Skip to main content
Log in

Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug–gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsot A, Boulamery A, Bruguerolle B, et al. Population pharmacokinetic analysis during the first 2 years of life: an overview. Clin Pharmacokinet. 2012;51:787–98. https://doi.org/10.1007/s40262-012-0015-8.

    Article  CAS  PubMed  Google Scholar 

  2. Stevens A, Hanson D, Whatmore A, et al. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genom. 2013;14(1):547. https://doi.org/10.1186/1471-2164-14-547.

    Article  CAS  Google Scholar 

  3. Namerow LB, Walker SA, Loftus M, et al. Pharmacogenomics: an update for child and adolescent psychiatry. Curr Psychiatry Rep. 2020;22(5):26. https://doi.org/10.1007/s11920-020-01145-4.

    Article  PubMed  Google Scholar 

  4. Ramsey LB, Namerow LB, Bishop JR, et al. Thoughtful clinical use of pharmacogenetics in child and adolescent psychopharmacology. J Am Acad Child Adolesc Psychiatry. 2021;60(6):660–4. https://doi.org/10.1016/j.jaac.2020.08.006.

    Article  PubMed  Google Scholar 

  5. Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–34. https://doi.org/10.1002/cpt.147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fan X, Zhang H, Wen Z, et al. Effects of CYP2C19, CYP2C9 and CYP3A4 gene polymorphisms on plasma voriconazole levels in Chinese pediatric patients. Pharmacogenet Genom. 2022;32(4):152–8. https://doi.org/10.1097/fpc.0000000000000464.

    Article  CAS  Google Scholar 

  7. Allegra S, Fatiguso G, Francia S, et al. Pharmacogenetic of voriconazole antifungal agent in pediatric patients. Pharmacogenomics. 2018;19(11):913–25. https://doi.org/10.2217/pgs-2017-0173.

    Article  CAS  PubMed  Google Scholar 

  8. Espinoza N, Galdames J, Navea D, et al. Frequency of the CYP2C19*17 polymorphism in a Chilean population and its effect on voriconazole plasma concentration in immunocompromised children. Sci Rep. 2019;9(1):8863. https://doi.org/10.1038/s41598-019-45345-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hicks JK, Crews KR, Flynn P, et al. Voriconazole plasma concentrations in immunocompromised pediatric patients vary by CYP2C19 diplotypes. Pharmacogenomics. 2014;15(8):1065–78. https://doi.org/10.2217/pgs.14.53.

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Wu Y, He Y, et al. Combined effect of CYP2C19 genetic polymorphisms and c-reactive protein on voriconazole exposure and dosing in immunocompromised children. Front Pediatr. 2022;10: 846411. https://doi.org/10.3389/fped.2022.846411.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Narita A, Muramatsu H, Sakaguchi H, et al. Correlation of CYP2C19 phenotype with voriconazole plasma concentration in children. J Pediatr Hematol Oncol. 2013;35(5):e219–23. https://doi.org/10.1097/MPH.0b013e3182880eaa.

    Article  CAS  PubMed  Google Scholar 

  12. Muto C, Shoji S, Tomono Y, et al. Population pharmacokinetic analysis of voriconazole from a pharmacokinetic study with immunocompromised Japanese pediatric subjects. Antimicrob Agents Chemother. 2015;59(6):3216–23. https://doi.org/10.1128/aac.04993-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang JQ, Morin S, Verstuyft C, et al. Frequency of cytochrome P450 2C9 allelic variants in the Chinese and French populations. Fundam Clin Pharmacol. 2003;17(3):373–6. https://doi.org/10.1046/j.1472-8206.2003.00148.x.

    Article  CAS  PubMed  Google Scholar 

  14. Elens L, van Gelder T, Hesselink DA, et al. CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013;14(1):47–62. https://doi.org/10.2217/pgs.12.187.

    Article  CAS  PubMed  Google Scholar 

  15. Chuwongwattana S, Jantararoungtong T, Prommas S, et al. Impact of CYP2C19, CYP3A4, ABCB1, and FMO3 genotypes on plasma voriconazole in Thai patients with invasive fungal infections. Pharmacol Res Perspect. 2020;8(6): e00665. https://doi.org/10.1002/prp2.665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tilen R, Paioni P, Goetschi AN, et al. Pharmacogenetic analysis of voriconazole treatment in children. Pharmaceutics. 2022;14:6. https://doi.org/10.3390/pharmaceutics14061289.

