciate ligament injury: Panther Symposium ACL Treatment Consensus Group. Knee Surg Sports Traumatol Arthrosc. 2020;28(8):2390–402.

  11. Dingenen B, Gokeler A. Optimization of the return-to-sport paradigm after anterior cruciate ligament reconstruction: a critical step back to move forward. Sports Med. 2017;47(8):1487–500.

    Article  PubMed  Google Scholar 

  12. Decker MJ, Torry MR, Noonan TJ, et al. Landing adaptations after ACL reconstruction. Med Sci Sports Exerc. 2002;34(9):1408–13.

    Article  PubMed  Google Scholar 

  13. de Fontenay BP, Argaud S, Blache Y, et al. Motion alterations after anterior cruciate ligament reconstruction: comparison of the injured and uninjured lower limbs during a single-legged jump. J Athl Train. 2014;49(3):311–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goerger BM, Marshall SW, Beutler AI. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49:188–95.

    Article  PubMed  Google Scholar 

  15. Lee SP, Chow JW, Tillman MD. Persons with reconstructed ACL exhibit altered knee mechanics during high speed maneuvers. J Sports Med. 2014;35(6):528–33.

    Google Scholar 

  16. Paterno MV, Ford KR, Myer GD, et al. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sports Med. 2007;17(4):258–62.

    Article  Google Scholar 

  17. Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–78.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Paterno MV, Kiefer AW, Bonnette S, et al. Prospectively identified deficits in sagittal plane hip-ankle coordination in female athletes who sustain a second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Clin Biomech. 2015;30(10):1094–104.

    Article  Google Scholar 

  19. Sterns KM, Pollard CD. Abnormal frontal plane knee mechanics during sidestep cutting in female soccer athletes after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2013;41(4):918–23.

    Article  Google Scholar 

  20. Chaudhari AM, Briant PL, Bevill SL, et al. Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc. 2008;40(2):215–22.

    Article  PubMed  Google Scholar 

  21. Oiestad BE, Holm I, Aune AK, et al. Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med. 2010;38(11):2201–10.

    Article  PubMed  Google Scholar 

  22. Hanson DW, Finch CF, Allegrante JP, et al. Closing the gap between injury prevention research and community safety promotion practice: revisiting the public health model. Public Health Rep. 2012;127(2):147–55.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Finch CF. A new framework for research leading to sports injury prevention. J Sci Med Sport. 2006;9:3–9.

    Article  PubMed  Google Scholar 

  24. Verhagen E. If athletes will not adopt preventive measures, effective measures must adopt athletes. Curr Sports Med Rep. 2012;11:7–8.

    Article  PubMed  Google Scholar 

  25. Verhagen E, Voogt N, Bruinsma A, Finch CF. A knowledge transfer scheme to bridge the gap between science and practice: an integration of existing research frameworks into a tool for practice. Br J Sports Med. 2014;48:698–701.

    Article  PubMed  Google Scholar 

  26. Timpka T, Ekstrand J, Svanström L. From sports injury prevention to safety promotion in sports. Sports Med. 2006;36:733–45.

    Article  PubMed  Google Scholar 

  27. Seifert L, Button C, Davids K. Key properties of expert movement systems in sport : an ecological dynamics perspective. Sports Med. 2013;43(3):167–78.

    Article  PubMed  Google Scholar 

  28. Bell DR, Padua DA, Clark MA. Muscle strength and flexibility characteristics of people displaying excessive medial knee displacement. Arch Phys Med Rehabil. 2008;89(7):1323–8.

    Article  PubMed  Google Scholar 

  29. Bell DR, Vesci BJ, DiStefano LJ, et al. Muscle activity and flexibility in individuals with medial knee displacement during the overhead squat. Athl Train Sports Health Care. 2011;4(3):117–25.

    Article  Google Scholar 

  30. Borotikar BS, Newcomer R, Koppes R, McLean SG. Combined effects of fatigue and decision making on female lower limb landing postures: central and peripheral contributions to ACL injury risk. Clin Biomech. 2008;23:81–92.

    Article  Google Scholar 

  31. Chimera NJ, Smith CA, Warren M. Injury history, sex, and performance on the functional movement screen and Y balance test. J Athl Train. 2015;50(5):475–85.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Clermont CA, Osis ST, Phinyomark A, Ferber R. Kinematic gait patterns in competitive and recreational runners. J Appl Biomech. 2017;33(4):268–76.

    Article  PubMed  Google Scholar 

  33. de Souza NS, Martins AC, Alexandre DJ, et al. The influence of fear of falling on orthostatic postural control: A systematic review. Neurol Int. 2015;7(3):6057.

