Skip to main content
Log in

Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet. 2021;397(10289):2082–97.

    Article  PubMed  Google Scholar 

  2. Collaborators USBoD, Mokdad AH, Ballestros K, Echko M, Glenn S, Olsen HE, et al. The State of US Health, 1990–2016: burden of diseases, injuries, and risk factors among US states. JAMA. 2018;319(14):1444–72.

    Article  Google Scholar 

  3. Pain S. Painful progress. Nature. 2016;535(7611):S18–9.

    Article  PubMed  Google Scholar 

  4. Degenhardt L, Grebely J, Stone J, Hickman M, Vickerman P, Marshall BDL, et al. Global patterns of opioid use and dependence: harms to populations, interventions, and future action. Lancet. 2019;394(10208):1560–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreek MJ, Reed B, Butelman ER. Current status of opioid addiction treatment and related preclinical research. Sci Adv. 2019;5(10):eaax9140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dart RC, Surratt HL, Cicero TJ, Parrino MW, Severtson SG, Bucher-Bartelson B, et al. Trends in opioid analgesic abuse and mortality in the United States. N Engl J Med. 2015;372(3):241–8.

    Article  PubMed  Google Scholar 

  7. Degenhardt L, Charlson F, Mathers B, Hall WD, Flaxman AD, Johns N, et al. The global epidemiology and burden of opioid dependence: results from the global burden of disease 2010 study. Addiction. 2014;109(8):1320–33.

    Article  PubMed  Google Scholar 

  8. Ding H, Kiguchi N, Mabry KM, Kishioka S, Ko MC. Functional consequences of short-term exposure to opioids versus cannabinoids in nonhuman primates. Neuropharmacology. 2023;223: 109328.

    Article  CAS  PubMed  Google Scholar 

  9. Corbett AD, Henderson G, McKnight AT, Paterson SJ. 75 years of opioid research: the exciting but vain quest for the Holy Grail. Br J Pharmacol. 2006;147(Suppl 1):S153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, et al. Targeting multiple opioid receptors—improved analgesics with reduced side effects? Br J Pharmacol. 2018;175(14):2857–68.

    Article  PubMed  Google Scholar 

  11. Volkow ND, Collins FS. The role of science in addressing the opioid crisis. N Engl J Med. 2017;377(4):391–4.

    Article  PubMed  Google Scholar 

  12. Woolf CJ. Capturing novel non-opioid pain targets. Biol Psychiatry. 2020;87(1):74–81.

    Article  PubMed  Google Scholar 

  13. Attal N, Bouhassira D. Pharmacotherapy of neuropathic pain: which drugs, which treatment algorithms? Pain. 2015;156(Suppl 1):S104–14.

    Article  PubMed  Google Scholar 

  14. Nilius B, Szallasi A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev. 2014;66(3):676–814.

    Article  PubMed  Google Scholar 

  15. Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev. 2014;94(1):265–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yekkirala AS, Roberson DP, Bean BP, Woolf CJ. Breaking barriers to novel analgesic drug development. Nat Rev Drug Discov. 2017;16(8):545–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34–46.

    Article  PubMed  Google Scholar 

  18. Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. Adv Pharmacol. 2022;93:335–71.

    Article  CAS  PubMed  Google Scholar 

  19. Ding H, Ko MC. Translational value of non-human primates in opioid research. Exp Neurol. 2021;338: 113602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calo’ G, Guerrini R. Medicinal chemistry, pharmacology, and biological actions of peptide ligands selective for the nociceptin/orphanin FQ receptor. In: Ko MC, Husbands SM, editors. Research and development of opioid-related ligands. Washington, DC: American Chemical Society; 2013. p. 275–325.

    Chapter  Google Scholar 

  21. Lin AP, Ko MC. The therapeutic potential of nociceptin/orphanin FQ receptor agonists as analgesics without abuse liability. ACS Chem Neurosci. 2013;4(2):214–24.

    Article  CAS  PubMed  Google Scholar 

  22. Toll L, Bruchas MR, Calo G, Cox BM, Zaveri NT. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68(2):419–57.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, et al. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 1994;347(2–3):284–8.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H, Iwabe N, et al. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett. 1994;343(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  25. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, et al. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994;341(1):33–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nishi M, Takeshima H, Mori M, Nakagawara K, Takeuchi T. Structure and chromosomal mapping of genes for the mouse kappa-opioid receptor and an opioid receptor homologue (MOR-C). Biochem Biophys Res Commun. 1994;205(2):1353–7.

    Article  CAS  PubMed  Google Scholar 

  27. Wang JB, Johnson PS, Imai Y, Persico AM, Ozenberger BA, Eppler CM, et al. cDNA cloning of an orphan opiate receptor gene family member and its splice variant. FEBS Lett. 1994;348(1):759.

    Article  Google Scholar 

  28. Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH. Cloning of a delta opioid receptor by functional expression. Science. 1992;258(5090):1952–5.

    Article  CAS  PubMed  Google Scholar 

  29. Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA. 1992;89(24):12048–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol. 1993;44(1):8–12.

    CAS  PubMed  Google Scholar 

  31. Yasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T, et al. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA. 1993;90(14):6736–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, et al. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377(6549):532–5.