    Article  CAS  Google Scholar 

  17. Takahashi T, Mohamud MA, Smith AR, et al. CYP2C19 phenotype and body weight-guided voriconazole initial dose in infants and children after hematopoietic cell transplantation. Antimicrob Agents Chemother. 2021;65(9): e0062321. https://doi.org/10.1128/aac.00623-21.

    Article  CAS  PubMed  Google Scholar 

  18. Liu L, Zhou X, Wu T, et al. Dose optimisation of voriconazole with therapeutic drug monitoring in children: a single-centre experience in China. Int J Antimicrobial Agents. 2017;49(4):483–7. https://doi.org/10.1016/j.ijantimicag.2016.11.028.

    Article  CAS  Google Scholar 

  19. Tian X, Zhang C, Qin Z, et al. Impact of CYP2C19 phenotype and drug-drug interactions on voriconazole concentration in pediatric patients. Antimicrobial Agents Chemotherapy. 2021;65(9): e0020721. https://doi.org/10.1128/aac.00207-21.

    Article  CAS  PubMed  Google Scholar 

  20. Moriyama B, Obeng AO, Barbarino J, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. https://doi.org/10.1002/cpt.583.

    Article  CAS  PubMed  Google Scholar 

  21. Swen JJ, Nijenhuis M, de Boer A, et al. Pharmacogenetics: from bench to byte–an update of guidelines. Clin Pharmacol Ther. 2011;89(5):662–73. https://doi.org/10.1038/clpt.2011.34.

    Article  CAS  PubMed  Google Scholar 

  22. Teusink A, Vinks A, Zhang K, et al. Genotype-directed dosing leads to optimized voriconazole levels in pediatric patients receiving hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(3):482–6. https://doi.org/10.1016/j.bbmt.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  23. García-García I, Dapía I, Montserrat J, et al. Experience of a strategy including CYP2C19 preemptive genotyping followed by therapeutic drug monitoring of voriconazole in patients undergoing allogenic hematopoietic stem cell transplantation. Front Pharmacol. 2021;12: 717932. https://doi.org/10.3389/fphar.2021.717932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44. https://doi.org/10.1128/aac.00751-08.

    Article  CAS  PubMed  Google Scholar 

  25. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7. https://doi.org/10.1124/dmd.31.5.540.

    Article  CAS  PubMed  Google Scholar 

  26. Salem AH, Fletcher CV, Brundage RC. Pharmacometric characterization of efavirenz developmental pharmacokinetics and pharmacogenetics in HIV-infected children. Antimicrob Agents Chemother. 2014;58(1):136–43. https://doi.org/10.1128/aac.01738-13.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Luo M, Chapel S, Sevinsky H, et al. Population pharmacokinetics analysis to inform efavirenz dosing recommendations in pediatric HIV patients aged 3 months to 3 years. Antimicrob Agents Chemother. 2016;60(6):3676–86. https://doi.org/10.1128/aac.02678-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bienczak A, Cook A, Wiesner L, et al. The impact of genetic polymorphisms on the pharmacokinetics of efavirenz in African children. Br J Clin Pharmacol. 2016;82(1):185–98. https://doi.org/10.1111/bcp.12934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sinxadi PZ, Leger PD, McIlleron HM, et al. Pharmacogenetics of plasma efavirenz exposure in HIV-infected adults and children in South Africa. Br J Clin Pharmacol. 2015;80(1):146–56. https://doi.org/10.1111/bcp.12590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Ma Q, Zhao Y, et al. Impact of single nucleotide polymorphisms on plasma concentrations of efavirenz and lopinavir/ritonavir in Chinese children infected with the human immunodeficiency virus. Pharmacotherapy. 2017;37(9):1073–80. https://doi.org/10.1002/phar.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saitoh A, Fletcher CV, Brundage R, et al. Efavirenz pharmacokinetics in HIV-1-infected children are associated with CYP2B6-G516T polymorphism. Journal of acquired immune deficiency syndromes (1999). 2007;45(3):280-5. http://doi.org/https://doi.org/10.1097/QAI.0b013e318040b29e.