    PubMed  PubMed Central  Google Scholar 

  34. Gokeler A, Benjaminse A, van Eck CF, et al. Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int J Sports Phys Ther. 2013;8(4):441–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grooms D, Appelbaum G, Onate J. Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther. 2015;10(1):1–33.

    Google Scholar 

  36. Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition-implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):2347–53.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hodges PW, Smeets RJ. Interaction between pain, movement, and physical activity: Short-term benefits, long-term consequences, and targets for treatment. Clin J Pain. 2015;31(2):97–107.

    Article  PubMed  Google Scholar 

  38. Hodges PW, Tucker K. Moving differently in pain: a new theory to explain the adaptation to pain. Pain. 2011;152:S90-98.

    Article  PubMed  Google Scholar 

  39. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147–58.

    PubMed  PubMed Central  Google Scholar 

  40. Lima YL, Ferreira V, de Paula Lima PO, et al. The association of ankle dorsiflexion and dynamic knee valgus: a systematic review and meta-analysis. Phys Ther Sport. 2018;29:61–9.

    Article  PubMed  Google Scholar 

  41. Mauntel TC, Begalle RL, Cram TR, et al. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. J Strength Cond Res. 2013;27(7):1813–23.

    Article  PubMed  Google Scholar 

  42. Padua DA, Bell DR, Clark MA. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J Athl Train. 2012;47(5):525–36.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry following ACL reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43:1662–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Phinyomark A, Hettinga BA, Osis ST, Ferber R. Gender and age-related differences in bilateral lower extremity mechanics during treadmill running. PLoS ONE. 2014;9(8):e105246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):42–51.

    Article  PubMed  Google Scholar 

  46. Salem GJ, Salinas R, Harding FV. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2003;84:1211–6.

    Article  PubMed  Google Scholar 

  47. Santamaria LJ, Webster KE. The effect of fatigue on lower-limb biomechanics during single-limb landings: a systematic review. J Orthop Sports Phys Ther. 2010;40:464–73.

    Article  PubMed  Google Scholar 

  48. Savage RJ, Lay BS, Wills JA, et al. Prolonged running increases knee moments in sidestepping and cutting manoeuvres in sport. J Sci Med Sport. 2018;21(5):508–12.

    Article  PubMed  Google Scholar 

  49. Sigward SM, Chan MM, Lin PE, et al. Compensatory strategies that reduce knee extensor demand during a bilateral squat change from 3 to 5 months following anterior cruciate ligament reconstruction. J Orthop Sport Phys Ther. 2018;48(9):713–8.

    Article  Google Scholar 

  50. Sigward SM, Pollard CD, Powers CM. The influence of sex and maturation on landing biomechanics: implications for anterior cruciate ligament injury. Scand J Med Sci Sports. 2012;22(4):502–9.

    Article  CAS  PubMed  Google Scholar 

  51. Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Biomechanical differences of multidirectional jump landings among female basketball and soccer players. J Strength Cond Res. 2017;31(11):3034–45.

    Article  PubMed  Google Scholar 

  52. Zebis MK, Andersen LL, Bencke J, et al. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med. 2009;37(10):1967–73.

    Article  PubMed  Google Scholar 

  53. Schreurs MJ, Benjaminse A, Lemmink K. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes. J Biomech. 2017;63:144–50.

    Article  PubMed  Google Scholar 

  54. Vanrenterghem J, Venables E, Pataky T, et al. The effect of running speed on knee mechanical loading in females during side cutting. J Biomech. 2012;45(14):2444–9.

    Article  PubMed  Google Scholar 

  55. Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41(9):625–32.

    Article  PubMed  Google Scholar 

  56. Albertsen IM, Ghedira M, Gracies JM, Hutin E. Postural stability in young healthy subjects - impact of reduced base of support, visual deprivation, dual tasking. J Electromyogr Kinesiol. 2017;33:27–33.

    Article  PubMed  Google Scholar 

  57. Besier TF, Lloyd DG, Ackland TR, et al. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):1176–81.

    Article  CAS  PubMed  Google Scholar 

  58. Brown SR, Brughelli M, Hume PA. Knee mechanics during planned and unplanned sidestepping: a systematic review and meta-analysis. Sports Med. 2014;44(11):1573–88.

    Article  PubMed  Google Scholar 

  59. Buckthorpe M, Pirotti E, Della VF. Benefits and use of aquatic therapy during rehabilitation after ACL reconstruction—a clinical commentary. Int J Sports Phys Ther. 2019;14(6):978–93.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Christensen JC, Wilson CR, Merryweather AS, Foreman KB. Kinematics of the pelvis, torso, and lower limb during obstacle negotiation while under temporal constraints. Anat Rec (Hoboken). 2017;300(4):732–8.