    Article  CAS  PubMed  Google Scholar 

  33. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270(5237):792–4.

    Article  CAS  PubMed  Google Scholar 

  34. Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol. 2015;172(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  35. Sundstrom G, Dreborg S, Larhammar D. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates. PLoS ONE. 2010;5(5): e10512.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, et al. Structure of the delta-opioid receptor bound to naltrindole. Nature. 2012;485(7398):400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature. 2012;485(7398):321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature. 2012;485(7398):395–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature. 2012;485(7398):327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, et al. Structures of the entire human opioid receptor family. Cell. 2023;186(2):413–27.

    Article  CAS  PubMed  Google Scholar 

  41. Mollereau C, Moisand C, Butour JL, Parmentier M, Meunier JC. Replacement of Gln280 by His in TM6 of the human ORL1 receptor increases affinity but reduces intrinsic activity of opioids. FEBS Lett. 1996;395(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  42. Peluso J, LaForge KS, Matthes HW, Kreek MJ, Kieffer BL, Gaveriaux-Ruff C. Distribution of nociceptin/orphanin FQ receptor transcript in human central nervous system and immune cells. J Neuroimmunol. 1998;81(1–2):184–92.

    Article  CAS  PubMed  Google Scholar 

  43. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, et al. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. J Comp Neurol. 1999;412(4): 563605.

    Article  Google Scholar 

  44. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol. 1999;406(4):503–47.

    Article  CAS  PubMed  Google Scholar 

  45. Berthele A, Platzer S, Dworzak D, Schadrack J, Mahal B, Buttner A, et al. [3H]-nociceptin ligand-binding and nociceptin opioid receptor mrna expression in the human brain. Neuroscience. 2003;121(3):629–40.

    Article  CAS  PubMed  Google Scholar 

  46. Witta J, Palkovits M, Rosenberger J, Cox BM. Distribution of nociceptin/orphanin FQ in adult human brain. Brain Res. 2004;997(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  47. Hawes BE, Graziano MP, Lambert DG. Cellular actions of nociceptin: transduction mechanisms. Peptides. 2000;21(7):961–7.

    Article  CAS  PubMed  Google Scholar 

  48. Margas W, Sedeek K, Ruiz-Velasco V. Coupling specificity of NOP opioid receptors to pertussis-toxin-sensitive Galpha proteins in adult rat stellate ganglion neurons using small interference RNA. J Neurophysiol. 2008;100(3):1420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaughan CW, Christie MJ. Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol. 1996;117(8):1609–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schlicker E, Morari M. Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides. 2000;21(7):1023–9.

    Article  CAS  PubMed  Google Scholar 

  51. Moran TD, Abdulla FA, Smith PA. Cellular neurophysiological actions of nociceptin/orphanin FQ. Peptides. 2000;21(7):969–76.

    Article  CAS  PubMed  Google Scholar 

  52. Kiguchi N, Ding H, Kishioka S, Ko MC. Nociceptin/orphanin FQ peptide receptor-related ligands as novel analgesics. Curr Top Med Chem. 2020;20:2878–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schroder W, Lambert DG, Ko MC, Koch T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol. 2014;171(16):3777–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lambert DG. The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov. 2008;7(8):694–710.

    Article  CAS  PubMed  Google Scholar 

  55. Toll L, Ozawa A, Cippitelli A. NOP-related mechanisms in pain and analgesia. Handb Exp Pharmacol. 2019;254:165–86.

    Article  CAS  PubMed  Google Scholar 

  56. Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, et al. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther. 2014;141(3):283–99.

    Article  CAS  PubMed  Google Scholar 

  57. Moy JK, Hartung JE, Duque MG, Friedman R, Nagarajan V, Loeza-Alcocer E, et al. Distribution of functional opioid receptors in human dorsal root ganglion neurons. Pain. 2020;161(7):1636–49.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Winters BL, Christie MJ, Vaughan CW. Electrophysiological actions of N/OFQ. Handb Exp Pharmacol. 2019;254:91–130.

    Article  CAS  PubMed  Google Scholar 

  59. Kiguchi N, Ding H, Ko MC. Central N/OFQ-NOP receptor system in pain modulation. Adv Pharmacol. 2016;75:217–43.

    Article  CAS  PubMed  Google Scholar 

  60. Ko MC, Woods JH, Fantegrossi WE, Galuska CM, Wichmann J, Prinssen EP. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys. Neuropsychopharmacology. 2009;34(9):2088–96.

    Article  CAS  PubMed  Google Scholar 

  61. Ding H, Hayashida K, Suto T, Sukhtankar DD, Kimura M, Mendenhall V, et al. Supraspinal actions of nociceptin/orphanin FQ, morphine and substance P in regulating pain and itch in nonhuman primates. Br J Pharmacol. 2015;172(13):3302–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kiguchi N, Ko MC. Effects of NOP-related ligands in nonhuman primates. Handb Exp Pharmacol. 2019;254:323–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lutfy K, Eitan S, Bryant CD, Yang YC, Saliminejad N, Walwyn W, et al. Buprenorphine-induced antinociception is mediated by mu-opioid receptors and compromised by concomitant activation of opioid receptor-like receptors. J Neurosci. 2003;23(32):10331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cremeans CM, Gruley E, Kyle DJ, Ko MC. Roles of mu-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther. 2012;343(1):72–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu E, Calo G, Guerrini R, Ko MC. Long-lasting antinociceptive spinal effects in primates of the novel nociceptin/orphanin FQ receptor agonist UFP-112. Pain. 2010;148(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  66. Kiguchi N, Ding H, Ko MC. Therapeutic potentials of NOP and MOP receptor coactivation for the treatment of pain and opioid abuse. J Neurosci Res. 2022;100(1):191–202.