  32. Puthanakit T, Tanpaiboom P, Aurpibul L, et al. Plasma efavirenz concentrations and the association with CYP2B6-516G>T polymorphism in HIV-infected Thai Children [Article]. Antivir Ther. 2009;14(3):315–20.

    Article  CAS  PubMed  Google Scholar 

  33. Desta Z, Gammal RS, Gong L, et al. Clinical Pharmacogenetics implementation consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726–33. https://doi.org/10.1002/cpt.1477.

    Article  PubMed  Google Scholar 

  34. Andrews LM, Hesselink DA, van Gelder T, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. 2018;57(4):475–89. https://doi.org/10.1007/s40262-017-0567-8.

    Article  CAS  PubMed  Google Scholar 

  35. Billing H, Höcker B, Fichtner A, et al. Single-nucleotide polymorphism of CYP3A5 impacts the exposure to tacrolimus in pediatric renal transplant recipients: a pharmacogenetic substudy of the TWIST trial [Article]. Ther Drug Monit. 2017;39(1):21–8. https://doi.org/10.1097/FTD.0000000000000361.

    Article  CAS  PubMed  Google Scholar 

  36. Prytuła AA, Cransberg K, Bouts AHM, et al. The effect of weight and CYP3A5 genotype on the population pharmacokinetics of tacrolimus in stable paediatric renal transplant recipients [Article]. Clin Pharmacokinet. 2016;55(9):1129–43. https://doi.org/10.1007/s40262-016-0390-7.

    Article  CAS  PubMed  Google Scholar 

  37. Guy-Viterbo V, Baudet H, Elens L, et al. Influence of donor-recipient CYP3A4/5 genotypes, age and fluconazole on tacrolimus pharmacokinetics in pediatric liver transplantation: a population approach. Pharmacogenomics. 2014;15(9):1207–21. https://doi.org/10.2217/pgs.14.75.

    Article  CAS  PubMed  Google Scholar 

  38. Mo X, Li J, Liu Y, et al. Kidney podocyte-associated gene polymorphisms affect tacrolimus concentration in pediatric patients with refractory nephrotic syndrome. Pharmacogenom J. 2020;20(4):543–52. https://doi.org/10.1038/s41397-019-0141-x.

    Article  CAS  Google Scholar 

  39. Li L, Zhu M, Li DY, et al. Dose tailoring of tacrolimus based on a non-linear pharmacokinetic model in children with refractory nephrotic syndrome. Int Immunopharmacol. 2021;98: 107827. https://doi.org/10.1016/j.intimp.2021.107827.

    Article  CAS  PubMed  Google Scholar 

  40. Gijsen VMGJ, van Schaik RHN, Soldin OP, et al. P450 oxidoreductase*28 ( POR*28) and tacrolimus disposition in pediatric kidney transplant recipients—a pilot study. Ther Drug Monit. 2014;36(2):152–8. https://doi.org/10.1097/FTD.0b013e3182a3f282.

    Article  CAS  PubMed  Google Scholar 

  41. Knops N, Herman J, van Dyck M, et al. Tacrolimus dose requirements in paediatric renal allograft recipients are characterized by a biphasic course determined by age and bone maturation. Br J Clin Pharmacol. 2017;83(4):863–74. https://doi.org/10.1111/bcp.13174.

    Article  CAS  PubMed  Google Scholar 

  42. Yang TH, Chen YK, Xue F, et al. Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation [Article]. Int J Clin Pract. 2015;69(S183):53–62. https://doi.org/10.1111/ijcp.12667.

    Article  CAS  Google Scholar 

  43. Birdwell KA, Decker B, Barbarino JM, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19–24. https://doi.org/10.1002/cpt.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–94. https://doi.org/10.1016/s0169-409x(02)00066-2.

    Article  CAS  PubMed  Google Scholar 

  45. Elens L, Bouamar R, Hesselink DA, et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. clin Chem. 2011;57(11):1574–83. https://doi.org/10.1373/clinchem.2011.165613.

    Article  CAS  PubMed  Google Scholar 

  46. Min S, Papaz T, Lafreniere-Roula M, et al. A randomized clinical trial of age and genotype-guided tacrolimus dosing after pediatric solid organ transplantation. Pediatr Transplant. 2018. https://doi.org/10.1111/petr.13285.