    Article  Google Scholar 

  61. Dingenen B, Deschamps K, Delchambre F, et al. Effect of taping on multi-segmental foot kinematic patterns during walking in persons with chronic ankle instability. J Sci Med Sport. 2017;20(9):835–40.

    Article  PubMed  Google Scholar 

  62. Dingenen B, Staes FF, Janssens L. A new method to analyze postural stability during a transition task from double-leg stance to single-leg stance. J Biomech. 2013;46(13):2213–9.

    Article  PubMed  Google Scholar 

  63. Mason-Mackay AR, Whatman C, Reid D. The effect of ankle bracing on lower extremity biomechanics during landing: A systematic review. J Sci Med Sport. 2016;19(7):531–40.

    Article  CAS  PubMed  Google Scholar 

  64. Negahban H, Hadian MR, Salavati M, et al. The effects of dual tasking on postural control in people with unilateral anterior cruciate ligament injury. Gait Posture. 2009;30(4):477–81.

    Article  PubMed  Google Scholar 

  65. Schutte KH, Aeles J, De Beeck TO, et al. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry. Gait Posture. 2016;48:220–5.

    Article  PubMed  Google Scholar 

  66. Soares TSA, Oliveira CF, Pizzuto F, et al. Acute kinematics changes in marathon runners using different footwear. J Sports Sci. 2018;36(7):766–70.

    Article  PubMed  Google Scholar 

  67. Graven-Nielsen T, Lund H, Arendt-Nielsen L, et al. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.

    Article  PubMed  Google Scholar 

  68. Henriksen M, Rosager S, Aaboe J, et al. Experimental knee pain reduces muscle strength. J Pain. 2011;12(4):460–7.

    Article  PubMed  Google Scholar 

  69. Palmieri-Smith RM, Kreinbrink J, Ashton Miller JA, Wojtys EM. Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med. 2007;35(8):1269–75.

    Article  PubMed  Google Scholar 

  70. Stokes M, Young A. The contribution of reflex inhibition to arthrogenous muscle weakness. Clin Sci. 1984;67(1):7–14.

    Article  CAS  Google Scholar 

  71. Siff M. Biomechanical foundations of strength and power training. In: Zatsiorsky V, editor. Biomechanics in sports. Blackwell Sci Ltd.; 2001, pp. 103–39.

  72. Nimphius S, McGuigan MR, Newton RU. Relationship between strength, power, speed, and change of direction performance of female softball players. J Strength Cond Res. 2010;24(4):885–95.

    Article  PubMed  Google Scholar 

  73. Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31:66–76.

    Article  PubMed  Google Scholar 

  74. Wisløff U, Castagna C, Helgerud J, et al. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38:285–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108–15.

    Article  CAS  PubMed  Google Scholar 

  76. Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing ACL injuries: current biomechanical and epidemiologic considerations—update 2010. N Am J Sports Phys Ther. 2010;5:234–51.

    PubMed  PubMed Central  Google Scholar 

  77. Cleather D, Goodwin J, Bull A. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech. 2013;28:98–103.

    Article  Google Scholar 

  78. Cavanagh PR, Lafortune MA. Ground reaction forces in distance running. J Biomech. 1980;13:397–406.

    Article  CAS  PubMed  Google Scholar 

  79. Colado JC, Garcia-Masso X, Gonzalez L-M, et al. Two-leg squat jumps in water: an effective alternative to dry land jumps. Int J Sports Med. 2010;31:118–22.

    Article  CAS  PubMed  Google Scholar 

  80. Donoghue OA, Shimojo H, Takagi H. Impact forces of plyometric exercises performed on land and in water. Sports Health. 2011;3:303–9.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sahrmann S. Diagnosis and treatment of movement impairment syndromes. Oxford: Elsevier Health Sciences; 2013.

    Google Scholar 

  82. Palmieri-Smith RM, Thomas AC, Wojtys EM. Maximizing quadriceps strength after ACL reconstruction. Clin Sports Med. 2008;27:405–24.

    Article  PubMed  Google Scholar 

  83. Lafond D, Normand MC, Gosselin G. Rapport force. J Can Chiropractic Assoc. 1998;42(2):90–100.

    Google Scholar 

  84. Vakos JP, Nitz AJ, Threlkeld AJ, et al. Electromyographic activity of selected trunk and hip muscles during a squat lift. Spine. 1994;19(6):687–95.

    Article  CAS  PubMed  Google Scholar 

  85. Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501.

