Skip to main content

Advertisement

Log in

A Critical Systematic Review of Current Evidence on the Effects of Physical Exercise on Whole/Regional Grey Matter Brain Volume in Populations at Risk of Neurodegeneration

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Despite the intriguing potential of physical exercise being able to preserve or even restore brain volume (grey matter volume in particular)—a tissue essential for both cognitive and physical function—no reviews have so far synthesized the existing knowledge from randomized controlled trials investigating exercise-induced changes of the brain’s grey matter volume in populations at risk of neurodegeneration. Our objective was to critically review the existing evidence regarding this topic.

Methods

A systematic search was carried out in MEDLINE and EMBASE databases primo April 2020, to identify randomized controlled trials evaluating the effects of aerobic training, resistance training or concurrent training on brain grey volume changes (by MRI) in adult clinical or healthy elderly populations.

Results

A total of 20 articles (from 19 RCTs) evaluating 3–12 months of aerobic, resistance, or concurrent training were identified and included, involving a total of 1662 participants (populations: healthy older adults, older adults with mild cognitive impairment or Alzheimer’s disease, adults with schizophrenia or multiple sclerosis or major depression). While few studies indicated a positive effect—although modest—of physical exercise on certain regions of brain grey matter volume, the majority of study findings were neutral (i.e., no effects/small effect sizes) and quite divergent across populations. Meta-analyses showed that different exercise modalities failed to elicit any substantial effects on whole brain grey volume and hippocampus volume, although with rather large confidence interval width (i.e., variability).

Conclusion

Altogether, the current evidence on the effects of physical exercise on whole/regional grey matter brain volume appear sparse and inconclusive, and does not support that physical exercise is as potent as previously proposed when it comes to affecting brain grey matter volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Data are available from the authors upon reasonable request.

References

  1. Przedborski S, Vila M, Jackson-Lewis V. Neurodegeneration: what is it and where are we? J Clin Invest. 2003;111(1):3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pini L, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev. 2016;30:25–48.

    Article  PubMed  Google Scholar 

  3. Miller DH, et al. Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain. 2002;125(8):1676–95.

    Article  PubMed  Google Scholar 

  4. Favaretto A, et al. Effects of disease modifying therapies on brain and grey matter atrophy in relapsing remitting multiple sclerosis. Mult Scler Demyelinating Disord. 2018;3(1):1.

    Article  Google Scholar 

  5. Jack CR Jr, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55(4):484–9.

    Article  PubMed  Google Scholar 

  6. Raz N, Rodrigue KM. Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev. 2006;30(6):730–48.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vollmer T, et al. Relationship between brain volume loss and cognitive outcomes among patients with multiple sclerosis: a systematic literature review. Neurolog Sci. 2016;37(2):165–79.

    Article  Google Scholar 

  8. Rocca MA, Comi G, Filippi M. The role of T1-weighted derived measures of neurodegeneration for assessing disability progression in multiple sclerosis. Front Neurol. 2017;8:433.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Seidman LJ, et al. Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biol Psychiatry. 1994;35(4):235–46.

    Article  CAS  PubMed  Google Scholar 

  10. van Haren NE, et al. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry. 2011;68(9):871–80.

    Article  PubMed  Google Scholar 

  11. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161(11):1957–66.

    Article  PubMed  Google Scholar 

  12. Eshaghi A, et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol. 2018;83(2):210–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raz N, et al. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb Cortex. 2005;15(11):1676–89.

    Article  PubMed  Google Scholar 

  14. Vinke EJ, et al. Trajectories of imaging markers in brain aging: the Rotterdam Study. Neurobiol Aging. 2018;71:32–40.

    Article  PubMed  Google Scholar 

  15. Vollmer T, et al. The natural history of brain volume loss among patients with multiple sclerosis: a systematic literature review and meta-analysis. J Neurol Sci. 2015;357(1–2):8–18.

    Article  PubMed  Google Scholar 

  16. Kahn RS, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067.

    Article  PubMed  Google Scholar 

  17. Colcombe SJ, et al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):176–80.

    Article  PubMed  Google Scholar 

  18. Erickson KI, et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med Sci Sports Exerc. 2019;51(6):1242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Colcombe SJ, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.

    Article  PubMed  Google Scholar 

  20. Erickson KI, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):3017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kjolhede T, et al. Can resistance training impact MRI outcomes in relapsing–remitting multiple sclerosis? Mult Scler. 2018;24(10):1356–65.

    Article  PubMed  Google Scholar 

  22. Batouli SAH, Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Behav Brain Res. 2017;332(Supplement C):204–17.

    Article  PubMed  Google Scholar 

  23. Firth J, et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage. 2018;166:230–8.

    Article  PubMed  Google Scholar 

  24. Halloway S, et al. Effects of endurance-focused physical activity interventions on brain health: a systematic review. Biol Res Nurs. 2017;19(1):53–64.