    Article  PubMed  Google Scholar 

  47. Van Driest SL, Webber SA. Pharmacogenomics personalizing pediatric heart transplantation. Circulation. 2015;131(5):503–12. https://doi.org/10.1161/Circulationaha.114.001382.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Krall P, Yañez D, Rojo A, et al. CYP3A5 and UGT1A9 polymorphisms influence immunosuppressive therapy in pediatric kidney transplant recipients. Front Pharmacol. 2021;12: 653525. https://doi.org/10.3389/fphar.2021.653525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao W, Fakhoury M, Deschênes G, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients [Article]. J Clin Pharmacol. 2010;50(11):1280–91. https://doi.org/10.1177/0091270009357429.

    Article  CAS  PubMed  Google Scholar 

  50. Fukuda T, Goebel J, Cox S, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9. https://doi.org/10.1097/FTD.0b013e3182708f84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohmann EL, Burckart GJ, Brooks MM, et al. Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients. J Heart Lung Transplant. 2010;29(5):509–16. https://doi.org/10.1016/j.healun.2009.11.602.

    Article  PubMed  Google Scholar 

  52. Burckart GJ, Figg WD 2nd, Brooks MM, et al. Multi-institutional study of outcomes after pediatric heart transplantation: candidate gene polymorphism analysis of ABCC2. J Pediatr Pharmacol Therap. 2014;19(1):16–24. https://doi.org/10.5863/1551-6776-19.1.16.

    Article  Google Scholar 

  53. Prausa SE, Fukuda T, Maseck D, et al. UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;85(5):495–500. https://doi.org/10.1038/clpt.2009.3.

    Article  CAS  PubMed  Google Scholar 

  54. Varnell CD, Fukuda T, Kirby CL, et al. Mycophenolate mofetil-related leukopenia in children and young adults following kidney transplantation: Influence of genes and drugs. Pediatr Transplant. 2017. https://doi.org/10.1111/petr.13033.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li TF, Hu L, Ma XL, et al. Population pharmacokinetics of cyclosporine in Chinese children receiving hematopoietic stem cell transplantation. Acta Pharmacol Sin. 2019;40(12):1603–10. https://doi.org/10.1038/s41401-019-0277-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cvetković M, Zivković M, Bundalo M, et al. Effect of age and allele variants of CYP3A5, CYP3A4, and POR genes on the pharmacokinetics of cyclosporin A in pediatric renal transplant recipients from Serbia. Ther Drug Monit. 2017;39(6):589–95. https://doi.org/10.1097/ftd.0000000000000442.

    Article  PubMed  Google Scholar 

  57. Turolo S, Tirelli AS, Ferraresso M, et al. Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacol Rep. 2010;62(6):1159–69. https://doi.org/10.1016/s1734-1140(10)70378-9.

    Article  CAS  PubMed  Google Scholar 

  58. Fanta S, Niemi M, Jönsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genom. 2008;18(2):77–90. https://doi.org/10.1097/FPC.0b013e3282f3ef72.

    Article  CAS  Google Scholar 

  59. Yanagimachi M, Naruto T, Tanoshima R, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin Transplant. 2010;24(6):855–61. https://doi.org/10.1111/j.1399-0012.2009.01181.x.

    Article  CAS  PubMed  Google Scholar 

  60. Ramsey LB, Brown JT, Vear SI, et al. Gene-based dose optimization in children. Annu Rev Pharmacol. 2020;60:311–31. https://doi.org/10.1146/annurev-pharmtox-010919-023459.

    Article  CAS  Google Scholar 

  61. Man M, Farmen M, Dumaual C, et al. Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans. J Clin Pharmacol. 2010;50(8):929–40. https://doi.org/10.1177/0091270009355161.

    Article  CAS  PubMed  Google Scholar 

  62. Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst. 1999;91(23):2001–8. https://doi.org/10.1093/jnci/91.23.2001.

    Article  CAS  PubMed  Google Scholar 

  63. Relling MV, Schwab M, Whirl-Carrillo M, et al. Clinical pharmacogenetics implementation consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther. 2019;105(5):1095–105. https://doi.org/10.1002/cpt.1304.

