Perry EK, Pickering AT, Wang WW, Houghton PJ, Perry NS. Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol. 1999;51(5):527–34.
CAS
Article
PubMed
Google Scholar
Lu Y, Foo LY. Polyphenolics of Salvia—a review. Phytochemistry. 2002;59(2):117–40.
CAS
Article
PubMed
Google Scholar
Shekarchi M, Hajimehdipoor H, Saeidnia S, Gohari AR, Hamedani MP. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn Mag. 2012;8(29):37–41.
CAS
Article
PubMed
PubMed Central
Google Scholar
Leung AY, Foster S. Encyclopaedia of common natural ingredients. Chichester: Wiley; 1996.
Google Scholar
Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lu J. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 2012;13(10):13621–66.
CAS
Article
PubMed
PubMed Central
Google Scholar
More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016;17(9).doi:10.3390/ijms17091447.
Teng Y, Zhang MQ, Wang W, Liu LT, Zhou LM, Miao SK, et al. Compound danshen tablet ameliorated abeta25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complement Altern Med. 2014;14:23.
Article
PubMed
PubMed Central
Google Scholar
Jiang P, Li C, Xiang Z, Jiao B. Tanshinone IIA reduces the risk of Alzheimer’s disease by inhibiting iNOS, MMP2 and NFkappaBp65 transcription and translation in the temporal lobes of rat models of Alzheimer’s disease. Mol Med Rep. 2014;10(2):689–94.
CAS
PubMed
Google Scholar
Khodagholi F, Ashabi G. Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behav Brain Res. 2013;15(241):62–9.
Article
Google Scholar
Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25-35). Behav Brain Res. 2007;180(2):139–45.
CAS
Article
PubMed
Google Scholar
Lee YW, Kim DH, Jeon SJ, Park SJ, Kim JM, Jung JM, et al. Neuroprotective effects of salvianolic acid B on an Abeta25-35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol. 2013;704(1–3):70–7.
CAS
Article
PubMed
Google Scholar
Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M. The protective role of carnosic acid against beta-amyloid toxicity in rats. SciWorldJ. 2013;2013:917082.
CAS
Google Scholar
Patil CS, Singh VP, Satyanarayan PS, Jain NK, Singh A, Kulkarni SK. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology. 2003;69(2):59–67.
CAS
Article
PubMed
Google Scholar
Luchicchi A, Bloem B, Viana JN, Mansvelder HD, Role LW. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors. Front Synaptic Neurosci. 2014;6:24.
Article
PubMed
PubMed Central
Google Scholar
Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res. 2011;221(2):430–42.
CAS
Article
PubMed
Google Scholar
Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315–35.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smach MA, Hafsa J, Charfeddine B, Dridi H, Limem K. Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Ann Pharm Fr. 2015;73(4):281–8.
CAS
Article
PubMed
Google Scholar
Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31(4):845–52.
CAS
Article
PubMed
Google Scholar
Scholey AB, Tildesley NT, Ballard CG, Wesnes KA, Tasker A, Perry EK, et al. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology (Berl). 2008;198(1):127–39.
CAS
Article
PubMed
Google Scholar
Foolad F, Khodagholi F. Dietary supplementation with Salvia sahendica attenuates acetylcholinesterase activity and increases mitochondrial transcription factor A and antioxidant proteins in the hippocampus of amyloid beta-injected rats. J Pharm Pharmacol. 2013;65(10):1555–62.
CAS
Article
PubMed
Google Scholar
Senol FS, Orhan IE, Erdem SA, Kartal M, Sener B, Kan Y, et al. Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of sage (Salvia fruticosa) by activity-guided fractionation. J Med Food. 2011;14(11):1476–83.
CAS
Article
PubMed
Google Scholar
Kennedy DO, Dodd FL, Robertson BC, Okello EJ, Reay JL, Scholey AB, et al. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25(8):1088–100.
CAS
Article
PubMed
Google Scholar
Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine. 2016;23(10):1005–11.
CAS
Article
PubMed
Google Scholar
Merad M, Soufi W, Ghalem S, Boukli F, Baig MH, Ahmad K, et al. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study. CNS Neurol Disord Drug Targets. 2014;13(3):440–6.
CAS
Article
PubMed
Google Scholar
Marcelo F, Dias C, Martins A, Madeira PJ, Jorge T, Florencio MH, et al. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy. Chemistry. 2013;19(21):6641–9.