    Article  PubMed  Google Scholar 

  86. Krosshaug T, Steffen K, Kristianslund E, et al. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players: a prospective cohort study of 710 athletes. Am J Sports Med. 2016;44(4):874–83.

    Article  PubMed  Google Scholar 

  87. Read P, Oliver JL, De Ste Croix MB, et al. Neuromuscular risk factors for knee and ankle ligament injuries in male youth soccer players. Sports Med. 2016;46(8):1059–66.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Harput G, Kilinc HE, Ozer HE, et al. Quadriceps and hamstring strength recovery during early neuromuscular rehabilitation after ACL hamstring-tendon autograft reconstruction. J Sport Rehabil. 2015;24(4):398–404.

    Article  PubMed  Google Scholar 

  89. Snyder-Mackler L, Delitto A, Bailey SL, et al. Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Jt Surg Am. 1995;77:1166–73.

    Article  CAS  Google Scholar 

  90. Cristiani R, Mikkelsen C, Forssblad M, et al. Only one patient out of five achieves symmetrical knee function 6 months after primary anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27(11):3461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Herrington L, Ghulam H, Comfort P. Quadriceps strength and functional performance after anterior cruciate ligament reconstruction in professional soccer players at time of return to sport. J Strength Cond Res. 2021;35(3):769–75.

    Article  PubMed  Google Scholar 

  92. Welling W, Benjaminse A, Seil R, et al. Low rates of patients meeting return to sport criteria 9 months after anterior cruciate ligament reconstruction: a prospective longitudinal study. Knee Surg Sports Traumatol Arthrosc. 2018;26(12):3636–44.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ardern CL, Webster KE, Taylor NF, et al. Hamstring strength recovery after hamstring tendon harvest for anterior cruciate ligament reconstruction: a comparison between graft types. Arthroscopy. 2010;26(4):462–9.

    Article  PubMed  Google Scholar 

  94. Nomura Y, Kuramochi R, Kukubayashi T. Evaluation of hamstring muscle strength and morphology after anterior cruciate ligament reconstruction. Scand J Med Sci Sports. 2015;25(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  95. Tengman E, Brax Olofsson L, Stensdotter AK, et al. Anterior cruciate ligament injury after more than 20 years. II. Concentric and eccentric knee muscle strength. Scand J Med Sci Sports. 2014;24(6): e501–9.

  96. Timmins RG, Bourne MN, Shield AJ, et al. Biceps femoris architecture and strength in athletes with a previous anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48:337–45.

    Article  PubMed  Google Scholar 

  97. Vairo GL. Knee flexor strength and endurance profiles after ipsilateral hamstring tendons anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 2014;95(3):552–61.

    Article  PubMed  Google Scholar 

  98. Petersen W, Taheri P, Forkel P, et al. Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg. 2014;134(10):1417–28.

    Article  PubMed  Google Scholar 

  99. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts non-contact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med. 2016;44(2):355–61.

    Article  PubMed  Google Scholar 

  100. Buckthorpe M, Danelon F, La Rosa G, et al. Recommendations for hamstring function recovery after ACL reconstruction. Sports Med. 2020. https://doi.org/10.1007/s40279-020-01400-x. (online ahead of print).

  101. Buckthorpe M, La Rosa G, Della VF. Restoring knee extensor strength after anterior cruciate ligament reconstruction: a clinical commentary. Int J Sports Phys Ther. 2019;14(1):159–72.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Buckthorpe M, Stride M, Della VF. Assessing and treating gluteus maximus weakness- a clinical commentary. Int J Sports Phys Ther. 2019;14(4):655–69.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Buckthorpe MW, Erskine R, Fletcher G, Folland JP. Neural adaptations explain the task specificity of strength changes after resistance training. Scand J Med Sci Sports. 2015;25(5):640–9.

    Article  CAS  PubMed  Google Scholar 

  104. Folland JP, Williams AG. The adaptations to strength training morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145–68.

    Article  PubMed  Google Scholar 

  105. Grindem H, Snyder-Mackler L, Moksnes H, et al. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50:804–8.

    Article  PubMed  Google Scholar 

  106. Kyritsis P, Bahr R, Landreau P, et al. Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br J Sports Med. 2016;50:946–51.

    Article  PubMed  Google Scholar 

  107. Ithurburn MP, Longfellow MA, Thomas S, et al. Knee function, strength and resumption of preinjury sports participation in young athletes following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2019;49(3):145–53.

    Article  PubMed  Google Scholar 

  108. Buckthorpe M, Gimpel M, Wright S, et al. Hamstring muscle injuries in elite football: translating research into practice. Br J Sports Med. 2018;52(10):628–9.

