Skip to main content
Log in

A Proactive Approach to Prevent Hematopoietic Exhaustion During Cancer Chemotherapy in Older Patients: Temporary Cell-Cycle Arrest

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Age is associated with the decline of multiple organ systems. In older patients, hematological toxicities associated with chemotherapy are often dose limiting, impairing dose intensity and treatment efficacy. Contrary to the classical path using growth factors to activate tissue regeneration, a novel strategy is emerging to prevent chemotherapy toxicity that involves temporary cell-cycle arrest of normal cells, such as hematopoietic or epithelial precursors. This proactive approach may allow the sparing of the stem cell reserve of these tissues. Two molecules are included in this new category, trilaciclib and ALRN-6924, which induce cell-cycle arrest by two different pathways. Previous approaches, such as the use of myelopoietic growth factors, were reactive and they might even have accelerated the depletion of stem cells by enhancing the commitment of these elements. Trilaciclib causes cell-cycle arrest by CDK 4/6 inhibition and ALRN-6924 by p53 activation. In a pooled analysis of three randomized phase II studies of patients with small cell lung cancer, trilaciclib prevented neutropenia, thrombocytopenia, and anemia. Similar chemoprotective results were observed with ALRN-6924 in an open-label phase Ib study of patients with p53-mutated small cell lung cancer. Trilaciclib is now approved as a myelopreservation agent in patients with extensive-stage small cell lung cancer. ALRN-6924 is currently in phase Ib clinical development in patients with p53-mutated cancer. In addition to preserving the normal hemopoietic pool, these drugs promise to preserve the stem cell reserve of other normal tissues with high turnover, preventing potentially other dose-limiting toxicities, such as mucositis and diarrhea. An “ex vivo” study provided early evidence that ALRN-6924 may prevent chemotherapy-induced alopecia. By affording protection from multiple toxicities with a single drug, trilaciclib and ALRN-6924 have the potential to transform the current standards of supportive care for oncology patients and may prevent the depletion of tissue stem cells already compromised with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Quoix E. Optimal pharmacotherapeutic strategies for elderly patients with advanced non-small cell lung cancer. Drugs Aging. 2011;28(11):885–94. https://doi.org/10.2165/11595100-000000000-00000.

    Article  PubMed  Google Scholar 

  2. Falandry C, Krakowski I, Curé H, et al. Granulocyte-colony-stimulating factor in elderly patients receiving chemotherapy for breast and gynaecological cancers: results of a French survey. Anticancer Res. 2014;34(9):5007–15.

    CAS  PubMed  Google Scholar 

  3. Dhillon S. Trilaciclib: first approval. Drugs. 2021;81(7):867–74. https://doi.org/10.1007/s40265-021-01508-y(this article explains the mechanism of action of trilaciclib and the potential limitation of its use)

  4. Andric Z, Ceric T, Turic M, et al. A phase I B study of the dual MDMX/MDM2 inhibitor for prevention of chemotherapy induced myelosuppression. Presented at the virtual European Society of Medical Oncology Congress September 16 2021 #1654 AP. Ann Oncol. 2021;32(Suppl_5):S1164–74. https://doi.org/10.1016/annonc/annonc68

  5. Kirshner JJ, McDonald MC 3rd, Kruter K, et al. NOLAN: a randomized, phase 2 study to estimate the effect of prophylactic naproxen or loratadine vs no prophylactic treatment on bone pain in patients with early-stage breast cancer receiving chemotherapy and pegfilgrastim. Support Care Cancer. 2018;26(4):1323–34. https://doi.org/10.1007/s00520-017-3959-2. (Epub 2017 Nov 16).

    Article  PubMed  Google Scholar 

  6. Orkin SH, Morrison SJ. Stem-cell competition. Nature. 2002;418(6893):25–7. https://doi.org/10.1038/418025a.

    Article  CAS  PubMed  Google Scholar 

  7. Bolton KL, Ptashkin RN, Gao T, Braunstein L, Devlin SM, Kelly D, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet. 2020;52:1219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown TJ, Gupta A. Management of cancer therapy-associated oral mucositis. JCO Oncol Pract. 2020;16(3):103–9. https://doi.org/10.1200/JOP.19.00652.

    Article  PubMed  Google Scholar 

  9. Worthington HV, Clarkson JE, Bryan G, et al. Interventions for preventing oral mucositis for patients with cancer receiving treatment. Cochrane Database Syst Rev. 2011;2011(4):CD000978. https://doi.org/10.1002/14651858.CD000978.pub5.

  10. Paus R, Haslam IS, Sharov AA, Botchkarev VA. Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 2013;14(2):e50–9. https://doi.org/10.1016/S1470-2045(12)70553-3.