    Article  CAS  PubMed  Google Scholar 

  64. Moriyama T, Yang YL, Nishii R, et al. Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood. 2017;130(10):1209–12. https://doi.org/10.1182/blood-2017-05-782383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tanaka Y, Kato M, Hasegawa D, et al. Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol. 2015;171(1):109–15. https://doi.org/10.1111/bjh.13518.

    Article  CAS  PubMed  Google Scholar 

  66. Yang JJ, Landier W, Yang W, et al. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol. 2015;33(11):1235–42. https://doi.org/10.1200/jco.2014.59.4671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pavlovic S, Kotur N, Stankovic B, et al. Clinical application of thiopurine pharmacogenomics in pediatrics. Curr Drug Metab. 2020;21(1):53–62. https://doi.org/10.2174/1389200221666200303113456.

    Article  CAS  PubMed  Google Scholar 

  68. Relling MV, Gardner EE, Sandborn WJ, et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther. 2011;89(3):387–91. https://doi.org/10.1038/clpt.2010.320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lennard L, Cartwright CS, Wade R, et al. Thiopurine dose intensity and treatment outcome in childhood lymphoblastic leukaemia: the influence of thiopurine methyltransferase pharmacogenetics. Br J Haematol. 2015;169(2):228–40. https://doi.org/10.1111/bjh.13240.

    Article  CAS  PubMed  Google Scholar 

  70. Petrykey K, Andelfinger GU, Laverdière C, et al. Genetic factors in anthracycline-induced cardiotoxicity in patients treated for pediatric cancer. Expert Opin Drug Metab Toxicol. 2020;16(10):865–83. https://doi.org/10.1080/17425255.2020.1807937.

    Article  CAS  PubMed  Google Scholar 

  71. Visscher H, Ross CJ, Rassekh SR, et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr Blood Cancer. 2013;60(8):1375–81. https://doi.org/10.1002/pbc.24505.

    Article  CAS  PubMed  Google Scholar 

  72. Visscher H, Ross CJD, Rassekh SR, et al. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children [Article]. J Clin Oncol. 2012;30(13):1422–8. https://doi.org/10.1200/JCO.2010.34.3467.

    Article  PubMed  Google Scholar 

  73. Krajinovic M, Elbared J, Drouin S, et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenom J. 2016;16(6):530–5. https://doi.org/10.1038/tpj.2015.63.

    Article  CAS  Google Scholar 

  74. Semsei AF, Erdelyi DJ, Ungvari I, et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol Int. 2012;36(1):79–86. https://doi.org/10.1042/cbi20110264.

    Article  CAS  PubMed  Google Scholar 

  75. Visscher H, Rassekh SR, Sandor GS, et al. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children [Article]. Pharmacogenomics. 2015;16(10):1065–76. https://doi.org/10.2217/pgs.15.61.

    Article  CAS  PubMed  Google Scholar 

  76. Aminkeng F, Ross CJ, Rassekh SR, et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–95. https://doi.org/10.1111/bcp.13008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nava T, Kassir N, Rezgui MA, et al. Incorporation of GSTA1 genetic variations into a population pharmacokinetic model for IV busulfan in paediatric hematopoietic stem cell transplantation. Br J Clin Pharmacol. 2018;84(7):1494–504. https://doi.org/10.1111/bcp.13566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ansari M, Huezo-Diaz P, Rezgui MA, et al. Influence of glutathione S-transferase gene polymorphisms on busulfan pharmacokinetics and outcome of hematopoietic stem-cell transplantation in thalassemia pediatric patients. Bone Marrow Transplant. 2016;51(3):377–83. https://doi.org/10.1038/bmt.2015.321.

    Article  CAS  PubMed  Google Scholar 

  79. Ten Brink MH, Van Bavel T, Swen JJ, et al. Effect of genetic variants GSTA1 and CYP39A1 and age on busulfan clearance in pediatric patients undergoing hematopoietic stem cell transplantation [Article]. Pharmacogenomics. 2013;14(14):1683–90. https://doi.org/10.2217/pgs.13.159.

    Article  CAS  PubMed  Google Scholar 

  80. Yuan J, Sun N, Feng X, et al. Optimization of busulfan dosing regimen in pediatric patients using a population pharmacokinetic model incorporating gst mutations [Article]. Pharmacogenom Personal Med. 2021;14:253–68. https://doi.org/10.2147/PGPM.S289834.

