Skip to main content
Log in

Extended and Continuous Infusion of Novel Protected β-Lactam Antibiotics: A Narrative Review

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Consolidated data from pharmacokinetic and pharmacodynamic studies support the administration of β-lactam antibiotics in prolonged infusion (i.e., extended or continuous) to optimize therapeutic efficacy by increasing the probability of attaining maximal bactericidal activity. This is the longest possible time during which the free drug concentrations are approximately four-fold the minimum inhibitory concentration between dosing intervals. In the context of antimicrobial stewardship strategies, achieving aggressive pharmacokinetic and pharmacodynamic targets is an important tool in the management of multi-drug resistant (MDR) bacterial infections and in the attainment of mutant preventing concentrations. However, prolonged infusion remains an unexploited resource. Novel β-lactam/β-lactamase inhibitor (βL/βLI) combinations (ceftolozane–tazobactam, ceftazidime–avibactam, meropenem–vaborbactam, and imipenem–cilastatin–relebactam) have been released in recent years to face the emerging challenge of MDR Gram-negative bacteria. Pre-clinical and real-life evidence has confirmed the promising role of prolonged infusion of these molecules in specific settings and clinical populations. In this narrative review we have summarized available pharmacological and clinical data, future perspectives, and current limitations of prolonged infusion of the novel protected β-lactams, their application in hospital settings and in the context of outpatient parenteral antimicrobial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Keefer CS. Penicillin in the treatment of infections: a report of 500 cases. JAMA. 1943;122:1217. https://doi.org/10.1001/jama.1943.02840350001001.

    Article  CAS  Google Scholar 

  2. Tumbarello M, Repetto E, Trecarichi EM, Bernardini C, De Pascale G, Parisini A, et al. Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect. 2011;139:1740–9. https://doi.org/10.1017/S0950268810003055.

    Article  CAS  PubMed  Google Scholar 

  3. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:785–96. https://doi.org/10.1016/S1473-3099(13)70190-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Doi Y. Treatment options for Carbapenem-resistant Gram-negative bacterial infections. Clin Infect Dis. 2019;69:S565–75. https://doi.org/10.1093/cid/ciz830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartoletti M, Giannella M, Lewis RE, Caraceni P, Tedeschi S, Paul M, et al. Extended infusion of β-lactams for bloodstream infection in patients with liver cirrhosis: an observational multicenter study. Clin Infect Dis. 2019;69:1731–9. https://doi.org/10.1093/cid/ciz032.

    Article  CAS  PubMed  Google Scholar 

  6. Abdul-Aziz MH, Sulaiman H, Mat-Nor M-B, Rai V, Wong KK, Hasan MS, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42:1535–45. https://doi.org/10.1007/s00134-015-4188-0.

    Article  CAS  PubMed  Google Scholar 

  7. Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56:236–44. https://doi.org/10.1093/cid/cis856.

    Article  CAS  PubMed  Google Scholar 

  8. Gatti M, Pea F. Continuous versus intermittent infusion of antibiotics in Gram-negative multidrug-resistant infections. Curr Opin Infect Dis. 2021;34:737–47. https://doi.org/10.1097/QCO.0000000000000755.

    Article  CAS  PubMed  Google Scholar 

  9. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10. https://doi.org/10.1086/516284. (quiz 11–2).

    Article  CAS  PubMed  Google Scholar 

  10. Abdul-Aziz MH, Portunato F, Roberts JA. Prolonged infusion of beta-lactam antibiotics for Gram-negative infections: rationale and evidence base. Curr Opin Infect Dis. 2020;33:501–10. https://doi.org/10.1097/QCO.0000000000000681.

    Article  CAS  PubMed  Google Scholar 

  11. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82. https://doi.org/10.1093/cid/cis857.

    Article  CAS  PubMed  Google Scholar 

  12. Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother. 2016;71:196–207. https://doi.org/10.1093/jac/dkv288.

    Article  CAS  PubMed  Google Scholar 

  13. Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care. 2019;23:104. https://doi.org/10.1186/s13054-019-2378-9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current β-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–83. https://doi.org/10.1093/cid/ciu027.