    Article  CAS  PubMed  Google Scholar 

  11. Lai AY, Sorrentino JA, Dragnev KH, et al. CDK4/6 inhibition enhances antitumor efficacy of chemotherapy and immune checkpoint inhibitor combinations in preclinical models and enhances T-cell activation in patients with SCLC receiving chemotherapy. J Immunother Cancer. 2020;8(2):e000847. https://doi.org/10.1136/jitc-2020-000847.

  12. Hussein M, Maglakelidze M, Richards DA, et al. Myeloprotective effects of trilaciclib among patients with small cell lung cancer at increased risk of chemotherapy-induced myelosuppression: pooled results from three phase 2, randomized, double-blind, placebo-controlled studies. Cancer Manag Res. 2021;13:6207–18. https://doi.org/10.2147/CMAR.S313045.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov. 2021;11(10):2564–81. https://doi.org/10.1158/2159-8290.CD-20-1540. (Epub 2021 May 3).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou X, Singh M, Sanz Santos G, et al. Pharmacological activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting anti-tumor immunity. Cancer Discov. 2021. https://doi.org/10.1158/2159-8290.CD-20-1741. Epub ahead of print.

  15. Available from: https://cancercontrol.cancer.gov/ocs/statistics#footnote1. Accessed 13 July 2022

  16. Arai H, Ouchi Y, Yokode M, Ito H, et al. Members of Subcommittee for Aging. Toward the realization of a better aged society: messages from gerontology and geriatrics. Geriatr Gerontol Int. 2012;12(1):16–22. https://doi.org/10.1111/j.1447-0594.2011.00776.x.

  17. Akatsuka E, Tadaka E. Development of a resilience scale for oldest-old age (RSO). BMC Geriatr. 2021;21(1):174. https://doi.org/10.1186/s12877-021-02036-w.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jia H, Lubetkin EI. Life expectancy and active life expectancy by disability status in older U.S. adults. PLoS One. 2020;15(9):e0238890. https://doi.org/10.1371/journal.pone.0238890.

  19. Fritzen AM, Andersen SP, Qadri KAN, et al. Effect of aerobic exercise training and deconditioning on oxidative capacity and muscle mitochondrial enzyme machinery in young and elderly individuals. J Clin Med. 2020;9(10):3113. https://doi.org/10.3390/jcm9103113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balducci L, Fossa SD. Rehabilitation of older cancer patients. Acta Oncol. 2013;52(2):233–8. https://doi.org/10.3109/0284186X.2012.744142.

    Article  PubMed  Google Scholar 

  21. The reasons some people refuse chemo. https://www.verywellhealth.com. Accessed 6 Jan 2023.

  22. Balducci L. Supportive care of elderly patients with cancer. Support Cancer Ther. 2005;2(4):225–8. https://doi.org/10.3816/SCT.2005.n.015.

    Article  PubMed  Google Scholar 

  23. Balducci L, Goetz-Parten D, Steinman MA. Polypharmacy and the management of the older cancer patient. Ann Oncol. 2013;24 Suppl. 7(Suppl 7.):vii36–40. https://doi.org/10.1093/annonc/mdt266

  24. Li D, Sun CL, Kim H, et al. Geriatric Assessment-Driven Intervention (GAIN) on chemotherapy-related toxic effects in older adults with cancer: a randomized clinical trial. JAMA Oncol. 2021;7(11):e214158. https://doi.org/10.1001/jamaoncol.2021.4158(Epub 2021 Nov 18).

  25. Mohile SG, Mohamed MR, Xu H, Culakova E, et al. Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70+): a cluster-randomised study. Lancet. 2021;398(10314):1894–904. https://doi.org/10.1016/S0140-6736(21)01789-X. (Epub 2021 Nov 3).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boreskie KF, Hay JL, Boreskie PE, Arora RC, Duhamel TA. Frailty-aware care: giving value to frailty assessment across different healthcare settings. BMC Geriatr. 2022;22(1):13. https://doi.org/10.1186/s12877-021-02722-9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mohile SG, Dale W, Somerfield MR, et al. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy: ASCO guideline for geriatric oncology. J Clin Oncol. 2018;36(22):2326–47. https://doi.org/10.1200/JCO.2018.78.8687. (Epub 2018 May 21).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wildiers H, Heeren P, Puts M, et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J Clin Oncol. 2014;32(24):2595–603. https://doi.org/10.1200/JCO.2013.54.8347.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hurria A, Wildes T, Blair SL, et al. Senior adult oncology, version 2.2014: clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2014;12(1):82–126. https://doi.org/10.6004/jnccn.2014.0009

  30. Repetto L, Biganzoli L, Koehne CH, et al. EORTC Cancer in the Elderly Task Force guidelines for the use of colony-stimulating factors in elderly patients with cancer. Eur J Cancer. 2003;39(16):2264–72. https://doi.org/10.1016/s0959-8049(03)00662-2.