    Article  CAS  PubMed  Google Scholar 

  67. Preti D, Calo G, Guerrini R. NOP-targeted peptide ligands. Handb Exp Pharmacol. 2019;254:17–36.

    Article  CAS  PubMed  Google Scholar 

  68. Zaveri NT, Meyer ME. NOP-targeted nonpeptide ligands. Handb Exp Pharmacol. 2019;254:37–67.

    Article  CAS  PubMed  Google Scholar 

  69. Kiguchi N, Ding H, Cami-Kobeci G, Sukhtankar DD, Czoty PW, DeLoid HB, et al. BU10038 as a safe opioid analgesic with fewer side-effects after systemic and intrathecal administration in primates. Br J Anaesth. 2019;122(6):e146–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ko MC, Calo G. The nociceptin/orphanin FQ peptide receptor. Handb Exp Pharmacol. 2019;254.

  71. Zaveri NT. Nociceptin opioid receptor (NOP) as a therapeutic target: progress in translation from preclinical research to clinical utility. J Med Chem. 2016;59(15):7011–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brill S, Gurman GM, Fisher A. A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol. 2003;20(9):682–9.

    Article  CAS  PubMed  Google Scholar 

  73. Schug SA, Saunders D, Kurowski I, Paech MJ. Neuraxial drug administration: a review of treatment options for anaesthesia and analgesia. CNS Drugs. 2006;20(11):917–33.

    Article  CAS  PubMed  Google Scholar 

  74. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129(2):343–66.

    Article  PubMed  Google Scholar 

  75. Ji RR, Xu ZZ, Gao YJ. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13(7):533–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, et al. Intrathecal drug delivery: advances and applications in the management of chronic pain patient. Front Pain Res (Lausanne). 2022;3: 900566.

    Article  PubMed  Google Scholar 

  77. Ganesh A, Maxwell LG. Pathophysiology and management of opioid-induced pruritus. Drugs. 2007;67(16):2323–33.

    Article  CAS  PubMed  Google Scholar 

  78. Ko MC. Neuraxial opioid-induced itch and its pharmacological antagonism. Handb Exp Pharmacol. 2015;226:315–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Waxler B, Dadabhoy ZP, Stojiljkovic L, Rabito SF. Primer of postoperative pruritus for anesthesiologists. Anesthesiology. 2005;103(1):168–78.

    Article  PubMed  Google Scholar 

  80. Erb K, Liebel JT, Tegeder I, Zeilhofer HU, Brune K, Geisslinger G. Spinally delivered nociceptin/orphanin FQ reduces flinching behaviour in the rat formalin test. NeuroReport. 1997;8(8):1967–70.

    Article  CAS  PubMed  Google Scholar 

  81. Inoue M, Shimohira I, Yoshida A, Zimmer A, Takeshima H, Sakurada T, et al. Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J Pharmacol Exp Ther. 1999;291(1):308–13.

    CAS  PubMed  Google Scholar 

  82. King MA, Rossi GC, Chang AH, Williams L, Pasternak GW. Spinal analgesic activity of orphanin FQ/nociceptin and its fragments. Neurosci Lett. 1997;223(2):113–6.

    Article  CAS  PubMed  Google Scholar 

  83. Sakurada T, Katsuyama S, Sakurada S, Inoue M, Tan-No K, Kisara K, et al. Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors. Br J Pharmacol. 1999;127(7):1712–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamamoto T, Nozaki-Taguchi N, Kimura S. Analgesic effect of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, in the rat formalin test. Neuroscience. 1997;81(1):249–54.

    Article  CAS  PubMed  Google Scholar 

  85. Le Cudennec C, Suaudeau C, Costentin J. Evidence for a localization of [(3)H]nociceptin binding sites on medullar primary afferent fibers. J Neurosci Res. 2002;68(4):496–500.

    Article  PubMed  Google Scholar 

  86. Chen Y, Sommer C. Activation of the nociceptin opioid system in rat sensory neurons produces antinociceptive effects in inflammatory pain: involvement of inflammatory mediators. J Neurosci Res. 2007;85(7):1478–88.

    Article  CAS  PubMed  Google Scholar 

  87. Corradini L, Briscini L, Ongini E, Bertorelli R. The putative OP(4) antagonist, [Nphe(1)]nociceptin(1–13)NH(2), prevents the effects of nociceptin in neuropathic rats. Brain Res. 2001;905(1–2):127–33.

    Article  CAS  PubMed  Google Scholar 

  88. Courteix C, Coudore-Civiale MA, Privat AM, Pelissier T, Eschalier A, Fialip J. Evidence for an exclusive antinociceptive effect of nociceptin/orphanin FQ, an endogenous ligand for the ORL1 receptor, in two animal models of neuropathic pain. Pain. 2004;110(1–2):236–45.