    Article  CAS  PubMed  Google Scholar 

  15. Wong G, Taccone F, Villois P, Scheetz MH, Rhodes NJ, Briscoe S, et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J Antimicrob Chemother. 2020;75:429–33. https://doi.org/10.1093/jac/dkz437.

    Article  CAS  PubMed  Google Scholar 

  16. Adembri C, Novelli A, Nobili S. Some suggestions from PK/PD principles to contain resistance in the clinical setting-focus on ICU Patients and Gram-Negative Strains. Antibiotics (Basel). 2020;9:676. https://doi.org/10.3390/antibiotics9100676.

    Article  CAS  PubMed  Google Scholar 

  17. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509. https://doi.org/10.1016/S1473-3099(14)70036-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gatti M, Cojutti PG, Pascale R, Tonetti T, Laici C, Dell’Olio A, et al. Assessment of a PK/PD target of continuous infusion beta-lactams useful for preventing microbiological failure and/or resistance development in critically ill patients affected by documented Gram-negative infections. Antibiotics (Basel). 2021;10:1311. https://doi.org/10.3390/antibiotics10111311.

    Article  CAS  PubMed  Google Scholar 

  19. Pai MP, Cojutti P, Pea F. Pharmacokinetics and pharmacodynamics of continuous infusion meropenem in overweight, obese, and morbidly obese patients with stable and unstable kidney function: a step toward dose optimization for the treatment of severe gram-negative bacterial infections. Clin Pharmacokinet. 2015;54:933–41. https://doi.org/10.1007/s40262-015-0266-2.

    Article  CAS  PubMed  Google Scholar 

  20. Credito K, Kosowska-Shick K, Appelbaum PC. Mutant prevention concentrations of four carbapenems against Gram-Negative rods. Antimicrob Agents Chemother. 2010;54:2692–5. https://doi.org/10.1128/AAC.00033-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance–what’s dosing got to do with it? Crit Care Med. 2008;36:2433–40. https://doi.org/10.1097/CCM.0b013e318180fe62.

    Article  CAS  PubMed  Google Scholar 

  22. Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for Gram-Negative bacteria? A systematic review. Clin Pharmacokinet. 2019;58:1407–43. https://doi.org/10.1007/s40262-019-00791-z.

    Article  PubMed  Google Scholar 

  23. Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising therapy to minimize bacterial multidrug resistance. Drugs. 2018;78:621–41. https://doi.org/10.1007/s40265-018-0891-9.

    Article  CAS  PubMed  Google Scholar 

  24. Tam VH, Louie A, Deziel MR, Liu W, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother. 2007;51:744–7. https://doi.org/10.1128/AAC.00334-06.

    Article  CAS  PubMed  Google Scholar 

  25. Crandon JL, Luyt C-E, Aubry A, Chastre J, Nicolau DP. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: associations with clinical outcome and recurrence. J Antimicrob Chemother. 2016;71:2534–7. https://doi.org/10.1093/jac/dkw200.

    Article  CAS  PubMed  Google Scholar 

  26. Dhaese SAM, De Kezel M, Callant M, Boelens J, De Bus L, Depuydt P, et al. Emergence of antimicrobial resistance to piperacillin/tazobactam or meropenem in the ICU: Intermittent versus continuous infusion A retrospective cohort study. J Crit Care. 2018;47:164–8. https://doi.org/10.1016/j.jcrc.2018.07.003.

    Article  PubMed  Google Scholar 

  27. Giacobbe DR, Bassetti M, De Rosa FG, Del Bono V, Grossi PA, Menichetti F, et al. Ceftolozane/tazobactam: place in therapy. Expert Rev Anti Infect Ther. 2018;16:307–20. https://doi.org/10.1080/14787210.2018.1447381.