    Article  CAS  PubMed  Google Scholar 

  31. Extermann M, Boler I, Reich RR, et al. Predicting the risk of chemotherapy toxicity in older patients: the Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score. Cancer. 2012;118(13):3377–86. https://doi.org/10.1002/cncr.26646. (Epub 2011 Nov 9).

    Article  PubMed  Google Scholar 

  32. Hurria A, Mohile S, Gajra A, et al. Validation of a prediction tool for chemotherapy toxicity in older adults with cancer. J Clin Oncol. 2016;34(20):2366–71. https://doi.org/10.1200/JCO.2015.65.4327. (Epub 2016 May 16).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suto H, Inui Y, Okamura A. Validity of the Cancer and Aging Research Group predictive tool in older Japanese patients. Cancers (Basel). 2022;14(9):2075. https://doi.org/10.3390/cancers14092075.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90. https://doi.org/10.1038/s41574-018-0059-4.

    Article  CAS  PubMed  Google Scholar 

  35. Muss HB, Smitherman A, Wood WA, et al. p16 a biomarker of aging and tolerance for cancer therapy. Transl Cancer Res. 2020;9(9):5732–42. https://doi.org/10.21037/tcr.2020.03.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bell CG, Lowe R, Adams PD, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 2019;20(1):249. https://doi.org/10.1186/s13059-019-1824-y.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tucci A, Ferrari S, Bottelli C. A comprehensive geriatric assessment is more effective than clinical judgment to identify elderly diffuse large cell lymphoma patients who benefit from aggressive therapy. Cancer. 2009;115(19):4547–53. https://doi.org/10.1002/cncr.24490.

    Article  PubMed  Google Scholar 

  38. Hirakawa T, Yamaguchi H, Yokose N, et al. Importance of maintaining the relative dose intensity of CHOP-like regimens combined with rituximab in patients with diffuse large B-cell lymphoma. Ann Hematol. 2010;89(9):897–904. https://doi.org/10.1007/s00277-010-0956-7. (Epub 2010 Apr 23).

    Article  CAS  PubMed  Google Scholar 

  39. Bonadonna G, Valagussa P. Dose-response effect of adjuvant chemotherapy in breast cancer. N Engl J Med. 1981;304(1):10–5. https://doi.org/10.1056/NEJM198101013040103.

    Article  CAS  PubMed  Google Scholar 

  40. Smith TJ, Khatcheressian J, Lyman GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol. 2006;24(19):3187–205. https://doi.org/10.1200/JCO.2006.06.4451. (Epub 2006 May 8).

    Article  CAS  PubMed  Google Scholar 

  41. Lyman GH, Dale DC, Wolff DA, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol. 2010;28(17):2914–24. https://doi.org/10.1200/JCO.2009.25.8723. (Epub 2010 Apr 12).

    Article  PubMed  Google Scholar 

  42. Bohlius J, Bohlke K, Castelli R, et al. Management of cancer-associated anemia with erythropoiesis-stimulating agents: ASCO/ASH clinical practice guideline update. Blood Adv. 2019;3(8):1197–210. https://doi.org/10.1182/bloodadvances.2018030387.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gilreath JA, Rodgers GM. How I treat cancer-associated anemia. Blood. 2020;136(7):801–13. https://doi.org/10.1182/blood.2019004017.

    Article  PubMed  Google Scholar 

  44. Ferrucci L, Balducci L. Anemia of aging: the role of chronic inflammation and cancer. Semin Hematol. 2008;45(4):242–9. https://doi.org/10.1053/j.seminhematol.2008.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guralnik J, Ershler W, Artz A, et al. Anemia: etiology, health consequences, and diagnostic criteria. J Am Geriatr Soc. 2022;70(3):891–9. https://doi.org/10.1111/jgs.17565. (Epub 2021 Nov 19).

    Article  PubMed  Google Scholar 

  46. Simonsick EM, Patel KV, Schrack JA, Ferrucci L. Fatigability as a predictor of subclinical and clinical anemia in well-functioning older adults. J Am Geriatr Soc. 2020;68(10):2297–302. https://doi.org/10.1111/jgs.16657. (Epub 2020 Jul 3).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hardy SE, Studenski SA. Fatigue and function over 3 years among older adults. J Gerontol A Biol Sci Med Sci. 2008;63(12):1389–92. https://doi.org/10.1093/gerona/63.12.1389.

    Article  PubMed  Google Scholar 

  48. Hardy SE, Studenski SA. Fatigue predicts mortality in older adults. J Am Geriatr Soc. 2008;56(10):1910–4. https://doi.org/10.1111/j.1532-5415.2008.01957.x. (Epub 2008 Sep 22).