    Article  CAS  PubMed  Google Scholar 

  89. Hao JX, Xu IS, Wiesenfeld-Hallin Z, Xu XJ. Anti-hyperalgesic and anti-allodynic effects of intrathecal nociceptin/orphanin FQ in rats after spinal cord injury, peripheral nerve injury and inflammation. Pain. 1998;76(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  90. Yamamoto T, Nozaki-Taguchi N. Effects of intrathecally administered nociceptin, an opioid receptor-like1 receptor agonist, and N-methyl-d-aspartate receptor antagonists on the thermal hyperalgesia induced by partial sciatic nerve injury in the rat. Anesthesiology. 1997;87(5): 114552.

    Article  Google Scholar 

  91. Yamamoto T, Nozaki-Taguchi N, Kimura S. Effects of intrathecally administered nociceptin, an opioid receptor-like1 (ORL1) receptor agonist, on the thermal hyperalgesia induced by carageenan injection into the rat paw. Brain Res. 1997;754(1–2):329–32.

    Article  CAS  PubMed  Google Scholar 

  92. Briscini L, Corradini L, Ongini E, Bertorelli R. Up-regulation of ORL-1 receptors in spinal tissue of allodynic rats after sciatic nerve injury. Eur J Pharmacol. 2002;447(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  93. Ko MC, Naughton NN. Antinociceptive effects of nociceptin/orphanin FQ administered intrathecally in monkeys. J Pain. 2009;10(5):509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ko MC, Wei H, Woods JH, Kennedy RT. Effects of intrathecally administered nociceptin/orphanin FQ in monkeys: behavioral and mass spectrometric studies. J Pharmacol Exp Ther. 2006;318(3):1257–64.

    Article  CAS  PubMed  Google Scholar 

  95. Lee H, Ko MC. Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates. Sci Rep. 2015;5:11676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arduin M, Spagnolo B, Calo G, Guerrini R, Carra G, Fischetti C, et al. Synthesis and biological activity of nociceptin/orphanin FQ analogues substituted in position 7 or 11 with Calpha, alpha-dialkylated amino acids. Bioorg Med Chem. 2007;15(13):4434–43.

    Article  CAS  PubMed  Google Scholar 

  97. Calo G, Rizzi A, Cifani C, Micioni Di Bonaventura MV, Regoli D, Massi M, et al. UFP-112 a potent and long-lasting agonist selective for the Nociceptin/Orphanin FQ receptor. CNS Neurosci Ther. 2011;17(3):178–98.

    Article  CAS  PubMed  Google Scholar 

  98. Rizzi A, Spagnolo B, Wainford RD, Fischetti C, Guerrini R, Marzola G, et al. In vitro and in vivo studies on UFP-112, a novel potent and long lasting agonist selective for the nociceptin/orphanin FQ receptor. Peptides. 2007;28(6):1240–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eisenach JC, Hood DD, Curry R, Tong C. Alfentanil, but not amitriptyline, reduces pain, hyperalgesia, and allodynia from intradermal injection of capsaicin in humans. Anesthesiology. 1997;86(6):1279–87.

    Article  CAS  PubMed  Google Scholar 

  100. Ko MC, Butelman ER, Woods JH. Activation of peripheral kappa opioid receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys. J Pharmacol Exp Ther. 1999;289(1):378–85.

    CAS  PubMed  Google Scholar 

  101. Park KM, Max MB, Robinovitz E, Gracely RH, Bennett GJ. Effects of intravenous ketamine, alfentanil, or placebo on pain, pinprick hyperalgesia, and allodynia produced by intradermal capsaicin in human subjects. Pain. 1995;63(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  102. Aykanat V, Gentgall M, Briggs N, Williams D, Yap S, Rolan P. Intradermal capsaicin as a neuropathic pain model in patients with unilateral sciatica. Br J Clin Pharmacol. 2012;73(1):3745.

    Article  Google Scholar 

  103. Szolcsanyi J, Sandor Z. Multisteric TRPV1 nocisensor: a target for analgesics. Trends Pharmacol Sci. 2012;33(12):646–55.

    Article  CAS  PubMed  Google Scholar 

  104. Guerrini R, Marzola E, Trapella C, Pela M, Molinari S, Cerlesi MC, et al. A novel and facile synthesis of tetra branched derivatives of nociceptin/orphanin FQ. Bioorg Med Chem. 2014;22(14):3703–12.

    Article  CAS  PubMed  Google Scholar 

  105. Calo G, Rizzi A, Ruzza C, Ferrari F, Pacifico S, Gavioli EC, et al. Peptide welding technology - A simple strategy for generating innovative ligands for G protein coupled receptors. Peptides. 2018;99:195–204.