    Article  CAS  PubMed  Google Scholar 

  28. Shortridge D, Castanheira M, Pfaller MA, Flamm RK. Ceftolozane-tazobactam activity against Pseudomonas aeruginosa clinical isolates from U.S. Hospitals: report from the PACTS antimicrobial surveillance program, 2012 to 2015. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.00465-17.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Castanheira M, Doyle TB, Mendes RE, Sader HS. Comparative activities of ceftazidime-avibactam and ceftolozane-tazobactam against enterobacteriaceae isolates producing extended-spectrum β-lactamases from U.S. Hospitals. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.00160-19.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zerbaxa® (ceftolozane and tazobactam). US Prescribing information. Merck Sharp & Dohme LLC; Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/206829s011s012lbl.pdf. Accessed Jan 2023.

  31. Karaiskos I, Giamarellou H. Carbapenem-sparing strategies for ESBL producers: when and how. Antibiotics (Basel). 2020. https://doi.org/10.3390/antibiotics9020061.

    Article  PubMed  Google Scholar 

  32. Escolà-Vergé L, Pigrau C, Los-Arcos I, Arévalo Á, Viñado B, Campany D, et al. Ceftolozane/tazobactam for the treatment of XDR Pseudomonas aeruginosa infections. Infection. 2018;46:461–8. https://doi.org/10.1007/s15010-018-1133-5.

    Article  CAS  PubMed  Google Scholar 

  33. Katchanov J, Asar L, Klupp E-M, Both A, Rothe C, König C, et al. Carbapenem-resistant Gram-negative pathogens in a German university medical center: prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations. PLoS ONE. 2018;13: e0195757. https://doi.org/10.1371/journal.pone.0195757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antibacterial effect of ceftolozane/tazobactam in combination with amikacin against aerobic Gram-negative bacilli studied in an in vitro pharmacokinetic model of infection—PubMed n.d. https://pubmed-ncbi-nlm-nih-gov.bibliopass.unito.it/30020472/. Accessed 31 Jan 2023.

  35. VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–31. https://doi.org/10.1128/AAC.02310-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tamma PD, Beisken S, Bergman Y, Posch AE, Avdic E, Sharara SL, et al. Modifiable risk factors for the emergence of ceftolozane-tazobactam resistance. Clin Infect Dis. 2021;73:e4599–606. https://doi.org/10.1093/cid/ciaa1306.

    Article  PubMed  Google Scholar 

  37. Raby E, Naicker S, Sime FB, Manning L, Wallis SC, Pandey S, et al. Ceftolozane-tazobactam in an elastomeric infusion device for ambulatory care: an in vitro stability study. Eur J Hosp Pharm. 2020;27:e84–6. https://doi.org/10.1136/ejhpharm-2019-002093.

    Article  PubMed  Google Scholar 

  38. Li C, Kuti JL, Nightingale CH, Mansfield DL, Dana A, Nicolau DP. Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection. J Antimicrob Chemother. 2005;56:388–95. https://doi.org/10.1093/jac/dki243.

    Article  CAS  PubMed  Google Scholar 

  39. Lodise TP, Lomaestro B, Rodvold KA, Danziger LH, Drusano GL. Pharmacodynamic profiling of piperacillin in the presence of tazobactam in patients through the use of population pharmacokinetic models and Monte Carlo simulation. Antimicrob Agents Chemother. 2004;48:4718–24. https://doi.org/10.1128/AAC.48.12.4718-4724.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sime FB, Lassig-Smith M, Starr T, Stuart J, Pandey S, Parker SL, et al. Population pharmacokinetics of unbound ceftolozane and tazobactam in critically ill patients without renal dysfunction. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.01265-19.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sheffield M, Nelson D, O’Neal M, Gould AP, Bouchard J, Nicolau D, et al. Use of continuous-infusion ceftolozane/tazobactam for resistant Gram-negative bacterial infections: a retrospective analysis and brief review of the literature. Int J Antimicrob Agents 2020;56:106158. https://doi.org/10.1016/j.ijantimicag.2020.106158.

  42. Pilmis B, Petitjean G, Lesprit P, Lafaurie M, El Helali N, Le Monnier A, et al. Continuous infusion of ceftolozane/tazobactam is associated with a higher probability of target attainment in patients infected with Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2019;38:1457–61. https://doi.org/10.1007/s10096-019-03573-4.