    Article  PubMed  Google Scholar 

  25. Li MY, et al. The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review. Int J Neurosci. 2017;127(7):634–49.

    Article  PubMed  Google Scholar 

  26. Chen FT, et al. The effect of exercise training on brain structure and function in older adults: a systematic review based on evidence from randomized control trials. J Clin Med. 2020;9(4):914.

    Article  PubMed Central  Google Scholar 

  27. Yuan Y, Hunt RH. Systematic reviews: the good, the bad, and the ugly. Am J Gastroenterol. 2009;104(5):1086–92.

    Article  PubMed  Google Scholar 

  28. Esteban-Cornejo I, et al. Commentary: at least eighty percent of brain grey matter is modifiable by physical activity: a review study. Front Hum Neurosci. 2018. https://doi.org/10.3389/fnhum.2018.00195.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smart NA, et al. Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13(1):9–18.

    Article  PubMed  Google Scholar 

  30. Suurmond R, van Rhee H, Hak T. Introduction, comparison, and validation of meta-essentials: a free and simple tool for meta-analysis. Res Synth Methods. 2017;8(4):537–53.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: Lawrence Erlbaum Associates; 1988.

    Google Scholar 

  32. Mowinckel AM, Vidal-Piñeiro D (2019) Visualisation of brain statistics with R-packages ggseg and ggseg3d. Other statistics. arXiv: 1912.08200 [v1].

  33. Pajonk FG, et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry. 2010;67(2):133–43.

    Article  PubMed  Google Scholar 

  34. Feys P, et al. Effects of an individual 12-week community-located “start-to-run” program on physical capacity, walking, fatigue, cognitive function, brain volumes, and structures in persons with multiple sclerosis. Mult Scler. 2019;25(1):92–103.

    Article  PubMed  Google Scholar 

  35. Langeskov-Christensen M, et al. Efficacy of high-intensity aerobic exercise on brain MRI measures in multiple sclerosis. Neurology. 2021;96(2):e203–13.

    Article  PubMed  Google Scholar 

  36. Morris JK, et al. Aerobic exercise for Alzheimer’s disease: a randomized controlled pilot trial. PLoS ONE. 2017;12(2):e0170547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Best JR, et al. Long-term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. J Int Neuropsychol Soc. 2015;21(10):745–56.

    Article  PubMed  Google Scholar 

  38. Scheewe TW, et al. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol. 2013;23(7):675–85.

    Article  CAS  PubMed  Google Scholar 

  39. Maass A, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20(5):585–93.

    Article  CAS  PubMed  Google Scholar 

  40. Kleemeyer MM, et al. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. Neuroimage. 2016;131:155–61.

    Article  PubMed  Google Scholar 

  41. Jonasson LS, et al. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front Aging Neurosci. 2017. https://doi.org/10.3389/fnagi.2016.00336.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:1–24.

    Article  Google Scholar 

  43. Ten Brinke LF, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49(4):248–54.

    Article  PubMed  Google Scholar 

  44. Tarumi T, et al. Exercise training in amnestic mild cognitive impairment: a one-year randomized controlled trial. J Alzheimers Dis. 2019;71(2):421–33.

    Article  PubMed  Google Scholar 

  45. Krogh J, et al. The effect of exercise on hippocampal volume and neurotrophines in patients with major depression—a randomized clinical trial. J Affect Disord. 2014;165:24–30.

    Article  PubMed  Google Scholar 

  46. Gylling AT, et al. The influence of prolonged strength training upon muscle and fat in healthy and chronically diseased older adults. Exp Gerontol. 2020;136:110939.

    Article  PubMed  Google Scholar 

  47. Suo C, et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry. 2016;21(11):1633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niemann C, et al. Exercise-induced changes in basal ganglia volume and cognition in older adults. Neurosci. 2014;281:147–63.

    Article  CAS  Google Scholar 

  49. Nagamatsu LS, et al. Exercise mode moderates the relationship between mobility and basal ganglia volume in healthy older adults. J Am Geriatr Soc. 2016;64(1):102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14(23):2919–37.

    Article  CAS  PubMed  Google Scholar 

  51. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–72.

    Article  CAS  PubMed  Google Scholar 

  52. Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270(5236):593–8.

    Article  CAS  PubMed  Google Scholar 

  53. Pedersen BK. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383–92.

    Article  PubMed  Google Scholar 

  54. Cheng A, et al. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism. J Neurochem. 2007;100(6):1515–30.

    CAS  PubMed  Google Scholar 

  55. Benraiss A, et al. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci. 2001;21(17):6718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin CY, et al. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochem Pharmacol. 2014;91(4):522–33.