    Article  PubMed  Google Scholar 

  109. Buckthorpe M, Roi GS. The time has come to incorporate a greater focus on rate of force development training in the sports injury rehabilitation process. Muscle Tendon Ligament J. 2017;7(3):435–41.

    Article  Google Scholar 

  110. Turpeinen JT, Freitas TT, Rubio-Arias JA, et al. Contractile rate of force development after anterior cruciate ligament reconstruction-a comprehensive review and meta-analysis. Scand J Med Sci Sports. 2020;30(9):1572–85.

    Article  PubMed  Google Scholar 

  111. Cacchio A, Don R, Ranavolo A, et al. Effects of 8-week strength training with two models of chest press machines on muscular activity pattern and strength. J Electromyogr Kinesiol. 2008;18:618–27.

    Article  PubMed  Google Scholar 

  112. Koga H, Nakamae A, Shima Y, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38:2218–25.

    Article  PubMed  Google Scholar 

  113. Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35:359–67.

    Article  PubMed  Google Scholar 

  114. Beneke R, Taylor MJ. What gives Bolt the edge-A.V. Hill knew it already! J Biomech. 2010;43(11):2241–3.

  115. Thorstensson A, Karlsson J, Viitasalo HT, et al. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98:232–6.

    Article  CAS  PubMed  Google Scholar 

  116. Angelozzi M, Madama M, Corsica C, et al. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):772–80.

    Article  PubMed  Google Scholar 

  117. Kadija M, Knezević OM, Milovanović D, et al. The effect of anterior cruciate ligament reconstruction on hamstring and quadriceps muscle function outcome ratios in male athletes. Srp Arh Celok Lek. 2016;144(3–4):151–7.

    Article  PubMed  Google Scholar 

  118. Sale DG. Neural adaptations to resistance training. Med Sci Sports Exerc. 1988;20(supp 5):S135–45.

    Article  CAS  PubMed  Google Scholar 

  119. Rutherford OM, Jones DA. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  120. Zebis MK, Bencke J, Andersen LL, et al. The effects of neuromuscular training on knee joint motor control during side cutting in female elite soccer and handball players. Clin J Sports Med. 2008;18(4):329–37.

    Article  Google Scholar 

  121. Dyhre-Poulsen P, Krogsgaard MR. Muscular reflexes elicited by electrical stimulation of the anterior cruciate ligament in humans. J Appl Physiol. 2000;89:2191–5.

    Article  CAS  PubMed  Google Scholar 

  122. Webster KE, Hewett TE. Meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J Orthop Res. 2018;36(10):2696–708.

    Article  PubMed  Google Scholar 

  123. Swanik CB. Brains and Sprains: The brain’s role in noncontact anterior cruciate ligament injuries. J Athl Train. 2015;50(10):1100–2.

    Article  PubMed  Google Scholar 

  124. Swanik CB, Covassin T, Stearne DJ, Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med. 2007;35(6):943–8.

    Article  PubMed  Google Scholar 

  125. Dhillon MS, Kamal B, Sharad P. Differences among mechanoreceptors in healthy anterior cruciate ligaments and their clinical importance. Muscles Ligaments Tendons J. 2012;2(1):38–43.

    PubMed  PubMed Central  Google Scholar 

  126. Kapreli E, Athanasopoulos S. The anterior cruciate ligament deficiency as a model of brain plasticity. Med Hypotheses. 2006;67:645–50.

    Article  PubMed  Google Scholar 

  127. Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. Int J Athl Ther Train. 2012;17(6):4–9.

    Article  Google Scholar 

  128. Almonroeder TG, Garcia E, Kurt M. The effects of anticipation on the mechanics of the knee during single-leg cutting tasks: a systematic review. Int J Sports Phys Ther. 2015;10(7):918–28.

    PubMed  PubMed Central  Google Scholar 

  129. Negahban H, Ahmadi P, Salehi R, et al. Attentional demands of postural control during single leg stance in patients with anterior cruciate ligament reconstruction. Neurosci Lett. 2013;556:118–23.

    Article  CAS  PubMed  Google Scholar 

  130. Okuda K, Abe N, Katayama Y, et al. Effect of vision on postural sway in anterior cruciate ligament injured knees. J Orthop Sci. 2005;10(3):277–83.

    Article  PubMed  Google Scholar 

  131. Tiberio D. The effect of excessive subtalar joint pronation on patellofemoral mechanics: a theoretical model. J Orth Sports Phys Ther. 1987;9(4):160–5.