    Article  CAS  PubMed  Google Scholar 

  106. Rizzi A, Malfacini D, Cerlesi MC, Ruzza C, Marzola E, Bird MF, et al. In vitro and in vivo pharmacological characterization of nociceptin/orphanin FQ tetrabranched derivatives. Br J Pharmacol. 2014;171(17):4138–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rizzi A, Sukhtankar DD, Ding H, Hayashida K, Ruzza C, Guerrini R, et al. Spinal antinociceptive effects of the novel NOP receptor agonist PWT2-nociceptin/orphanin FQ in mice and monkeys. Br J Pharmacol. 2015;172(14):3661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wichmann J, Adam G, Rover S, Cesura AM, Dautzenberg FM, Jenck F. 8-acenaphthen-1-yl-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one derivatives as orphanin FQ receptor agonists. Bioorg Med Chem Lett. 1999;9(16):2343–8.

    Article  CAS  PubMed  Google Scholar 

  109. Jenck F, Wichmann J, Dautzenberg FM, Moreau JL, Ouagazzal AM, Martin JR, et al. A synthetic agonist at the orphanin FQ/nociceptin receptor ORL1: anxiolytic profile in the rat. Proc Natl Acad Sci USA. 2000;97(9):4938–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wichmann J, Adam G, Rover S, Hennig M, Scalone M, Cesura AM, et al. Synthesis of (1S,3aS)-8-(2,3,3a,4,5, 6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a potent and selective orphanin FQ (OFQ) receptor agonist with anxiolytic-like properties. Eur J Med Chem. 2000;35(9):839–51.

    Article  CAS  PubMed  Google Scholar 

  111. Obara I, Przewlocki R, Przewlocka B. Spinal and local peripheral antiallodynic activity of Ro64-6198 in neuropathic pain in the rat. Pain. 2005;116(1–2):17–25.

    Article  CAS  PubMed  Google Scholar 

  112. Dautzenberg FM, Wichmann J, Higelin J, Py-Lang G, Kratzeisen C, Malherbe P, et al. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64–6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo. J Pharmacol Exp Ther. 2001;298(2):812–9.

    CAS  PubMed  Google Scholar 

  113. Jenck F, Moreau JL, Martin JR, Kilpatrick GJ, Reinscheid RK, Monsma FJ Jr, et al. Orphanin FQ acts as an anxiolytic to attenuate behavioral responses to stress. Proc Natl Acad Sci USA. 1997;94(26):14854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koster A, Montkowski A, Schulz S, Stube EM, Knaudt K, Jenck F, et al. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci USA. 1999;96(18):10444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Varty GB, Hyde LA, Hodgson RA, Lu SX, McCool MF, Kazdoba TM, et al. Characterization of the nociceptin receptor (ORL-1) agonist, Ro64-6198, in tests of anxiety across multiple species. Psychopharmacology. 2005;182(1):132–43.

    Article  CAS  PubMed  Google Scholar 

  116. Shoblock JR. The pharmacology of Ro 64–6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity. CNS Drug Rev. 2007;13(1):107–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, et al. Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem. 2009;52(3):61025.

    Article  Google Scholar 

  118. Hirao A, Imai A, Sugie Y, Yamada Y, Hayashi S, Toide K. Pharmacological characterization of the newly synthesized nociceptin/orphanin FQ-receptor agonist 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole as an anxiolytic agent. J Pharmacol Sci. 2008;106(3):361–8.

    Article  CAS  PubMed  Google Scholar 

  119. Campbell J, Walker J, Sole L, Stevens R, Lascelles BDX. Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain. ASENT 2022 annual meeting. Neurotherapeutics. 2022;19(4):1414–31.

  120. Molinari S, Camarda V, Rizzi A, Marzola G, Salvadori S, Marzola E, et al. [Dmt1]N/OFQ(1–13)-NH2: a potent nociceptin/orphanin FQ and opioid receptor universal agonist. Br J Pharmacol. 2013;168(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  121. Cerlesi MC, Ding H, Bird MF, Kiguchi N, Ferrari F, Malfacini D, et al. Pharmacological studies on the NOP and opioid receptor agonist PWT2-[Dmt(1)]N/OFQ(1–13). Eur J Pharmacol. 2017;794:115–26.

    Article  CAS  PubMed  Google Scholar 

  122. Khroyan TV, Polgar WE, Cami-Kobeci G, Husbands SM, Zaveri NT, Toll L. The first universal opioid ligand, (2S)-2-[(5R,6R,7R,14S)-N-cyclopropylmethyl-4,5-epoxy-6,14-ethano-3-hydroxy-6-meth oxymorphinan-7-yl]-3,3-dimethylpentan-2-ol (BU08028): characterization of the in vitro profile and in vivo behavioral effects in mouse models of acute pain and cocaine-induced reward. J Pharmacol Exp Ther. 2011;336(3):952–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sukhtankar DD, Zaveri NT, Husbands SM, Ko MC. Effects of spinally administered bifunctional nociceptin/orphanin FQ peptide receptor/mu-opioid receptor ligands in mouse models of neuropathic and inflammatory pain. J Pharmacol Exp Ther. 2013;346(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ding H, Kiguchi N, Perrey DA, Nguyen T, Czoty PW, Hsu FC, et al. Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in nonhuman primates. Br J Anaesth. 2020;125(4):596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ko MC, Naughton NN. An experimental itch model in monkeys: characterization of intrathecal morphine-induced scratching and antinociception. Anesthesiology. 2000;92(3): 795805.

