Gianotti SM, Marshall SW, Hume PA, et al. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J Sci Med Sport. 2009;12(6):622–7. doi:10.1016/j.jsams.2008.07.005.
Article
PubMed
Google Scholar
Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–50.
CAS
Article
PubMed
Google Scholar
Brophy RH, Zeltser D, Wright RW, et al. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: incidence and treatment. Arthroscopy. 2010;26(1):112–20. doi:10.1016/j.arthro.2009.09.002.
Article
PubMed
Google Scholar
Meuffels DE, Favejee MM, Vissers MM, et al. Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med. 2009;43(5):347–51. doi:10.1136/bjsm.2008.049403.
CAS
Article
PubMed
Google Scholar
Oiestad BE, Engebretsen L, Storheim K, et al. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37(7):1434–43. doi:10.1177/0363546509338827.
Article
PubMed
Google Scholar
Yoon KH, Yoo JH, Kim KI. Bone contusion and associated meniscal and medial collateral ligament injury in patients with anterior cruciate ligament rupture. J Bone Jt Surg Am. 2011;93(16):1510–8. doi:10.2106/JBJS.J.01320.
Article
Google Scholar
Meuffels DE, Poldervaart MT, Diercks RL, et al. Guideline on anterior cruciate ligament injury. Acta Orthop. 2012;83(4):379–86. doi:10.3109/17453674.2012.704563.
Article
PubMed
PubMed Central
Google Scholar
Jameson SS, Dowen D, James P, et al. Complications following anterior cruciate ligament reconstruction in the English NHS. Knee. 2012;19(1):14–9. doi:10.1016/j.knee.2010.11.011.
Article
PubMed
Google Scholar
Granan LP, Forssblad M, Lind M, et al. The Scandinavian ACL registries 2004–2007: baseline epidemiology. Acta Orthop. 2009;80(5):563–7. doi:10.3109/17453670903350107.
Article
PubMed
PubMed Central
Google Scholar
Granan LP, Bahr R, Steindal K, et al. Development of a national cruciate ligament surgery registry: the Norwegian National Knee Ligament Registry. Am J Sports Med. 2008;36(2):308–15. doi:10.1177/0363546507308939.
Article
PubMed
Google Scholar
Lind M, Menhert F, Pedersen AB. The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc. 2009;17(2):117–24. doi:10.1007/s00167-008-0654-3.
Article
PubMed
Google Scholar
Janssen KW, Orchard JW, Driscoll TR, et al. High incidence and costs for anterior cruciate ligament reconstructions performed in Australia from 2003–2004 to 2007–2008: time for an anterior cruciate ligament register by Scandinavian model? Scand J Med Sci Sports. 2012;22(4):495–501. doi:10.1111/j.1600-0838.2010.01253.x.
CAS
Article
PubMed
Google Scholar
Buller LT, Best MJ, Baraga MG, et al. Trends in anterior cruciate ligament reconstruction in the United States. Orthop J Sports Med. 2015;3(1):2325967114563664. doi:10.1177/2325967114563664.
Article
PubMed
Google Scholar
Mather RC 3rd, Koenig L, Kocher MS, et al. Societal and economic impact of anterior cruciate ligament tears. J Bone Jt Surg Am. 2013;95(19):1751–9. doi:10.2106/JBJS.L.01705.
Article
Google Scholar
Joseph AM, Collins CL, Henke NM, et al. A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train. 2013;48(6):810–7. doi:10.4085/1062-6050-48.6.03.
Article
PubMed
PubMed Central
Google Scholar
Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. doi:10.1177/0363546504269591.
Article
PubMed
Google Scholar
Orchard J, Seward H, McGivern J, et al. Intrinsic and extrinsic risk factors for anterior cruciate ligament injury in Australian footballers. Am J Sports Med. 2001;29(2):196–200.
CAS
PubMed
Google Scholar
Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21(4):535–9.
CAS
Article
PubMed
Google Scholar
Hashemi J, Chandrashekar N, Mansouri H, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62. doi:10.1177/0363546509349055.
Article
PubMed
Google Scholar
Slauterbeck JR, Fuzie SF, Smith MP, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37(3):275–8.
PubMed
PubMed Central
Google Scholar
Hewett TE, Myer GD, Ford KR. Anterior cruciate ligament injuries in female athletes: part 1, mechanisms and risk factors. Am J Sports Med. 2006;34(2):299–311. doi:10.1177/0363546505284183.
Article
PubMed
Google Scholar
Flynn RK, Pedersen CL, Birmingham TB, et al. The familial predisposition toward tearing the anterior cruciate ligament: a case control study. Am J Sports Med. 2005;33(1):23–8.