    Article  Google Scholar 

  81. Elhasid R, Krivoy N, Rowe JM, et al. Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010;55(6):1172–9. https://doi.org/10.1002/pbc.22739.

    Article  PubMed  Google Scholar 

  82. Nava T, Rezgui MA, Uppugunduri CRS, et al. GSTA1 genetic variants and conditioning regimen: missing key factors in dosing guidelines of busulfan in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2017;23(11):1918–24. https://doi.org/10.1016/j.bbmt.2017.07.022.

    Article  CAS  Google Scholar 

  83. Ceppi F, Langlois-Pelletier C, Gagné V, et al. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia [Article]. Pharmacogenomics. 2014;15(8):1105–16. https://doi.org/10.2217/pgs.14.68.

    Article  CAS  PubMed  Google Scholar 

  84. Guilhaumou R, Simon N, Quaranta S, et al. Population pharmacokinetics and pharmacogenetics of vincristine in paediatric patients treated for solid tumour diseases. Cancer Chemother Pharmacol. 2011;68(5):1191–8. https://doi.org/10.1007/s00280-010-1541-4.

    Article  CAS  PubMed  Google Scholar 

  85. Moore AS, Norris R, Price G, et al. Vincristine pharmacodynamics and pharmacogenetics in children with cancer: a limited-sampling, population modelling approach. J Paediatr Child Health. 2011;47(12):875–82. https://doi.org/10.1111/j.1440-1754.2011.02103.x.

    Article  PubMed  Google Scholar 

  86. Egbelakin A, Ferguson MJ, MacGill EA, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56(3):361–7. https://doi.org/10.1002/pbc.22845.

    Article  PubMed  Google Scholar 

  87. Renbarger JL, McCammack KC, Rouse CE, et al. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients [Article]. Pediatr Blood Cancer. 2008;50(4):769–71. https://doi.org/10.1002/pbc.21435.

    Article  PubMed  Google Scholar 

  88. Aplenc R, Glatfelter W, Han P, et al. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol. 2003;122(2):240–4. https://doi.org/10.1046/j.1365-2141.2003.04430.x.

    Article  CAS  PubMed  Google Scholar 

  89. Wright GEB, Amstutz U, Drögemöller BI, et al. Pharmacogenomics of vincristine-induced peripheral neuropathy implicates pharmacokinetic and inherited neuropathy genes [article]. Clin Pharmacol Ther. 2019;105(2):402–10. https://doi.org/10.1002/cpt.1179.

    Article  CAS  PubMed  Google Scholar 

  90. Budi T, Toth K, Nagy A, et al. Clinical significance of CYP2C9-status guided valproic acid therapy in children. Epilepsia. 2015;56(6):849–55. https://doi.org/10.1111/epi.13011.

    Article  CAS  PubMed  Google Scholar 

  91. Guo YJ, Hu C, He XJ, et al. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27(5):536–42. https://doi.org/10.2133/dmpk.DMPK-11-NT-144.

    Article  CAS  PubMed  Google Scholar 

  92. Algharably EA, El Hamamsy M, Hassanein SM, et al. The effect of UGT1A6 polymorphism at two loci on the clinical response to valproic acid in epileptic children [Article]. Int J Pharmac Sci Res. 2016;7(10):3986–94. https://doi.org/10.13040/IJPSR.0975-8232.7(10).3986-94.

    Article  CAS  Google Scholar 

  93. Xu S, Chen Y, Zhao M, et al. Population pharmacokinetics of valproic acid in epileptic children: effects of clinical and genetic factors. Eur J Pharmac Sci. 2018;15(122):170–8. https://doi.org/10.1016/j.ejps.2018.06.033.

    Article  CAS  Google Scholar 

  94. Nandith PB, Adiga U, Shenoy V, et al. UGT1A6 and UGT2B7 gene polymorphism and its effect in pediatric epileptic patients on sodium valproate monotherapy. Indian J Pediatr. 2021;88(8):764–70. https://doi.org/10.1007/s12098-020-03565-9.

    Article  CAS  PubMed  Google Scholar 

  95. Banawalikar N, Adiga S, Adiga U, et al. Association of UGT1A6 gene polymorphism with clinical outcome in pediatric epileptic patients on sodium valproate monotherapy. Braz J Med Biol Res. 2021;54(9): e11097. https://doi.org/10.1590/1414-431X2021e11097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feng W, Mei S, Zhu L, et al. Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures [Article]. Seizure. 2018;58:96–100. https://doi.org/10.1016/j.seizure.2018.04.006.