    Article  CAS  Google Scholar 

  132. Tiberio D. Pathomechanics of structural foot deformities. Phys Ther. 1988;68(12):1840–9.

    Article  CAS  PubMed  Google Scholar 

  133. Tiberio D, Bohanuon RW, Zito MA. Effect of subtalar joint position on the measurement of maximum ankle dorsiflexion. Clin Biomech. 1989;4(3):189–91.

  134. Preece SJ, Graham-Smith P, Nester CJ, et al. The influence of gluteus maximus on transverse plane tibial rotation. Gait Posture. 2008;27(4):616–21.

    Article  PubMed  Google Scholar 

  135. Chappell JD, Herman DC, Knight BS, et al. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am J Sports Med. 2005;33:1022–9.

    Article  PubMed  Google Scholar 

  136. Frank B, Gilsdorf CM, Goerger BM, et al. Neuromuscular fatigue alters postural control and sagittal plane hip biomechanics in active females with anterior cruciate ligament reconstruction. Sports Health. 2014;6(4):301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Gokeler A, Eppinga P, Dijkstra PU, et al. Effect of fatigue on landing performance assessed with the landing error score system (less) in patients after ACL reconstruction. A pilot study. Int J Sports Phys Ther. 2014;9(3):302–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. McLean SG, Fellin RE, Suedekum N, et al. Impact of fatigue on gender-based high-risk landing strategies. Med Sci Sports Exerc. 2007;39:502–14.

    Article  PubMed  Google Scholar 

  139. Sanna G, O’Connor KM. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin Biomech. 2008;23:946–54.

    Article  Google Scholar 

  140. Webster KE, Santamaria LJ, McClelland JA, Fellar JA. Effect of fatigue on landing biomechanics after anterior cruciate ligament reconstruction surgery. Med Sci Sports Exerc. 2012;44(5):910–6.

    Article  PubMed  Google Scholar 

  141. Benjaminse A, Webster KE, Kimp A, et al. Revised approach to the role of fatigue in anterior cruciate ligament injury prevention: a systematic review with meta-analyses. Sports Med. 2019;49(4):565–86.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Barber-Westin SD, Noyes FR. Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: a systematic review. Am J Sports Med. 2017;45(14):3388–96.

    Article  PubMed  Google Scholar 

  143. Van Melick N, van Rijn L, Nijhuis-van der Sanden MWG, et al. Fatigue affects quality of movement more in ACL-reconstructed soccer players than in healthy soccer players. Knee Surg Traumatol Arthrosc. 2019;27(2):549–55.

  144. Bourne MN, Webster KE, Hewett TE. Is fatigue a risk factor for anterior cruciate ligament rupture? Sports Med. 2019;49(11):1629–35.

    Article  PubMed  Google Scholar 

  145. Della Villa F, Buckthorpe M, Grassi A, et al. Systematic video analysis of ACL injuries in professional male football (soccer): injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br J Sports Med. 2020;54:1423–32.

    Article  PubMed  Google Scholar 

  146. Zhou J, Schilaty ND, Hewett TE, Bates NA. Analysis of timing of secondary ACL injury in professional athletes does not support game timing or season timing as a contributor to injury risk. Int J Sports Phys Ther. 2020;15(2):254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bittencourt NFN, Meeuwisse WH, Mendonca LD, et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br J Sports Med. 2016;50:1308–14.

    Article  Google Scholar 

  148. van Melick, van Cingel RE, Brooijmans F, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med. 2016;50(24):1506–15.

  149. Glasgow P, Phillips N, Bleakley C. Optimal loading: key variables and mechanisms. Br J Sports Med. 2015;49:278–9.

    Article  PubMed  Google Scholar 

  150. Buckthorpe M, Tamisari A, Della VF. A ten task-based progression in rehabilitation after ACL reconstruction: from post-surgery to return to play—a clinical commentary. Int J Sports Phys Ther. 2020;15(4):611–23.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Schmidt RAWC. Motor learning and performance. Champaign: Human Kinetics; 2005.

    Google Scholar 

  152. Bobbert MF, Van Soest AJ. Effects of muscle strengthening on vertical jump height: a simulation study. Med Sci Sports Exerc. 1994;26(8):1012–20.

    Article  CAS  PubMed  Google Scholar 

  153. Wolpert DM, Diedrichsen J, Flanagan JR. Principles of sensorimotor learning. Nat Rev Neurosci. 2011;12:739–51.

    Article  CAS  PubMed  Google Scholar 

  154. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. On-field rehabilitation—part 2: a 5-stage program for the soccer player focused on: linear movements, multidirectional movements, soccer-specific skills, soccer-specific movements, and modified practice. J Orthop Sports Phys Ther. 2019;49(8):570–5.