    Article  CAS  PubMed  Google Scholar 

  43. Chandorkar G, Huntington JA, Gotfried MH, Rodvold KA, Umeh O. Intrapulmonary penetration of ceftolozane/tazobactam and piperacillin/tazobactam in healthy adult subjects. J Antimicrob Chemother. 2012;67:2463–9. https://doi.org/10.1093/jac/dks246.

    Article  CAS  PubMed  Google Scholar 

  44. Winans SA, Guerrero-Wooley RL, Park SH, Hino G, Forland SC. Continuous infusion of ceftolozane-tazobactam resulted in high cerebrospinal fluid concentrations of ceftolozane in a patient with multidrug-resistant Pseudomonas aeruginosa meningitis. Infection. 2020. https://doi.org/10.1007/s15010-020-01510-8.

    Article  PubMed  Google Scholar 

  45. Jones BM, Huelfer K, Bland CM. Clinical and safety evaluation of continuously infused ceftolozane/tazobactam in the outpatient setting. Open Forum Infect Dis. 2020;7:ofaa014. https://doi.org/10.1093/ofid/ofaa014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jamieson C, Drummond F, Hills T, Ozolina L, Gilchrist M, Seaton RA, et al. Assessment of ceftolozane/tazobactam stability in elastomeric devices and suitability for continuous infusion via outpatient parenteral antimicrobial therapy. JAC Antimicrob Resist. 2021;3:dlab141. https://doi.org/10.1093/jacamr/dlab141.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stachyra T, Levasseur P, Péchereau M-C, Girard A-M, Claudon M, Miossec C, et al. In vitro activity of the {beta}-lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother. 2009;64:326–9. https://doi.org/10.1093/jac/dkp197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. European Medicines Agency. Zavicefta: summary of product characteristics. 2018. http://www.ema.europa.eu. Accessed Jan 2023 n.d.

  49. US FDA. Avycaz (ceftazidime and avibactam) for injection, for intravenous use: US prescribing information. 2018. https://www.accessdata.fda.gov. Accessed Jan 2023. n.d.

  50. Kazmierczak KM, de Jonge BLM, Stone GG, Sahm DF. In vitro activity of ceftazidime/avibactam against isolates of Pseudomonas aeruginosa collected in European countries: INFORM global surveillance 2012–15. J Antimicrob Chemother. 2018;73:2777–81. https://doi.org/10.1093/jac/dky267.

    Article  CAS  PubMed  Google Scholar 

  51. Kazmierczak KM, de Jonge BLM, Stone GG, Sahm DF. In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European countries: INFORM global surveillance 2012–15. J Antimicrob Chemother. 2018;73:2782–8. https://doi.org/10.1093/jac/dky266.

    Article  CAS  PubMed  Google Scholar 

  52. Winkler ML, Papp-Wallace KM, Bonomo RA. Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother. 2015;70:2279–86. https://doi.org/10.1093/jac/dkv094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59:5324–30. https://doi.org/10.1128/AAC.00678-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Venditti C, Butera O, Meledandri M, Balice MP, Cocciolillo GC, Fontana C, et al. Molecular analysis of clinical isolates of ceftazidime-avibactam-resistant Klebsiella pneumoniae. Clin Microbiol Infect. 2021. https://doi.org/10.1016/j.cmi.2021.03.001.

    Article  PubMed  Google Scholar 

  55. Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for Carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8. https://doi.org/10.1093/cid/ciw636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giddins MJ, Macesic N, Annavajhala MK, Stump S, Khan S, McConville TH, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/AAC.02101-17.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of Carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.02097-16.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hobson CA, Cointe A, Jacquier H, Choudhury A, Magnan M, Courroux C, et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect. Clin Microbiol Infect. 2021;27:1172.e7-1172.e10. https://doi.org/10.1016/j.cmi.2021.04.016.

    Article  CAS  PubMed  Google Scholar 

  59. Lorente L, Jiménez A, Palmero S, Jiménez JJ, Iribarren JL, Santana M, et al. Comparison of clinical cure rates in adults with ventilator-associated pneumonia treated with intravenous ceftazidime administered by continuous or intermittent infusion: a retrospective, nonrandomized, open-label, historical chart review. Clin Ther. 2007;29:2433–9. https://doi.org/10.1016/j.clinthera.2007.11.003.