    Article  PubMed  Google Scholar 

  97. Monostory K, Nagy A, Tóth K, et al. Relevance of CYP2C9 function in valproate therapy. Curr Neuropharmacol. 2019;17(1):99–106. https://doi.org/10.2174/1570159x15666171109143654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tóth K, Bűdi T, Kiss Á, et al. Phenoconversion of CYP2C9 in epilepsy limits the predictive value of CYP2C9 genotype in optimizing valproate therapy. Per Med. 2015;12(3):199–207. https://doi.org/10.2217/pme.14.82.

    Article  CAS  PubMed  Google Scholar 

  99. Noai M, Soraoka H, Kajiwara A, et al. Cytochrome P450 2C19 polymorphisms and valproic acid-induced weight gain. Acta Neurol Scand. 2016;133(3):216–23. https://doi.org/10.1111/ane.12473.

    Article  CAS  PubMed  Google Scholar 

  100. Mei S, Feng W, Zhu L, et al. Effect of CYP2C19, UGT1A8, and UGT2B7 on valproic acid clearance in children with epilepsy: a population pharmacokinetic model. Eur J Clin Pharmacol. 2018;74(8):1029–36. https://doi.org/10.1007/s00228-018-2440-6.

    Article  CAS  PubMed  Google Scholar 

  101. Inoue K, Suzuki E, Yazawa R, et al. Influence of uridine diphosphate glucuronosyltransferase 2B7 -161C>T polymorphism on the concentration of valproic acid in pediatric epilepsy patients. Ther Drug Monit. 2014;36(3):406–9. https://doi.org/10.1097/ftd.0000000000000012.

    Article  CAS  PubMed  Google Scholar 

  102. Monostory K, Budi T, Toth K, et al. In response: commentary on clinical significance of CYP2C9-status-guided valproic acid therapy in children. Epilepsia. 2016;57(8):1339–40. https://doi.org/10.1111/epi.13451.

    Article  CAS  PubMed  Google Scholar 

  103. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994;47(11):1969–79. https://doi.org/10.1016/0006-2952(94)90071-X.

    Article  CAS  PubMed  Google Scholar 

  104. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. https://doi.org/10.1016/j.pharmthera.2012.12.007.

    Article  CAS  PubMed  Google Scholar 

  105. Djordjevic N, Jankovic SM, Milovanovic JR. Pharmacokinetics and pharmacogenetics of carbamazepine in children [review]. Eur J Drug Metab Pharmacokinet. 2017;42(5):729–44. https://doi.org/10.1007/s13318-016-0397-3.

    Article  CAS  PubMed  Google Scholar 

  106. Kim WJ, Lee JH, Yi J, et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genom. 2010;20(4):249–56. https://doi.org/10.1097/FPC.0b013e328338073a.

    Article  CAS  Google Scholar 

  107. Hu T, Zeng X, Tian T, et al. Association of EPHX1 polymorphisms with plasma concentration of carbamazepine in epileptic patients: Systematic review and meta-analysis. J Clin Neurosci. 2021;91:159–71. https://doi.org/10.1016/j.jocn.2021.07.009.

    Article  CAS  PubMed  Google Scholar 

  108. Zhang H, Zhang W, Li Y, et al. Correlations between UGT2B7∗2 gene polymorphisms and plasma concentrations of carbamazepine and valproic acid in epilepsy patients. Brain Develop. 2018;40(2):100–6. https://doi.org/10.1016/j.braindev.2017.09.004.

    Article  Google Scholar 

  109. Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genom. 2006;16(4):297–306. https://doi.org/10.1097/01.fpc.0000199500.46842.4a.

    Article  CAS  Google Scholar 

  110. Ueda K, Ishitsu T, Seo T, et al. Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics. 2007;8(5):435–42. https://doi.org/10.2217/14622416.8.5.435.

    Article  CAS  PubMed  Google Scholar 

  111. Lima JJ, Thomas CD, Barbarino J, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2C19 and proton pump inhibitor dosing. Clin Pharmacol Ther. 2021;109(6):1417–23. https://doi.org/10.1002/cpt.2015.