    Article  CAS  PubMed  Google Scholar 

  58. Dinoff A, et al. The Effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS ONE. 2016;11(9):e0163037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res. 2015;60:56–64.

    Article  PubMed  Google Scholar 

  60. Marinus N, et al. The impact of different types of exercise training on peripheral blood brain-derived neurotrophic factor concentrations in older adults: a meta-analysis. Sports Med. 2019;49:1529–46.

    Article  PubMed  Google Scholar 

  61. Jørgensen MLK, et al. Plasma brain-derived neurotrophic factor (BDNF) and sphingosine-1-phosphat (S1P) are NOT the main mediators of neuroprotection induced by resistance training in persons with multiple sclerosis—a randomized controlled trial. Mult Scler Relat Disord. 2019;31:106–11.

    Article  PubMed  Google Scholar 

  62. Gejl AK, et al. Associations between serum and plasma brain-derived neurotrophic factor and influence of storage time and centrifugation strategy. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-45976-5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Polacchini A, et al. A method for reproducible measurements of serum BDNF: comparison of the performance of six commercial assays. Sci Rep. 2015. https://doi.org/10.1038/srep1798910.1038/srep17989.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu Y, et al. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Lab Invest. 2019;99(7):943–57.

    Article  PubMed  Google Scholar 

  65. Seo DY, et al. Exercise and neuroinflammation in health and disease. Int Neurourol J. 2019;23(Suppl 2):S82-92.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spielman LJ, Little JP, Klegeris A. Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull. 2016;125:19–29.

    Article  CAS  PubMed  Google Scholar 

  67. Gomez-Rubio P, Trapero I. The effects of exercise on IL-6 levels and cognitive performance in patients with schizophrenia. Diseases. 2019;7(1):11.

    Article  CAS  PubMed Central  Google Scholar 

  68. Negaresh R, et al. Effects of exercise training on cytokines and adipokines in multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2018;24:91–100.

    Article  PubMed  Google Scholar 

  69. Monteiro-Junior RS, et al. Effect of exercise on inflammatory profile of older persons: systematic review and meta-analyses. J Phys Act Health. 2018;15(1):64–71.

    Article  PubMed  Google Scholar 

  70. Liberman K, et al. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Curr Opin Clin Nutr Metab Care. 2017;20(1):30–53.

    Article  PubMed  Google Scholar 

  71. Zivadinov R, et al. Mechanisms of action of disease-modifying agents and brain volume changes in multiple sclerosis. Neurology. 2008;71(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  72. Vidal-Jordana A, et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19(9):1175–81.

    Article  CAS  PubMed  Google Scholar 

  73. Mosconi L, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging. 2008;29(5):676–92.

    Article  CAS  PubMed  Google Scholar 

  74. Branger P, et al. The effect of disease-modifying drugs on brain atrophy in relapsing–remitting multiple sclerosis: a meta-analysis. PLoS ONE. 2016;11(3):e0149685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Tsivgoulis G, et al. The effect of disease modifying therapies on disease progression in patients with relapsing–remitting multiple sclerosis: a systematic review and meta-analysis. PLoS ONE. 2015;10(12):e0144538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kelly ME, et al. The impact of exercise on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev. 2014;16(1):12–31.

    Article  PubMed  Google Scholar 

  77. Northey JM, et al. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154–60.

    Article  PubMed  Google Scholar 

  78. Gharakhanlou R, et al. Exercise training and cognitive performance in persons with multiple sclerosis: a systematic review and multilevel meta-analysis of clinical trials. Mult Scler. 2020. https://doi.org/10.1177/1352458520917935.

    Article  PubMed  Google Scholar 

  79. Herold F, et al. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements—a systematic review. Eur Rev Aging Phys Act. 2019;16:10.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LGH, DLH, SFE, and UD contributed to the conception of the study and to the development of the search strategy. LGH and DLH conducted the systematic search and completed the acquisition of data. LGH and DLH performed the data analysis. LGH took the lead in writing the manuscript. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Lars G. Hvid.

Ethics declarations

Funding

No external funding was provided for this study.

Conflict of interest

The authors (LGH, DLH, SFE, UD) declare that they have no conflicts of interest relevant to the content of this article.

Ethical approval

The manuscript does not contain patient data, and ethical approval was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hvid, L.G., Harwood, D.L., Eskildsen, S.F. et al. A Critical Systematic Review of Current Evidence on the Effects of Physical Exercise on Whole/Regional Grey Matter Brain Volume in Populations at Risk of Neurodegeneration. Sports Med 51, 1651–1671 (2021). https://doi.org/10.1007/s40279-021-01453-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-021-01453-6

Navigation