    Article  Google Scholar 

  126. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354(6312):572–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Peirs C, Seal RP. Neural circuits for pain: recent advances and current views. Science. 2016;354(6312):578–84.

    Article  CAS  PubMed  Google Scholar 

  128. Adam G, Cesura AM, Galley G, Jenck F, Monsma FJJ, Rover S, et al. 8-substituted-1,3,8-triazaspiro[4.5]decan-4-one derivatives. In: EP 0 856 514 B1 European Patent Office. 2001.

  129. Rover S, Adam G, Cesura AM, Galley G, Jenck F, Monsma FJ Jr, et al. High-affinity, non-peptide agonists for the ORL1 (orphanin FQ/nociceptin) receptor. J Med Chem. 2000;43(7):1329–38.

    Article  CAS  PubMed  Google Scholar 

  130. Kotlinska J, Wichmann J, Rafalski P, Talarek S, Dylag T, Silberring J. Non-peptidergic OP4 receptor agonist inhibits morphine antinociception but does not influence morphine dependence. NeuroReport. 2003;14(4):601–4.

    Article  CAS  PubMed  Google Scholar 

  131. Reiss D, Wichmann J, Tekeshima H, Kieffer BL, Ouagazzal AM. Effects of nociceptin/orphanin FQ receptor (NOP) agonist, Ro64-6198, on reactivity to acute pain in mice: comparison to morphine. Eur J Pharmacol. 2008;579(1–3):141–8.

    Article  CAS  PubMed  Google Scholar 

  132. Bytner B, Huang YH, Yu LC, Lundeberg T, Nylander I, Rosen A. Nociceptin/orphanin FQ into the rat periaqueductal gray decreases the withdrawal latency to heat and loading, an effect reversed by (Nphe(1))nociceptin(1–13)NH(2). Brain Res. 2001;922(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  133. Chiou LC, Chuang KC, Wichmann J, Adam G. Ro 64–6198 [(1S,3aS)-8-(2,3,3a,4,5,6-Hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one] acts differently from nociceptin/orphanin FQ in rat periaqueductal gray slices. J Pharmacol Exp Ther. 2004;311(2):645–51.

    Article  CAS  PubMed  Google Scholar 

  134. Yang ZL, Gao YJ, Wu GC, Zhang YQ. The rostral ventromedial medulla mediates the facilitatory effect of microinjected orphanin FQ in the periaqueductal gray on spinal nociceptive transmission in rats. Neuropharmacology. 2003;45(5):612–22.

    Article  CAS  PubMed  Google Scholar 

  135. Mogil JS, Pasternak GW. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev. 2001;53(3):381–415.

    CAS  PubMed  Google Scholar 

  136. Sukhtankar DD, Lee H, Rice KC, Ko MC. Differential effects of opioid-related ligands and NSAIDs in nonhuman primate models of acute and inflammatory pain. Psychopharmacology. 2014;231(7):1377–87.

    Article  CAS  PubMed  Google Scholar 

  137. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6(5):357–72.

    Article  CAS  PubMed  Google Scholar 

  138. Higgins GA, Grottick AJ, Ballard TM, Richards JG, Messer J, Takeshima H, et al. Influence of the selective ORL1 receptor agonist, Ro64-6198, on rodent neurological function. Neuropharmacology. 2001;41(1):97–107.

    Article  CAS  PubMed  Google Scholar 

  139. Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH. The effects of nociceptin/orphanin FQ receptor agonist Ro 64–6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology. 2011;213(1):5360.

    Article  Google Scholar 

  140. Varty GB, Lu SX, Morgan CA, Cohen-Williams ME, Hodgson RA, Smith-Torhan A, et al. The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510). J Pharmacol Exp Ther. 2008;326(2):672–82.

    Article  CAS  PubMed  Google Scholar 

  141. Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Salaga M, Storr M, et al. Anti-inflammatory and antinociceptive action of an orally available nociceptin receptor agonist SCH 221510 in a mouse model of inflammatory bowel diseases. J Pharmacol Exp Ther. 2014;348(3):401–9.

    Article  PubMed  Google Scholar 

  142. Sobczak M, Salaga M, Storr M, Fichna J. Nociceptin / orphanin FQ (NOP) receptors as novel potential target in the treatment of gastrointestinal diseases. Curr Drug Targets. 2013;14(10):1203–9.

    Article  CAS  PubMed  Google Scholar 

  143. Wladischkin KA, Dysko RC, Collins GT, Ko YA, Winger G, Ko MC. Pharmacological characterization of NOP receptor agonists as abuse-free and constipation-free analgesics in monkeys. FASEB J. 2012;26(Suppl.):1123.3.

  144. Kangas BD, Bergman J. Operant nociception in nonhuman primates. Pain. 2014;155(9):18218.

    Article  Google Scholar 

  145. Ding H, Czoty PW, Kiguchi N, Cami-Kobeci G, Sukhtankar DD, Nader MA, et al. A novel orvinol analog, BU08028, as a safe opioid analgesic without abuse liability in primates. Proc Natl Acad Sci USA. 2016;113(37):E5511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ferrari F, Malfacini D, Journigan BV, Bird MF, Trapella C, Guerrini R, et al. In vitro pharmacological characterization of a novel unbiased NOP receptor-selective nonpeptide agonist AT-403. Pharmacol Res Perspect. 2017;5(4): e00333.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Azevedo Neto J, Ruzza C, Sturaro C, Malfacini D, Pacifico S, Zaveri NT, et al. Functional selectivity does not predict antinociceptive/locomotor impairing potencies of NOP receptor agonists. Front Neurosci. 2021;15: 657153.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Schmid CL, Bohn LM. Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther. 2009;121(3):285–93.