    Article  CAS  PubMed  Google Scholar 

  60. Benko AS, Cappelletty DM, Kruse JA, Rybak MJ. Continuous infusion versus intermittent administration of ceftazidime in critically ill patients with suspected gram-negative infections. Antimicrob Agents Chemother. 1996;40:691–5. https://doi.org/10.1128/AAC.40.3.691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McNabb JJ, Nightingale CH, Quintiliani R, Nicolau DP. Cost-effectiveness of ceftazidime by continuous infusion versus intermittent infusion for nosocomial pneumonia. Pharmacotherapy. 2001;21:549–55. https://doi.org/10.1592/phco.21.6.549.34539.

    Article  CAS  PubMed  Google Scholar 

  62. Louie A, Castanheira M, Liu W, Grasso C, Jones RN, Williams G, et al. Pharmacodynamics of β-lactamase inhibition by NXL104 in combination with ceftaroline: examining organisms with multiple types of β-lactamases. Antimicrob Agents Chemother. 2012;56:258–70. https://doi.org/10.1128/AAC.05005-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh R, Kim A, Tanudra MA, Harris JJ, McLaughlin RE, Patey S, et al. Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother. 2015;70:2618–26. https://doi.org/10.1093/jac/dkv132.

    Article  CAS  PubMed  Google Scholar 

  64. Lodise TP, Smith NM, O’Donnell N, Eakin AE, Holden PN, Boissonneault KR, et al. Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. J Antimicrob Chemother. 2020;75:2622–32. https://doi.org/10.1093/jac/dkaa197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tumbarello M, Raffaelli F, Giannella M, Mantengoli E, Mularoni A, Venditti M, et al. Ceftazidime-avibactam use for Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae infections: a retrospective observational multicenter study. Clin Infect Dis. 2021;73:1664–76. https://doi.org/10.1093/cid/ciab176.

    Article  CAS  PubMed  Google Scholar 

  66. Vena A, Giacobbe DR, Castaldo N, Cattelan A, Mussini C, Luzzati R, et al. Clinical experience with ceftazidime-avibactam for the treatment of infections due to multidrug-resistant Gram-Negative bacteria other than Carbapenem-Resistant Enterobacterales. Antibiotics (Basel). 2020;9:71. https://doi.org/10.3390/antibiotics9020071.

    Article  CAS  PubMed  Google Scholar 

  67. Shields RK, Nguyen MH, Chen L, Press EG, Kreiswirth BN, Clancy CJ. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62:e02497-e2517. https://doi.org/10.1128/AAC.02497-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gatti M, Pascale R, Cojutti PG, Rinaldi M, Ambretti S, Conti M, et al. A descriptive pharmacokinetic/pharmacodynamic analysis of continuous infusion ceftazidime-avibactam in a case series of critically ill renal patients treated for documented carbapenem-resistant Gram-negative bloodstream infections and/or ventilator-associated pneumonia. Int J Antimicrob Agents. 2023;61: 106699. https://doi.org/10.1016/j.ijantimicag.2022.106699.

    Article  CAS  PubMed  Google Scholar 

  69. Cowart MC, Ferguson CL. Optimization of aztreonam in combination with ceftazidime/avibactam in a cystic fibrosis patient with chronic Stenotrophomonas maltophilia pneumonia using therapeutic drug monitoring: a case study. Ther Drug Monit. 2021;43:146–9. https://doi.org/10.1097/FTD.0000000000000857.

    Article  CAS  PubMed  Google Scholar 

  70. Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, et al. Reconciling antimicrobial susceptibility testing and clinical response in antimicrobial treatment of chronic cystic fibrosis lung infections. Clin Infect Dis. 2019;69:1812–6. https://doi.org/10.1093/cid/ciz364.