Article
PubMed
Google Scholar
Hewett TE, Lynch TR, Myer GD, et al. Multiple risk factors related to familial predisposition to anterior cruciate ligament injury: fraternal twin sisters with anterior cruciate ligament ruptures. Br J Sports Med. 2010;44(12):848–55.
CAS
Article
PubMed
Google Scholar
John R, Dhillon MS, Sharma S, et al. Is there a genetic predisposition to anterior cruciate ligament tear? A systematic review. Am J Sports Med. 2016;. doi:10.1177/0363546515624467.
Google Scholar
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi:10.1136/bmj.b2535.
Article
PubMed
PubMed Central
Google Scholar
Offringa M, Assendelft WJJ, Scholten RJPM. Inleiding in evidence-based medicine (Introduction to evidence-based medicine). Klinisch handelen gebaseerd op bewijsmateriaal (Clinical practice based on evidence). 3rd ed. Houten: Bohn, Stafleu, Van Loghum; 2008.
van Tulder M, Furlan A, Bombardier C, et al. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group. Spine (Phila Pa 1976). 2003;28(12):1290–9. doi:10.1097/01.BRS.0000065484.95996.AF.
Google Scholar
Ficek K, Cieszczyk P, Kaczmarczyk M, et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J Sci Med Sport. 2013;16(5):396–400. doi:10.1016/j.jsams.2012.10.004.
Article
PubMed
Google Scholar
Ficek K, Stepien-Slodkowska M, Kaczmarczyk M, et al. Does the A9285G polymorphism in collagen type XII alpha1 gene associate with the risk of anterior cruciate ligament ruptures? Balk J Med Genet. 2014;17(1):41–6. doi:10.2478/bjmg-2014-0022.
CAS
Google Scholar
Khoschnau S, Melhus H, Jacobson A, et al. Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med. 2008;36(12):2432–6. doi:10.1177/0363546508320805.
Article
PubMed
Google Scholar
Khoury LE, Posthumus M, Collins M, et al. ELN and FBN2 gene variants as risk factors for two sports-related musculoskeletal injuries. Int J Sports Med. 2015;36(4):333–7. doi:10.1055/s-0034-1390492.
PubMed
Google Scholar
Malila S, Yuktanandana P, Saowaprut S, et al. Association between matrix metalloproteinase-3 polymorphism and anterior cruciate ligament ruptures. Genet Mol Res. 2011;10(4):4158–65.
CAS
Article
PubMed
Google Scholar
Mannion S, Mtintsilana A, Posthumus M, et al. Genes encoding proteoglycans are associated with the risk of anterior cruciate ligament ruptures. Br J Sports Med. 2014;48(22):1640–6. doi:10.1136/bjsports-2013-093201.
Article
PubMed
Google Scholar
O’Connell K, Knight H, Ficek K, et al. Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. Eur J Sport Sci. 2015;15(4):341–50. doi:10.1080/17461391.2014.936324.
Article
PubMed
Google Scholar
Posthumus M, September AV, Keegan M, et al. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med. 2009;43(5):352–6.
CAS
Article
PubMed
Google Scholar
Posthumus M, September AV, O’Cuinneagain D, et al. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med. 2009;37(11):2234–40. doi:10.1177/0363546509338266.
Article
PubMed
Google Scholar
Posthumus M, September AV, O’Cuinneagain D, et al. The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br J Sports Med. 2010;44(16):1160–5. doi:10.1136/bjsm.2009.060756.
Article
PubMed
Google Scholar
Posthumus M, Collins M, van der Merwe L, et al. Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scand J Med Sci Sports. 2012;22(4):523–33.
CAS
Article
PubMed
Google Scholar
Rahim M, Gibbon A, Hobbs H, et al. The association of genes involved in the angiogenesis-associated signaling pathway with risk of anterior cruciate ligament rupture. J Orthop Res. 2014;32(12):1612–8. doi:10.1002/jor.22705.
CAS
Article
PubMed
Google Scholar
Raleigh SM, Posthumus M, O’Cuinneagain D, et al. The GDF5 gene and anterior cruciate ligament rupture. Int J Sports Med. 2013;34(4):364–7.
CAS
PubMed
Google Scholar
Stępień-Słodkowska M, Ficek K, Eider J, et al. The +1245g/t polymorphisms in the collagen type I alpha 1 (col1a1) gene in Polish skiers with anterior cruciate ligament injury. Biol Sport. 2013;30(1):57–60. doi:10.5604/20831862.1029823.
Article
PubMed
PubMed Central
Google Scholar
Stępień-Słodkowska M, Ficek K, Maciejewska-Karlowska A, et al. Overrepresentation of the COL3A1 AA genotype in Polish skiers with anterior cruciate ligament injury. Biol Sport. 2015;32(2):143–7. doi:10.5604/20831862.1144416.