    Article  CAS  PubMed  Google Scholar 

  149. Azevedo Neto J, Costanzini A, De Giorgio R, Lambert DG, Ruzza C, Calò G. Biased versus partial agonism in the search for safer opioid analgesics. Molecules. 2020;25(17):3780.

    Article  Google Scholar 

  150. Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD, Alamein C, et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci Signal. 2020;13(625):eaaz3140.

    Article  CAS  PubMed  Google Scholar 

  151. Beardsley PM, Aceto MD, Cook CD, Bowman ER, Newman JL, Harris LS. Discriminative stimulus, reinforcing, physical dependence, and antinociceptive effects of oxycodone in mice, rats, and rhesus monkeys. Exp Clin Psychopharmacol. 2004;12(3):163–72.

    Article  CAS  PubMed  Google Scholar 

  152. Huskinson SL, Platt DM, Zamarripa CA, Dunaway K, Brasfield M, Prisinzano TE, et al. The G-protein biased kappa opioid agonists, triazole 1.1 and nalfurafine, produce non-uniform behavioral effects in male rhesus monkeys. Pharmacol Biochem Behav. 2022;217: 173394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Johanson CE, Arfken CL, di Menza S, Schuster CR. Diversion and abuse of buprenorphine: findings from national surveys of treatment patients and physicians. Drug Alcohol Depend. 2012;120(1–3):190–5.

    Article  CAS  PubMed  Google Scholar 

  154. Morley KI, Ferris JA, Winstock AR, Lynskey MT. Polysubstance use and misuse or abuse of prescription opioid analgesics: a multi-level analysis of international data. Pain. 2017;158(6):1138–44.

    Article  CAS  PubMed  Google Scholar 

  155. Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, et al. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med. 2018;10(456):eaar3483.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. Aaps J. 2008;10(4):537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Flynn SM, Epperly PM, Davenport AT, Cami-Kobeci G, Husbands SM, Ko MC, et al. Effects of stimulation of mu opioid and nociceptin/orphanin FQ peptide (NOP) receptors on alcohol drinking in rhesus monkeys. Neuropsychopharmacology. 2019;44(8):1476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. van Niel JC, Schneider J, Tzschentke TM. Efficacy of full micro-opioid receptor agonists is not impaired by concomitant buprenorphine or mixed opioid agonists/antagonists—preclinical and clinical evidence. Drug Res (Stuttg). 2016;66(11):562–70.

    Article  PubMed  Google Scholar 

  159. Kane JM, Skuban A, Hobart M, Ouyang J, Weiller E, Weiss C, et al. Overview of short- and longterm tolerability and safety of brexpiprazole in patients with schizophrenia. Schizophr Res. 2016;174(1–3):93–8.

    Article  PubMed  Google Scholar 

  160. Kantola I, Scheinin M, Gulbrandsen T, Meland N, Smerud KT. Safety, tolerability, and antihypertensive effect of SER100, an opiate receptor-like 1 (ORL-1) partial agonist, in patients with isolated systolic hypertension. Clin Pharmacol Drug Dev. 2017;6(6):584–91.

    Article  CAS  PubMed  Google Scholar 

  161. Gerak LR, Maguire DR, Cami-Kobeci G, Olson KM, Traynor JR, Husbands SM, et al. OREX-1038: a potential new treatment for pain with low abuse liability and limited adverse effects. Behav Pharmacol. 2022;33(6):377–94.

    Article  CAS  PubMed  Google Scholar 

  162. Cippitelli A, Martinez M, Zribi G, Cami-Kobeci G, Husbands SM, Toll L. PPL-138 (BU10038): a bifunctional NOP/mu partial agonist that reduces cocaine self-administration in rats. Neuropharmacology. 2022;211: 109045.

    Article  CAS  PubMed  Google Scholar 

  163. Monteillet-Agius G, Fein J, Anton B, Evans CJ. ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing. J Comp Neurol. 1998;399(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  164. Schunk S, Linz K, Hinze C, Frormann S, Oberborsch S, Sundermann B, et al. Discovery of a potent analgesic NOP and opioid receptor agonist: cebranopadol. ACS Med Chem Lett. 2014;5(8):857–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Linz K, Christoph T, Tzschentke TM, Koch T, Schiene K, Gautrois M, et al. Cebranopadol: a novel potent analgesic nociceptin/orphanin FQ peptide and opioid receptor agonist. J Pharmacol Exp Ther. 2014;349(3):535–48.

    Article  PubMed  Google Scholar 

  166. Schiene K, Schroder W, Linz K, Frosch S, Tzschentke TM, Jansen U, et al. Nociceptin/orphanin FQ opioid peptide (NOP) receptor and micro-opioid peptide (MOP) receptors both contribute to the anti-hypersensitive effect of cebranopadol in a rat model of arthritic pain. Eur J Pharmacol. 2018;832:90–5.