CAS
Article
PubMed
Google Scholar
Xu QQ, Xu YJ, Yang C, Tang Y, Li L, Cai HB, et al. Sodium Tanshinone IIA sulfonate attenuates scopolamine-induced cognitive dysfunctions via improving cholinergic system. Biomed Res Int. 2016;2016:9852536.
PubMed
PubMed Central
Google Scholar
Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid beta-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol. 2011;31(3):443–52.
CAS
Article
PubMed
Google Scholar
Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bowling H, Bhattacharya A, Klann E, Chao MV. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology. Neural Regen Res. 2016;11(3):363–7.
Article
PubMed
PubMed Central
Google Scholar
Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, et al. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N = 7277). Mol Psychiatry. 2016. doi:10.1038/mp.2016.62.
PubMed Central
Google Scholar
Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes AP, Santos do Carmo MR, Fernandes FD, et al. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res. 2016;15(297):91–103.
Article
Google Scholar
Jin X, Liu P, Yang F, Zhang YH, Miao D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and Up-regulates BDNF levels in the hippocampus and hippocampal-derived astrocytes. Neurochem Res. 2013;38(9):1828–37.
CAS
Article
PubMed
Google Scholar
Takeda H, Tsuji M, Yamada T, Masuya J, Matsushita K, Tahara M, et al. Caffeic acid attenuates the decrease in cortical BDNF mRNA expression induced by exposure to forced swimming stress in mice. Eur J Pharmacol. 2006;534(1–3):115–21.
CAS
Article
PubMed
Google Scholar
Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, et al. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med. 2013;2013:127075.
PubMed
PubMed Central
Google Scholar
Yao RQ, Qi DS, Yu HL, Liu J, Yang LH, Wu XX. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res. 2012;37(12):2777–86.
CAS
Article
PubMed
Google Scholar
Kosaka K, Yokoi T. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol Pharm Bull. 2003;26(11):1620–2.
CAS
Article
PubMed
Google Scholar
Zhao Y, Xu P, Hu S, Du L, Xu Z, Zhang H, et al. Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation. Eur J Pharmacol. 2015;15(765):437–46.
Article
Google Scholar
Wang W, Huang CY, Tsai FJ, Tsai CC, Yao CH, Chen YS. Growth-promoting effects of quercetin on peripheral nerves in rats. Int J Artif Organs. 2011;34(11):1095–105.
CAS
Article
PubMed
Google Scholar
Schrag M, Mueller C, Zabel M, Crofton A, Kirsch WM, Ghribi O, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis. 2013;59:100–10.
CAS
Article
PubMed
Google Scholar
Sita G, Hrelia P, Tarozzi A, Morroni F. Isothiocyanates are promising compounds against oxidative stress, neuroinflammation and cell death that may benefit neurodegeneration in Parkinson’s Disease. Int J Mol Sci. 2016;17(9). doi:10.3390/ijms17091454.
Liu T, Zhong S, Liao X, Chen J, He T, Lai S, et al. A meta-analysis of oxidative stress markers in depression. PLoS One. 2015;10(10):e0138904.
Article
PubMed
PubMed Central
Google Scholar
Lopresti AL. Oxidative and nitrosative stress in ADHD: possible causes and the potential of antioxidant-targeted therapies. Atten Defic Hyperact Disord. 2015;7(4):237–47.
Article
PubMed
Google Scholar
Yabuki Y, Fukunaga K. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience. 2013;10(250):394–407.
Article
Google Scholar
Hritcu L, Ciobica A, Stefan M, Mihasan M, Palamiuc L, Nabeshima T. Spatial memory deficits and oxidative stress damage following exposure to lipopolysaccharide in a rodent model of Parkinson’s disease. Neurosci Res. 2011;71(1):35–43.
CAS
Article
PubMed
Google Scholar
Sulniute V, Ragazinskiene O, Venskutonis PR. Comprehensive evaluation of antioxidant potential of 10 salvia species using high pressure methods for the isolation of lipophilic and hydrophilic plant fractions. Plant Foods Hum Nutr. 2016;71(1):64–71.
CAS
Article
PubMed
Google Scholar
Chang CC, Chang YC, Hu WL, Hung YC. Oxidative stress and salvia miltiorrhiza in aging-associated cardiovascular diseases. Oxid Med Cell Longev. 2016;2016:4797102.
PubMed
PubMed Central
Google Scholar
Hasanein P, Felehgari Z, Emamjomeh A. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. Neurosci Lett. 2016;27(622):72–7.