    Article  PubMed  Google Scholar 

  112. Kearns GL, Blumer J, Schexnayder S, et al. Single-dose pharmacokinetics of oral and intravenous pantoprazole in children and adolescents. J Clin Pharmacol. 2008;48(11):1356–65. https://doi.org/10.1177/0091270008321811.

    Article  CAS  PubMed  Google Scholar 

  113. Shakhnovich V, Brian Smith P, Guptill JT, et al. A population-based pharmacokinetic model approach to pantoprazole dosing for obese children and adolescents. Paediatr Drugs. 2018;20(5):483–95. https://doi.org/10.1007/s40272-018-0305-1.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gumus E, Karaca O, Babaoglu MO, et al. Evaluation of lansoprazole as a probe for assessing cytochrome P450 2C19 activity and genotype-phenotype correlation in childhood. Eur J Clin Pharmacol. 2012;68(5):629–36. https://doi.org/10.1007/s00228-011-1151-z.

    Article  CAS  PubMed  Google Scholar 

  115. Franciosi JP, Mougey EB, Williams A, et al. Association between CYP2C19*17 alleles and ph probe testing outcomes in children with symptomatic gastroesophageal reflux. J Clin Pharmacol. 2018;58(1):89–96. https://doi.org/10.1002/jcph.977.

    Article  CAS  PubMed  Google Scholar 

  116. Bernal CJ, Aka I, Carroll RJ, et al. CYP2C19 phenotype and risk of proton pump inhibitor-associated infections. Pediatrics. 2019;144:6. https://doi.org/10.1542/peds.2019-0857.

    Article  Google Scholar 

  117. Lima JJ, Lang JE, Mougey EB, et al. Association of CYP2C19 polymorphisms and lansoprazole-associated respiratory adverse effects in children. J Pediatr. 2013;163(3):686–91. https://doi.org/10.1016/j.jpeds.2013.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kearns GL, Leeder JS, Gaedigk A. Impact of the CYP2C19*17 allele on the pharmacokinetics of omeprazole and pantoprazole in children: evidence for a differential effect. Drug Metab Dispos. 2010;38(6):894–7. https://doi.org/10.1124/dmd.109.030601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cicali EJ, Blake K, Gong Y, et al. Novel implementation of genotype-guided proton pump inhibitor medication therapy in children: a pilot, randomized, multisite pragmatic trial. Cts-Clin Transl Sci. 2019;12(2):172–9. https://doi.org/10.1111/cts.12589.

    Article  CAS  Google Scholar 

  120. Tang M, Blake KV, Lima JJ, et al. Genotype tailored treatment of mild symptomatic acid reflux in children with uncontrolled asthma (GenARA): rationale and methods. Contemp Clin Trials. 2019;78:27–33. https://doi.org/10.1016/j.cct.2019.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children [short survey]. Int J Pharm. 2013;452(1–2):3–7. https://doi.org/10.1016/j.ijpharm.2012.05.079.

    Article  CAS  PubMed  Google Scholar 

  122. De Wildt SN, Tibboel D, Leeder JS. Drug metabolism for the paediatrician [review]. Arch Dis Child Educ Pract Ed. 2014;99(12):1137–42. https://doi.org/10.1136/archdischild-2013-305212.

    Article  Google Scholar 

  123. Relling MV, Altman RB, Goetz MP, et al. Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol. 2010;11(6):507–9. https://doi.org/10.1016/s1470-2045(10)70097-8.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14(8):549–58. https://doi.org/10.1038/nrg3523.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Huang.

Ethics declarations

Funding

This work was supported by the Beijing Municipal Natural Science Foundation (grant number 7192218).

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Conflict of Interest

Jinxia Zhao, Jialu Bian, Yinyu Zhao, Yuanyuan Li, Boyu Liu, Xu Hao, Shiyu He, and Lin Huang declare that they have no conflict of interest that might be relevant to the contents of this article.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author contributions

LH contributed to the study conception and design. Material preparation, data collection and analysis were performed by JZ, JB and YZ. The first draft of the manuscript was written by JZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Bian, J., Zhao, Y. et al. Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Pediatr Drugs 25, 301–319 (2023). https://doi.org/10.1007/s40272-023-00560-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-023-00560-3

Navigation