    Article  CAS  PubMed  Google Scholar 

  71. Servais H, Tulkens PM. Stability and compatibility of ceftazidime administered by continuous infusion to intensive care patients. Antimicrob Agents Chemother. 2001;45:2643–7. https://doi.org/10.1128/AAC.45.9.2643-2647.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goncette V, Layios N, Descy J, Frippiat F. Continuous infusion, therapeutic drug monitoring and outpatient parenteral antimicrobial therapy with ceftazidime/avibactam: a retrospective cohort study. J Glob Antimicrob Resist. 2021;26:15–9. https://doi.org/10.1016/j.jgar.2021.04.015.

    Article  CAS  PubMed  Google Scholar 

  73. Novelli A, Del Giacomo P, Rossolini GM, Tumbarello M. Meropenem/vaborbactam: a next generation β-lactam β-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2020;18:643–55. https://doi.org/10.1080/14787210.2020.1756775.

    Article  CAS  PubMed  Google Scholar 

  74. Mattoes HM, Kuti JL, Drusano GL, Nicolau DP. Optimizing antimicrobial pharmacodynamics: dosage strategies for meropenem. Clin Ther. 2004;26:1187–98. https://doi.org/10.1016/s0149-2918(04)80001-8.

    Article  CAS  PubMed  Google Scholar 

  75. Ong CT, Tessier PR, Li C, Nightingale CH, Nicolau DP. Comparative in vivo efficacy of meropenem, imipenem, and cefepime against Pseudomonas aeruginosa expressing MexA-MexB-OprM efflux pumps. Diagn Microbiol Infect Dis. 2007;57:153–61. https://doi.org/10.1016/j.diagmicrobio.2006.06.014.

    Article  CAS  PubMed  Google Scholar 

  76. Thalhammer F, Traunmüller F, El Menyawi I, Frass M, Hollenstein UM, Locker GJ, et al. Continuous infusion versus intermittent administration of meropenem in critically ill patients. J Antimicrob Chemother. 1999;43:523–7. https://doi.org/10.1093/jac/43.4.523.

    Article  CAS  PubMed  Google Scholar 

  77. Li C, Kuti JL, Nightingale CH, Nicolau DP. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol. 2006;46:1171–8. https://doi.org/10.1177/0091270006291035.

    Article  CAS  PubMed  Google Scholar 

  78. Kuti JL, Dandekar PK, Nightingale CH, Nicolau DP. Use of Monte Carlo simulation to design an optimized pharmacodynamic dosing strategy for meropenem. J Clin Pharmacol. 2003;43:1116–23. https://doi.org/10.1177/0091270003257225.

    Article  CAS  PubMed  Google Scholar 

  79. Jaruratanasirikul S, Sriwiriyajan S. Comparison of the pharmacodynamics of meropenem in healthy volunteers following administration by intermittent infusion or bolus injection. J Antimicrob Chemother. 2003;52:518–21. https://doi.org/10.1093/jac/dkg378.

    Article  CAS  PubMed  Google Scholar 

  80. Jaruratanasirikul S, Sriwiriyajan S, Punyo J. Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother. 2005;49:1337–9. https://doi.org/10.1128/AAC.49.4.1337-1339.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, et al. A Multicenter Randomized Trial of Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. Am J Respir Crit Care Med. 2015;192:1298–305. https://doi.org/10.1164/rccm.201505-0857OC.

    Article  CAS  PubMed  Google Scholar 

  82. Roberts JA, Abdul-Aziz M-H, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 2016;194:681–91. https://doi.org/10.1164/rccm.201601-0024OC.

  83. Yu Z, Pang X, Wu X, Shan C, Jiang S. Clinical outcomes of prolonged infusion (extended infusion or continuous infusion) versus intermittent bolus of meropenem in severe infection: a meta-analysis. PLoS One 2018;13:e0201667. https://doi.org/10.1371/journal.pone.0201667.