Article
Google Scholar
Lu Y, Foo Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001;75:197–202.
CAS
Article
Google Scholar
Lu Y, Foo Y. Salvianolic acid L, a potent phenolic antioxidant from Salvia officinalis. Tetrahedron Lett. 2001;42:8223–5.
CAS
Article
Google Scholar
Porres-Martinez M, Gonzalez-Burgos E, Carretero ME, Gomez-Serranillos MP. Major selected monoterpenes alpha-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm Biol. 2015;53(6):921–9.
CAS
Article
PubMed
Google Scholar
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;1(146):201–13.
Article
Google Scholar
Birtic S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. Phytochemistry. 2015;115:9–19.
CAS
Article
PubMed
Google Scholar
Boitard C, Cavaroc A, Sauvant J, Aubert A, Castanon N, Laye S, et al. Impairment of hippocampal-dependent memory induced by juvenile high-fat diet intake is associated with enhanced hippocampal inflammation in rats. Brain Behav Immun. 2014;40:9–17.
CAS
Article
PubMed
Google Scholar
Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–17.
Article
PubMed
Google Scholar
Koyama A, O’Brien J, Weuve J, Blacker D, Metti AL, Yaffe K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2013;68(4):433–40.
CAS
Article
PubMed
Google Scholar
Saleem M, Herrmann N, Swardfager W, Eisen R, Lanctot KL. Inflammatory markers in mild cognitive impairment: a meta-analysis. J Alzheimers Dis. 2015;47(3):669–79.
CAS
Article
PubMed
Google Scholar
Verlaet AA, Noriega DB, Hermans N, Savelkoul HF. Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur Child Adolesc Psychiatry. 2014;23(7):519–29.
Article
PubMed
Google Scholar
Goldsmith DR, Haroon E, Woolwine BJ, Jung MY, Wommack EC, Harvey PD, et al. Inflammatory markers are associated with decreased psychomotor speed in patients with major depressive disorder. Brain Behav Immun. 2016;56:281–8.
CAS
Article
PubMed
Google Scholar
Johnsen E, Fathian F, Kroken RA, Steen VM, Jorgensen HA, Gjestad R, et al. The serum level of C-reactive protein (CRP) is associated with cognitive performance in acute phase psychosis. BMC Psychiatry. 2016;16:60.
Article
PubMed
PubMed Central
Google Scholar
Abu-Darwish MS, Cabral C, Ferreira IV, Goncalves MJ, Cavaleiro C, Cruz MT, et al. Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res Int. 2013;538940.
Oniga I, Parvu AE, Toiu A, Benedec D. Effects of Salvia officinalis L. extract on experimental acute inflammation. Rev Med Chir Soc Med Nat Iasi. 2007;111(1):290–4.
PubMed
Google Scholar
Schwager J, Richard N, Fowler A, Seifert N, Raederstorff D. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules. 2016;21(4):465.
Article
PubMed
Google Scholar
Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, et al. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia plebeia and its active components. J Ethnopharmacol. 2015;4(174):322–30.
Article
Google Scholar
Bonaccini L, Karioti A, Bergonzi MC, Bilia AR. Effects of salvia miltiorrhiza on CNS neuronal injury and degeneration: a plausible complementary role of tanshinones and depsides. Planta Med. 2015;81(12–13):1003–16.
CAS
PubMed
Google Scholar
Ma S, Zhang D, Lou H, Sun L, Ji J. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages. J Ethnopharmacol. 2016;21(188):193–9.
Article
Google Scholar
Nabavi SF, Tenore GC, Daglia M, Tundis R, Loizzo MR, Nabavi SM. The cellular protective effects of rosmarinic acid: from bench to bedside. Curr Neurovasc Res. 2015;12(1):98–105.
CAS
Article
PubMed
Google Scholar
Scult MA, Paulli AR, Mazure ES, Moffitt TE, Hariri AR, Strauman TJ. The association between cognitive function and subsequent depression: a systematic review and meta-analysis. Psychol Med. 2016;14:1–17.
Google Scholar
Bennett S, Thomas AJ. Depression and dementia: cause, consequence or coincidence? Maturitas. 2014;79(2):184–90.
Article
PubMed
Google Scholar
Herrera-Ruiz M, Garcia-Beltran Y, Mora S, Diaz-Veliz G, Viana GS, Tortoriello J, et al. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol. 2006;107(1):53–8.