    Article  PubMed  Google Scholar 

  155. Jensen RL, Ebben WP. Quantifying plyometric intensity via rate of force development, knee joint, and ground reaction forces. J Strength Cond Res. 2007;21(3):763–7.

    PubMed  Google Scholar 

  156. Escamilla RF, Macleod TD, Wilk KE, et al. Anterior cruciate ligament strain and tensile forces for weight-bearing and non-weight-bearing exercises: a guide to exercise selection. J Orthop Sports Phys Ther. 2012;42(3):208–20.

    Article  PubMed  Google Scholar 

  157. Grodski M, Marks R. Exercises following anterior cruciate ligament reconstructive surgery: biomechanical considerations and efficacy of current approaches. Res Sports Med. 2008;16(2):75–96.

    Article  PubMed  Google Scholar 

  158. Woo SL, Hollis JM, Adams DJ, et al. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19:217–225.

  159. Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J. Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech. 2006;39(16):2943–50.

    Article  PubMed  Google Scholar 

  160. Nagelli CV, Hewett TE. Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med. 2017;47(2):221–32.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Vogl TJ, Schmitt J, Lubrich J, et al. Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen. Eur Radiol. 2001;11(8):1450–6.

    Article  CAS  PubMed  Google Scholar 

  162. Zaffagnini S, De Pasquale V, Marchesini Reggiani L, et al. Neoligamentization process of BTPB used for ACL graft: histological evaluation from 6 months to 10 years. Knee. 2007;14(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  163. Amiel D, Kleiner JB, Roux RD, et al. The phenomenon of ‘“ligamentization”’: anterior cruciate ligament reconstruction with autogenous patellar tendon. J Orthop Res. 1986;4(2):162–72.

    Article  CAS  PubMed  Google Scholar 

  164. Laughlin WA, Weinhandl JT, Kernozek TW, et al. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):1845–51.

    Article  PubMed  Google Scholar 

  165. Chaudhari AM, Andriacchi TP. The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J Biomech. 2006;39(2):330–8.

    Article  PubMed  Google Scholar 

  166. Markolf KL, Burchfield DM, Shapiro MM, et al. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930–5.

    Article  CAS  PubMed  Google Scholar 

  167. McLean SG, Huang X, Su A, et al. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin Biomech (Bristol, Avon). 2004;19(8):828–38.

    Article  Google Scholar 

  168. Mokhtarzadeh H, Ng A, Teow CH, et al. Restrained tibial rotation may prevent ACL injury during landing at different flexion angles. Knee. 2015;22(1):24–9.

    Article  PubMed  Google Scholar 

  169. Buckthorpe M, Della Villa F, Della Villa S, Roi GS. Onfield rehabilitation part 1: 4 pillars of high-quality on-field rehabilitation are restoring movement quality, physical conditioning, restoring sport-specific skills, and progressively developing chronic training load. J Orthop Sports Phys Ther. 2019;49(8):565–9.

    Article  PubMed  Google Scholar 

  170. Cormie P, McCaulley GO, McBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39(6):996–1003.

    Article  PubMed  Google Scholar 

  171. Hewett TE, Di Stasi SL, Myer GD. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(1):216–24.

    Article  PubMed  Google Scholar 

  172. Sugimoto D, Myer GD, Barber Foss KD, et al. Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta regression analysis. Br J Sports Med. 2016;50(20):1259–66.

    Article  PubMed  Google Scholar 

  173. Falla D, Farina D, Graven-Nielsen T. Experimental muscle pain results in reorganization of coordination among trapezius muscle subdivisions during repetitive shoulder flexion. Exp Brain Res. 2007;178:385–93.

    Article  PubMed  Google Scholar 

  174. Mottram S, Blanford L. Assessment of movement coordination strategies to inform health of movement and guide retraining interventions. Musculoskelet Sci Pract. 2020;45:102100. https://doi.org/10.1016/j.msksp.2019.102100(Epub 2019 Dec 9).

    Article  PubMed  Google Scholar 

  175. Van Dieen JH, Reeves NP, Kawchuk G, et al. Analysis of motor control in patients with low back pain: a key to personalized care? J Orthop Sports Phys Ther. 2019;49:380–8.

    Article  PubMed  Google Scholar 

  176. Hewett T, Ford KR, Xu YY, Khoury J, Myer GD. Effectiveness of neuromuscular training based on the neuromuscular risk profile. Am J Sports Med. 2017;45(9):2142–7.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wulf G, Hoss M, Prinz W. Instructions for motor learning: differential effects of internal versus external focus of attention. J Mot Behav. 1998;30(2):169–79.