  84. Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, et al. Vaborbactam: spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61:e01443-e1517. https://doi.org/10.1128/AAC.01443-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sabet M, Tarazi Z, Rubio-Aparicio D, Nolan TG, Parkinson J, Lomovskaya O, et al. Activity of simulated human dosage regimens of meropenem and vaborbactam against carbapenem-resistant enterobacteriaceae in an in vitro hollow-fiber model. Antimicrob Agents Chemother. 2018;62:e01969-e2017. https://doi.org/10.1128/AAC.01969-17.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sun D, Rubio-Aparicio D, Nelson K, Dudley MN, Lomovskaya O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61:e01694-e1717. https://doi.org/10.1128/AAC.01694-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Assessment of MIC increases with meropenem-vaborbactam and ceftaizdime-avibactam in TANGO II (a phase 3 study of the treatment of CRE infections n.d.

  88. Wenzler E, Gotfried MH, Loutit JS, Durso S, Griffith DC, Dudley MN, et al. Meropenem-RPX7009 concentrations in plasma, epithelial lining fluid, and alveolar macrophages of healthy adult subjects. Antimicrob Agents Chemother. 2015;59:7232–9. https://doi.org/10.1128/AAC.01713-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vaborem (meropenem/vaborbactam) EPAR product information. https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf. Accessed Jan 2023 n.d.

  90. VABOMERE (meropenem/vaborbactam) Prescribing information. The medicines company. 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf. Accessed Jan 2023. n.d.

  91. Chen IH, Martin EK, Nicolau DP, Kuti JL. Assessment of meropenem and vaborbactam room temperature and refrigerated stability in polyvinyl chloride bags and elastomeric devices. Clin Ther. 2020;42:606–13. https://doi.org/10.1016/j.clinthera.2020.01.021.

    Article  CAS  PubMed  Google Scholar 

  92. Smith JR, Rybak JM, Claeys KC. Imipenem-cilastatin-relebactam: a novel β-lactam-β-lactamase inhibitor combination for the treatment of multidrug-resistant Gram-negative infections. Pharmacotherapy. 2020;40:343–56. https://doi.org/10.1002/phar.2378.

    Article  CAS  PubMed  Google Scholar 

  93. Olsen I. New promising β-lactamase inhibitors for clinical use. Eur J Clin Microbiol Infect Dis. 2015;34:1303–8. https://doi.org/10.1007/s10096-015-2375-0.

    Article  CAS  PubMed  Google Scholar 

  94. Barnes MD, Bethel CR, Alsop J, Becka SA, Rutter JD, Papp-Wallace KM, et al. Inactivation of the Pseudomonas-derived Cephalosporinase-3 (PDC-3) by Relebactam. Antimicrob Agents Chemother. 2018;62:e02406-e2417. https://doi.org/10.1128/AAC.02406-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shlaes DM. New β-lactam-β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci. 2013;1277:105–14. https://doi.org/10.1111/nyas.12010.

    Article  CAS  PubMed  Google Scholar 

  96. Wong D, van Duin D. Novel beta-lactamase inhibitors: unlocking their potential in therapy. Drugs. 2017;77:615–28. https://doi.org/10.1007/s40265-017-0725-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78:65–98. https://doi.org/10.1007/s40265-017-0851-9.

    Article  CAS  PubMed  Google Scholar 

  98. Merck Sharp & Dohme. RecarbrioTM (imipenem, cilastatin, and relebactam): US prescribing information. 2020. https://www.fda.gov. Accessed Jan 2023 n.d.

  99. Merck Sharp & Dohme. Recarbrio: EU summary of product characteristics. 2021. https://www.ema.europa.eu. Accessed Jan 2023. n.d.

  100. Wu J, Racine F, Wismer MK, Young K, Carr DM, Xiao JC, et al. Exploring the pharmacokinetic/pharmacodynamic relationship of relebactam (MK-7655) in combination with imipenem in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62:e02323-e2417. https://doi.org/10.1128/AAC.02323-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bhagunde P, Zhang Z, Racine F, Carr D, Wu J, Young K, et al. A translational pharmacokinetic/pharmacodynamic model to characterize bacterial kill in the presence of imipenem-relebactam. Int J Infect Dis. 2019;89:55–61. https://doi.org/10.1016/j.ijid.2019.08.026.