    Article  PubMed  PubMed Central  Google Scholar 

  49. The Lancet Haematology. Updates on blood transfusion guidelines. Lancet Haematol. 2016;3(12):e547. https://doi.org/10.1016/S2352-3026(16)30172-7.

  50. Al-Samkari H, Soff GA. Clinical challenges and promising therapies for chemotherapy-induced thrombocytopenia. Expert Rev Hematol. 2021;14(5):437–48. https://doi.org/10.1080/17474086.2021.1924053. (Epub 2021 May 13).

    Article  CAS  PubMed  Google Scholar 

  51. Richardson G, Dobish R. Chemotherapy induced diarrhea. J Oncol Pharm Pract. 2007;13(4):181–98. https://doi.org/10.1177/1078155207077335.

    Article  CAS  PubMed  Google Scholar 

  52. Rugo HS, Klein P, Melin SA, et al. Association between use of a scalp cooling device and alopecia after chemotherapy for breast cancer. JAMA. 2017;317(6):606–14. https://doi.org/10.1001/jama.2016.21038.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kim GM, Kim S, Park HS, et al. Chemotherapy-induced irreversible alopecia in early breast cancer patients. Breast Cancer Res Treat. 2017;163(3):527–33. https://doi.org/10.1007/s10549-017-4204-x. (Epub 2017 Mar 21).

    Article  CAS  PubMed  Google Scholar 

  54. Muller PA, Vousden KH. p53 mutations in cancer. Nat Cell Biol. 2013;15(1):2–8. https://doi.org/10.1038/ncb2641.

    Article  CAS  PubMed  Google Scholar 

  55. Weiss JM, Csoszi T, Maglakelidze M, et al. Myelopreservation with the CDK4/6 inhibitor trilaciclib in patients with small-cell lung cancer receiving first-line chemotherapy: a phase Ib/randomized phase II trial. Ann Oncol. 2019;30(10):1613–21. https://doi.org/10.1093/annonc/mdz278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daniel D, Kuchava V, Bondarenko I, et al. Trilaciclib prior to chemotherapy and atezolizumab in patients with newly diagnosed extensive-stage small cell lung cancer: a multicentre, randomised, double-blind, placebo-controlled phase II trial. Int J Cancer. 2020;148(10):2557–70. https://doi.org/10.1002/ijc.33453. Epub ahead of print.

  57. Hart LL, Ferrarotto R, Andric ZG, et al. Myelopreservation with trilaciclib in patients receiving topotecan for small cell lung cancer: results from a randomized, double-blind, placebo-controlled phase II study. Adv Ther. 2021;38(1):350–65. https://doi.org/10.1007/s12325-020-01538-0. (Epub 2020 Oct 29).

    Article  CAS  PubMed  Google Scholar 

  58. Weiss J, Goldschmidt J, Andric Z, et al. Effects of trilaciclib on chemotherapy-induced myelosuppression and patient-reported outcomes in patients with extensive-stage small cell lung cancer: pooled results from three phase II randomized, double-blind, placebo-controlled studies. Clin Lung Cancer. 2021;22(5):449–60. https://doi.org/10.1016/j.cllc.2021.03.010. (Epub 2021 Mar 26).

    Article  CAS  PubMed  Google Scholar 

  59. Gherardini J. Portland, OR May 21, 2022. The meeting took place at the Convention Center

  60. Gheradini, et al. Temporary cell cycle arrest by ALRN-6924 selectively protects human scalp hair follicles and their epithelial cells from taxane-induced toxicity. Presented at the 2022 Society for Investigative Dermatology Annual Meeting

  61. Aunan JR, Watson MM, Hagland HR, Søreide K. Molecular and biological hallmarks of ageing. Br J Surg. 2016;103(2):e29-46. https://doi.org/10.1002/bjs.10053.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lodovico Balducci.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest/competing interest

Lodovico Balducci is a consultant for Aileron. Alan List is a consultant for Aileron. Claire Falandry has no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

No ethics approval was needed for a review article.

Consent to participate

This is a review article and did not require the participation of human subjects.

Consent for publication

Not applicable.

Availability of data and material

No dataset was generated or analyzed during the current study.

Code availability

Not applicable.

Authors’ Contributions

LB generated the idea of this review and wrote the original draft. CF reviewed and revised the geriatric portion. Alan List reviewed and revised the information related to growth factors, ALRN-6924, and trilaciclib, and highlighted the proactive approach that is the most novel aspect of this review.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balducci, L., Falandry, C. & List, A. A Proactive Approach to Prevent Hematopoietic Exhaustion During Cancer Chemotherapy in Older Patients: Temporary Cell-Cycle Arrest. Drugs Aging 40, 263–272 (2023). https://doi.org/10.1007/s40266-022-01005-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-022-01005-1

Navigation