Article
PubMed
Google Scholar
Naderi N, Akhavan N, Aziz Ahari F, Zamani N, Kamalinejad M, Shokrzadeh M, et al. Effects of hydroalcoholic extract from salvia verticillata on pharmacological models of seizure, anxiety and depression in mice. Iran J Pharm Res. 2011 Summer;10(3):535–45.
Gross M, Nesher E, Tikhonov T, Raz O, Pinhasov A. Chronic food administration of Salvia sclarea oil reduces animals’ anxious and dominant behavior. J Med Food. 2013;16(3):216–22.
CAS
Article
PubMed
Google Scholar
Seol GH, Shim HS, Kim PJ, Moon HK, Lee KH, Shim I, et al. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J Ethnopharmacol. 2010;130(1):187–90.
Article
PubMed
Google Scholar
Liu AD, Cai GH, Wei YY, Yu JP, Chen J, Yang J, et al. Anxiolytic effect of essential oils of Salvia miltiorrhiza in rats. Int J Clin Exp Med. 2015;8(8):12756–64.
PubMed
PubMed Central
Google Scholar
Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med. 2003;69(2):113–7.
CAS
Article
PubMed
Google Scholar
Takeda H, Tsuji M, Inazu M, Egashira T, Matsumiya T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur J Pharmacol. 2002;449(3):261–7.
CAS
Article
PubMed
Google Scholar
Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res. 2005;52(3):199–203.
CAS
Article
PubMed
Google Scholar
Feng Y, You Z, Yan S, He G, Chen Y, Gou X, et al. Antidepressant-like effects of salvianolic acid B in the mouse forced swim and tail suspension tests. Life Sci. 2012;90(25–26):1010–4.
CAS
Article
PubMed
Google Scholar
Braida D, Capurro V, Zani A, Rubino T, Vigano D, Parolaro D, et al. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol. 2009;157(5):844–53.
CAS
Article
PubMed
PubMed Central
Google Scholar
Perry NS, Bollen C, Perry EK, Ballard C. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav. 2003;75(3):651–9.
CAS
Article
PubMed
Google Scholar
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28(1):53–9.
CAS
Article
PubMed
Google Scholar
Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey AB. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav. 2005;83(5):699–709.
CAS
Article
PubMed
Google Scholar
Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Savelev S, Wesnes KA, et al. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav. 2003;75(3):669–74.
CAS
Article
PubMed
Google Scholar
Moss L, Rouse M, Wesnes KA, Moss M. Differential effects of the aromas of Salvia species on memory and mood. Hum Psychopharmacol. 2010;25(5):388–96.
Article
PubMed
Google Scholar
Pop AV, Tofana M, Socaci SA, Varban D, Nagy M, Bors M, et al. Evaluation of antioxidant activity and phenolic content in different Salvia officinalis L. extracts. Bull UASVM Food Sci Technol. 2015;72(2):210–4.
Google Scholar
Dent M, Dragovi-Uzelac V, Penic M, Brncic M, Bosiljkov T, Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) Extracts Food Technol Biotechnol. 2013;51(1):84–91.
Gird CE, Nencu I, Costea T, Dutu LE, Popescu ML, Ciupitu N. Quantitative analysis of phenolic compounds from Salvia officinalis L. leaves. Farmacia. 2014;62(4):649–57.
Pelkonen O, Abass K, Wiesner J. Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regul Toxicol Pharmacol. 2013;65(1):100–7.
CAS
Article
PubMed
Google Scholar
EMA/HMPC. Public statement on the use of herbal medicinal products containing thujone. 2011 [cited; Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Public_statement/2011/02/WC500102294.pdf.
Bommer S, Klein P, Suter A. First time proof of sage's tolerability and efficacy in menopausal women with hot flushes. Adv Ther. 2011;28:490–500.
CAS
Article
PubMed
Google Scholar
Vandecasteele K, Ost P, Oosterlinck W, et al. Evaluation of the efficacy and safety of Salvia officinalis in controlling hot flashes in prostate cancer patients treated with androgen deprivation. Phytother Res. 2012;26:208–13.
Article
PubMed
Google Scholar
Behradmanesh S, Derees F, Rafieian-Kopaei M. Effect of Salvia officinalis on diabetic patients. J Renal Inj Prev. 2013;2:51–4.
PubMed
PubMed Central
Google Scholar
Kianbakht S, Abasi B, Perham M, et al. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. Phytother Res. 2011;25:1849–53.
CAS
Article
PubMed
Google Scholar