    Article  CAS  PubMed  Google Scholar 

  178. Lohse KR, Sherwood DE, Healy AF. How changing the focus of attention affects performance, kinematics, and electromyography in dart throwing. Hum Mov Sci. 2010;29(4):542–55.

    Article  PubMed  Google Scholar 

  179. Dowling AV, Favre J, Andriacchi TP. Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am J Sports Med. 2012;40(5):1075–8.

    Article  PubMed  Google Scholar 

  180. Gokeler A, Benjaminse A, Hewett TE, et al. Feedback techniques to target functional deficits following anterior cruciate ligament reconstruction: implications for motor control and reduction of second injury risk. Sports Med. 2013;43(11):1065–74.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Oñate JA, Guskiewicz KM, Marshall SW, et al. Instruction of jump-landing technique using videotape feedback: altering lower extremity motion patterns. Am J Sports Med. 2005;33(6):831–42.

    Article  PubMed  Google Scholar 

  182. Shea CH, Wulf G, Whitacre C. Enhancing training efficiency and effectiveness through the use of dyad training. J Mot Behav. 1999;31(2):119–25.

    Article  PubMed  Google Scholar 

  183. Newton RU, Kraemer WJ. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Cond J. 1994;16(5):20–31.

    Article  Google Scholar 

  184. King J, Roberts C, Hard S, et al. Want to improve return to sport outcomes following injury? Empower, engage, provide feedback and be transparent: 4 habits! Br J Sports Med. 2019;53:526–7.

    Article  PubMed  Google Scholar 

  185. Schmidt RA, Lee TD. Motor control and learning. 4th ed. Champaign: Human Kinetics; 2005.

    Google Scholar 

  186. Porter JM, Magill RA. Systematically increasing contextual interference is beneficial for learning sport skills. J Sports Sci. 2010;28(12):1277–85.

    Article  PubMed  Google Scholar 

  187. Wu WF, Young DE, Schandler SL, et al. Contextual interference and augmented feedback: is there an additive effect for motor learning? Hum Mov Sci. 2011;30(6):1092–101.

    Article  PubMed  Google Scholar 

  188. Dingenen B, Blandford L, Comerford M, et al. The assessment of movement health in clinical practice: A multidimensional perspective. Phys Ther Sport. 2018;32:282–92.

    Article  PubMed  Google Scholar 

  189. Poston GR, Schmitt LC, Ithurburn MP, et al. Reduced 2-D frontal plane motion during single-limb landing is associated with risk of future anterior cruciate ligament graft rupture after anterior cruciate ligament reconstruction and return to sport: a pilot study. J Orthop Sports Phys Ther. 2021;51(2):82–7.

    Article  PubMed  Google Scholar 

  190. Freeman BW, Young WB, Talpey SW, et al. The effects of sprint training and the Nordic hamstring exercise on eccentric hamstring strength and sprint performance in adolescent athletes. J Sports Med Phys Fit. 2019;59(7):1119–25.

    Google Scholar 

  191. Taberner M, Allen T, Cohen DD. Progressing rehabilitation after injury: consider the ‘control-chaos continuum.’ Br J Sports Med. 2019;53:1132–6.

    Article  PubMed  Google Scholar 

  192. Olsen OE, Myklebust G, Engebretsen L, et al. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32:1002–12.

    Article  PubMed  Google Scholar 

  193. Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3):445–55.

    Article  PubMed  Google Scholar 

  194. Buckthorpe M, Frizziero A, Roi GS. Update on functional recovery process for the injured athlete: return to sport continuum redefined. Br J Sports Med. 2019;53(5):265–7.

    Article  PubMed  Google Scholar 

  195. Ardern CL, Glasgow P, Schneiders A, et al. 2016 Consensus statement on return to sport from the First World Congress in sports physical therapy. Bern Br J Sports Med. 2016;50:853–64.

    Article  PubMed  Google Scholar 

  196. Waldén M, Krosshaug T, Bjørneboe J, et al. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015;49(22):1452–60.

    Article  PubMed  Google Scholar 

  197. Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;1;215(Pt 11):1944–56.

  198. Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50:471–5.

    Article  PubMed  Google Scholar 

  199. Gabbett TJ. The The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 50:273–80.

    Article  PubMed  Google Scholar 

  200. Johnston JT, Mandelbaum BR, Schub D, et al. Video analysis of anterior cruciate ligament tears in professional American football athletes. Am J Sports Med. 2018;46:862–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Buckthorpe.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Matthew Buckthorpe declares he has no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckthorpe, M. Recommendations for Movement Re-training After ACL Reconstruction. Sports Med 51, 1601–1618 (2021). https://doi.org/10.1007/s40279-021-01454-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01454-5

Navigation