    Article  CAS  PubMed  Google Scholar 

  102. Sakka SG, Glauner AK, Bulitta JB, Kinzig-Schippers M, Pfister W, Drusano GL, et al. Population pharmacokinetics and pharmacodynamics of continuous versus short-term infusion of imipenem-cilastatin in critically ill patients in a randomized, controlled trial. Antimicrob Agents Chemother. 2007;51:3304–10. https://doi.org/10.1128/AAC.01318-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Viaene E, Chanteux H, Servais H, Mingeot-Leclercq M-P, Tulkens PM. Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother. 2002;46:2327–32. https://doi.org/10.1128/AAC.46.8.2327-2332.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. de Souza BF, Capra Pezzi L, Tsao M, Franco de Oliveira T, Manoela Dias Macedo S, Schapoval E, et al. Stability and degradation products of imipenem applying high-resolution mass spectrometry: An analytical study focused on solutions for infusion. Biomed Chromatogr. 2019;33: e4471. https://doi.org/10.1002/bmc.4471.

    Article  CAS  Google Scholar 

  105. Laupland KB, Valiquette L. Outpatient parenteral antimicrobial therapy. Can J Infect Dis Med Microbiol. 2013;24:9–11. https://doi.org/10.1155/2013/205910.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jones BM, Smith B, Bland CM. Use of continuous-infusion ceftolozane/tazobactam in a multidrug-resistant Pseudomonas aeruginosa uri- nary tract infection in the outpatient setting. Ann Pharmacother 2017;51:715–16. https://doi.org/10.1177/1060028017701938.

  107. Davis SE, Ham J, Hucks J, Gould A, Foster R, Justo JA, et al. Use of continuous infusion ceftolozane–tazobactam with therapeutic drug monitoring in a patient with cystic fibrosis. Am J Health Syst Pharm 2019;76:501–4. https://doi.org/10.1093/ajhp/zxz011.

  108. Stewart A, Roberts JA, Wallis SC, Allworth AM, Legg A, McCarthy KL. Evidence of clinical response and stability of ceftolozane/tazobactam used to treat a carbapenem-resistant Pseudomonas aeruginosa lung abscess on an outpatient antimicrobial program. Int J Antimicrob Agents 2018;51:941–2. https://doi.org/10.1016/j.ijantimicag.2018.02.008.

  109. Álvarez Otero J, Lamas Ferreiro JL, Sanjurjo Rivo A, de la Fuente Aguado J. Outpatient Parenteral Antimicrobial Therapy With Ceftolozane/Tazobactam via Continuous Infusion for Multidrug-Resistant Pseudomonas aeruginosa Osteomyelitis. Open Forum Infect Dis. 2020;7(11):ofaa409. https://doi.org/10.1093/ofid/ofaa409.

  110. Tamma PD, Fan Y, Bergman Y, et al. Successful treatment of persistent burkholderia cepacia complex bacteremia with Ceftazidime-Avibactam. Antimicrob Agents Chemother. 2018;62(4):e02213–17. https://doi.org/10.1128/AAC.02213-17.

  111. Jacobs DM, DiTursi S, Ruh C, et al. Combination treatment with extended-infusion ceftazidime/avibactam for a KPC-3-producing Klebsiella pneumoniae bacteraemia in a kidney and pancreas transplant patient. Int J Antimicrob Agents. 2016;48(2):225–227. https://doi.org/10.1016/j.ijantimicag.2016.06.002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Venuti.

Ethics declarations

Funding

The authors did not receive support from any organization for the submitted work.

Conflicts of interest/competing interests

FV, MT, A-GM, FP, SA, GDP and AC have no competing interests to declare that are relevant to the content of this article.

Author contributions

Conceptualization: FV, MT and AC; methodology: FV, MT and AC; data curation: FV, MT and AC; supervision: AGM, FL, SA, GDP; visualization: FV and MT; original draft preparation: FV; review and editing: MT, AGM, FL, SA, GDP, and AC.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Data availability

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venuti, F., Trunfio, M., Martson, AG. et al. Extended and Continuous Infusion of Novel Protected β-Lactam Antibiotics: A Narrative Review. Drugs 83, 967–983 (2023). https://doi.org/10.1007/s40265-023-01893-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01893-6

Navigation