    Article  CAS  PubMed  Google Scholar 

  167. Tzschentke TM, Linz K, Koch T, Christoph T. Cebranopadol: a novel first-in-class potent analgesic acting via NOP and opioid receptors. Handb Exp Pharmacol. 2019;254:367–98.

    Article  CAS  PubMed  Google Scholar 

  168. Christoph T, Kogel B, Strassburger W, Schug SA. Tramadol has a better potency ratio relative to morphine in neuropathic than in nociceptive pain models. Drugs R D. 2007;8(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  169. Calo G, Lambert DG. Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth. 2018;121(5):1105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ding H, Trapella C, Kiguchi N, Hsu FC, Caló G, Ko MC. Functional profile of systemic and intrathecal cebranopadol in nonhuman primates. Anesthesiology. 2021;135(3):482–93.

    Article  CAS  PubMed  Google Scholar 

  171. Dietis N, Guerrini R, Calo G, Salvadori S, Rowbotham DJ, Lambert DG. Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth. 2009;103(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  172. Saccone PA, Zelenock KA, Lindsey AM, Sulima A, Rice KC, Prinssen EP, et al. Characterization of the discriminative stimulus effects of a NOP receptor agonist Ro 64–6198 in rhesus monkeys. J Pharmacol Exp Ther. 2016;357(1):17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gerak LR, Galici R, France CP. Self administration of heroin and cocaine in morphine-dependent and morphine-withdrawn rhesus monkeys. Psychopharmacology. 2009;204(3):403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ko MC, Terner J, Hursh S, Woods JH, Winger G. Relative reinforcing effects of three opioids with different durations of action. J Pharmacol Exp Ther. 2002;301(2):698–704.

    Article  CAS  PubMed  Google Scholar 

  175. Dahan A, Boom M, Sarton E, Hay J, Groeneveld GJ, Neukirchen M, et al. Respiratory effects of the nociceptin/orphanin FQ peptide and opioid receptor agonist, cebranopadol, in healthy human volunteers. Anesthesiology. 2017;126(4):697–707.

    Article  CAS  PubMed  Google Scholar 

  176. de Guglielmo G, Matzeu A, Kononoff J, Mattioni J, Martin-Fardon R, George O. Cebranopadol blocks the escalation of cocaine intake and conditioned reinstatement of cocaine seeking in rats. J Pharmacol Exp Ther. 2017;362(3):378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Shen Q, Deng Y, Ciccocioppo R, Cannella N. Cebranopadol, a mixed opioid agonist, reduces cocaine self-administration through nociceptin opioid and Mu opioid receptors. Front Psychiatry. 2017;8:234.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gohler K, Sokolowska M, Schoedel KA, Nemeth R, Kleideiter E, Szeto I, et al. Assessment of the abuse potential of cebranopadol in nondependent recreational opioid users: a phase 1 randomized controlled study. J Clin Psychopharmacol. 2019;39(1):46–56.

    Article  PubMed  Google Scholar 

  179. Kleideiter E, Piana C, Wang S, Nemeth R, Gautrois M. Clinical pharmacokinetic characteristics of cebranopadol, a novel first-in-class analgesic. Clin Pharmacokinet. 2018;57(1):31–50.

    Article  CAS  PubMed  Google Scholar 

  180. Christoph A, Eerdekens MH, Kok M, Volkers G, Freynhagen R. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience in patients with chronic low back pain in a randomized clinical trial. Pain. 2017;158(9):1813–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Eerdekens MH, Kapanadze S, Koch ED, Kralidis G, Volkers G, Ahmedzai SH, et al. Cancer-related chronic pain: investigation of the novel analgesic drug candidate cebranopadol in a randomized, double-blind, noninferiority trial. Eur J Pain. 2019;23(3):577–88.

    Article  CAS  PubMed  Google Scholar 

  182. Scholz A, Bothmer J, Kok M, Hoschen K, Daniels S. Cebranopadol: a novel, first-in-class, strong analgesic: results from a randomized phase IIa clinical trial in postoperative acute pain. Pain Physician. 2018;21(3):E193-e206.

    Article  PubMed  Google Scholar 

  183. Koch ED, Kapanadze S, Eerdekens MH, Kralidis G, Letal J, Sabatschus I, et al. Cebranopadol, a novel first-in-class analgesic drug candidate: first experience with cancer-related pain for up to 26 weeks. J Pain Symptom Manage. 2019;58(3):390–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Chuan Ko.

Ethics declarations

Funding

This work was completed with funding support from the National Institute on Drug Abuse (NIDA), R01-DA053343, R01-DA032568, and R21-DA049580.

Conflict of interest

HD, NK, MD, EARS, SS, and MCK declare that they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent (participation and publication)

Not applicable.

Author contributions

HD, NK, MD, and MCK wrote the draft of the manuscript. All authors read and edited to prepare the final version of the article.

Data availability statement

Not applicable.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Kiguchi, N., Dobbins, M. et al. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 83, 771–793 (2023). https://doi.org/10.1007/s40265-023-01878-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-023-01878-5

Navigation