PubMed
PubMed Central
Google Scholar
Stępień-Słodkowska M, Ficek K, Kaczmarczyk M, et al. The variants within the COL5A1 gene are associated with reduced risk of anterior cruciate ligament injury in skiers. J Hum Kinet. 2015;45:103–11. doi:10.1515/hukin-2015-0011.
PubMed
PubMed Central
Google Scholar
Rossert J, Terraz C, Dupont S. Regulation of type I collagen genes expression. Nephrol Dial Transpl. 2000;15(Suppl 6):66–8.
CAS
Article
Google Scholar
Liu X, Wu H, Byrne M, et al. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA. 1997;94(5):1852–6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Birk DE, Fitch JM, Babiarz JP, et al. Collagen type I and type V are present in the same fibril in the avian corneal stroma. J Cell Biol. 1988;106(3):999–1008.
CAS
Article
PubMed
Google Scholar
Chiquet M, Birk DE, Bonnemann CG, et al. Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. Int J Biochem Cell Biol. 2014;53:51–4. doi:10.1016/j.biocel.2014.04.020.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kalamajski S, Oldberg A. The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 2010;29(4):248–53. doi:10.1016/j.matbio.2010.01.001.
CAS
Article
PubMed
Google Scholar
Pufe T, Harde V, Petersen W, et al. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol. 2004;202(3):367–74. doi:10.1002/path.1527.
CAS
Article
PubMed
Google Scholar
Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J Natl Cancer Inst. 2000;92(14):1151–8.
CAS
Article
PubMed
Google Scholar
van Meurs JB, Uitterlinden AG. Osteoarthritis year 2012 in review: genetics and genomics. Osteoarthr Cartil. 2012;20(12):1470–6. doi:10.1016/j.joca.2012.08.007.
Article
PubMed
Google Scholar
Zeggini E, Panoutsopoulou K, Southam L, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet. 2012;380(9844):815–23. doi:10.1016/S0140-6736(12)60681-3.
Article
PubMed
Google Scholar
Evangelou E, Valdes AM, Kerkhof HJ, et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis. 2011;70(2):349–55. doi:10.1136/ard.2010.132787.
CAS
Article
PubMed
Google Scholar
Castano Betancourt MC, Cailotto F, Kerkhof HJ, et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci USA. 2012;109(21):8218–23. doi:10.1073/pnas.1119899109.
Article
PubMed
PubMed Central
Google Scholar
Birkedal-Hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250.
CAS
Article
PubMed
Google Scholar
Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 2004;4(2):199–201.
CAS
PubMed
Google Scholar
Claessen FM, de Vos RJ, Reijman M, et al. Predictors of primary Achilles tendon ruptures. Sports Med. 2014;44(9):1241–59. doi:10.1007/s40279-014-0200-z.
Article
PubMed
Google Scholar
Ben-Zaken S, Meckel Y, Lidor R, et al. Genetic profiles and prediction of the success of young athletes’ transition from middle- to long-distance runs: an exploratory study. Pediatr Exerc Sci. 2013;25(3):435–47.
Article
PubMed
Google Scholar
Massidda M, Scorcu M, Calo CM. New genetic model for predicting phenotype traits in sports. Int J Sports Physiol Perform. 2014;9(3):554–60. doi:10.1123/ijspp.2012-0339.
Article
PubMed
Google Scholar
Taylor JB, Waxman JP, Richter SJ, et al. Evaluation of the effectiveness of anterior cruciate ligament injury prevention programme training components: a systematic review and meta-analysis. Br J Sports Med. 2015;49(2):79–87. doi:10.1136/bjsports-2013-092358.
Article
PubMed
Google Scholar
Swart E, Redler L, Fabricant PD, et al. Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. J Bone Jt Surg Am. 2014;96(9):705–11. doi:10.2106/JBJS.M.00560.
Article
Google Scholar
Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39(6):324–9. doi:10.1136/bjsm.2005.018341.
CAS
Article
PubMed
PubMed Central
Google Scholar
September AV, Posthumus M, Collins M. Application of genomics in the prevention, treatment and management of achilles tendinopathy and anterior cruciate ligament ruptures. Recent Pat DNA Gene Seq. 2012;6(3):216–23.
CAS
Article
PubMed
Google Scholar
McGowan ML, Glinka A, Highland J, et al. Genetics patients’ perspectives on clinical genomic testing. Per Med. 2013;10(4):339–47. doi:10.2217/pme.13.32.
CAS
Article
PubMed
PubMed Central
Google Scholar
Callier S. Genetic privacy in sports: clearing the hurdles. Recent Pat DNA Gene Seq. 2012;6(3):224–8.
CAS
Article
PubMed
Google Scholar