Skip to main content
Log in

Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date?

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51. https://doi.org/10.1093/neuonc/noab106.

    Article  CAS  PubMed  Google Scholar 

  2. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86. https://doi.org/10.1038/s41571-020-00447-z.

    Article  PubMed  Google Scholar 

  3. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21(Suppl 5):v1–100. https://doi.org/10.1093/neuonc/noz150.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–113. https://doi.org/10.1093/neuonc/noaa106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. https://doi.org/10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  6. Perry JR, Laperriere N, O’Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027–37. https://doi.org/10.1056/NEJMoa1611977.

    Article  CAS  PubMed  Google Scholar 

  7. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. https://doi.org/10.1056/NEJMoa043331.

    Article  CAS  PubMed  Google Scholar 

  8. Wu W, Lamborn KR, Buckner JC, Novotny PJ, Chang SM, O’Fallon JR, et al. Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma. Neuro Oncol. 2010;12(2):164–72. https://doi.org/10.1093/neuonc/nop019.

    Article  CAS  PubMed  Google Scholar 

  9. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. https://doi.org/10.1016/s1470-2045(09)70025-7.

    Article  CAS  PubMed  Google Scholar 

  10. Lamborn KR, Yung WK, Chang SM, Wen PY, Cloughesy TF, DeAngelis LM, et al. Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol. 2008;10(2):162–70. https://doi.org/10.1215/15228517-2007-062.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–16. https://doi.org/10.1001/jama.2017.18718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nunno VD, Franceschi E, Gatto L, Brandes AA. BET inhibitors: the promise of a new generation of immunotherapy in glioblastoma. Immunotherapy. 2021. https://doi.org/10.2217/imt-2021-0296.

    Article  PubMed  Google Scholar 

  13. Di Nunno V, Franceschi E, Tosoni A, Gatto L, Lodi R, Bartolini S, et al. Glioblastoma: emerging treatments and novel trial designs. Cancers (Basel). 2021;13(15):3750. https://doi.org/10.3390/cancers13153750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Nunno V, Franceschi E, Tosoni A, Di Battista M, Gatto L, Lamperini C, et al. Treatment of recurrent glioblastoma: state-of-the-art and future perspectives. Expert Rev Anticancer Ther. 2020;20(9):785–95. https://doi.org/10.1080/14737140.2020.1807949.

    Article  CAS  PubMed  Google Scholar 

  15. Weller M, Le Rhun E. How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 2020;87: 102029. https://doi.org/10.1016/j.ctrv.2020.102029.

    Article  CAS  PubMed  Google Scholar 

  16. Lombardi G, Idbaih A, Le Rhun E, Preusser M, Zagonel V, French P. A new landscape for systemic pharmacotherapy of recurrent glioblastoma? Cancers (Basel). 2020;12(12):3775. https://doi.org/10.3390/cancers12123775.

    Article  PubMed Central  Google Scholar 

  17. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80: 101896. https://doi.org/10.1016/j.ctrv.2019.101896.

    Article  CAS  PubMed  Google Scholar 

  18. Lim-Fat MJ, Youssef GC, Touat M, Iorgulescu JB, Whorral S, Allen M, et al. Clinical utility of targeted next generation sequencing assay in IDH-wildtype glioblastoma for therapy decision-making. Neuro Oncol. 2021. https://doi.org/10.1093/neuonc/noab282.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Di Nunno V, Franceschi E, Gatto L, Bartolini S, Brandes AA. Predictive markers of immune response in glioblastoma: hopes and facts. Future Oncol. 2020;16(15):1053–63. https://doi.org/10.2217/fon-2020-0047.

    Article  CAS  PubMed  Google Scholar 

  20. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003–10. https://doi.org/10.1001/jamaoncol.2020.1024.

    Article  PubMed  Google Scholar 

  21. Gatto L, Nunno VD, Franceschi E, Brandes AA. Chimeric antigen receptor macrophage for glioblastoma immunotherapy: the way forward. Immunotherapy. 2021;13(11):879–83. https://doi.org/10.2217/imt-2021-0054.

    Article  CAS  PubMed  Google Scholar 

  22. Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther. 2021;21(12):1333–53. https://doi.org/10.1080/14737140.2021.1997599.

    Article  CAS  PubMed  Google Scholar 

  23. Vanderbeek AM, Rahman R, Fell G, Ventz S, Chen T, Redd R, et al. The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro Oncol. 2018;20(8):1034–43. https://doi.org/10.1093/neuonc/noy027.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Alexander BM, Trippa L. Progression-free survival: too much risk, not enough reward? Neuro Oncol. 2014;16(5):615–6. https://doi.org/10.1093/neuonc/nou041.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brandes AA, Franceschi E (2011) New agents and new end points for recurrent gliomas. J Clin Oncol 29(9):e245–6; author reply e7. https://doi.org/10.1200/jco.2010.33.2809.

  26. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22. https://doi.org/10.1056/NEJMoa1308345.

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. https://doi.org/10.1056/NEJMoa1308573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Han K, Ren M, Wick W, Abrey L, Das A, Jin J, et al. Progression-free survival as a surrogate endpoint for overall survival in glioblastoma: a literature-based meta-analysis from 91 trials. Neuro Oncol. 2014;16(5):696–706. https://doi.org/10.1093/neuonc/not236.

    Article  PubMed  Google Scholar 

  29. Franceschi E, Ermani M, Bartolini S, Bartolotti M, Poggi R, Tallini G, et al. Post progression survival in glioblastoma: where are we? J Neurooncol. 2015;121(2):399–404. https://doi.org/10.1007/s11060-014-1651-7.

    Article  PubMed  Google Scholar 

  30. Sharrocks K, Spicer J, Camidge DR, Papa S. The impact of socioeconomic status on access to cancer clinical trials. Br J Cancer. 2014;111(9):1684–7. https://doi.org/10.1038/bjc.2014.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tosoni A, Gatto L, Franceschi E, Di Nunno V, Lodi R, Mura A, et al. Association between socioeconomic status and survival in glioblastoma: an Italian single-centre prospective observational study. Eur J Cancer. 2021;145:171–8. https://doi.org/10.1016/j.ejca.2020.12.027.

    Article  PubMed  Google Scholar 

  32. Winkfield KM. Improving access to cancer clinical trials by reducing the financial burden. Cancer. 2020;126(1):14–6. https://doi.org/10.1002/cncr.32523.

    Article  PubMed  Google Scholar 

  33. Vanderbeek AM, Ventz S, Rahman R, Fell G, Cloughesy TF, Wen PY, et al. To randomize, or not to randomize, that is the question: using data from prior clinical trials to guide future designs. Neuro Oncol. 2019;21(10):1239–49. https://doi.org/10.1093/neuonc/noz097.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trippa L, Lee EQ, Wen PY, Batchelor TT, Cloughesy T, Parmigiani G, et al. Bayesian adaptive randomized trial design for patients with recurrent glioblastoma. J Clin Oncol. 2012;30(26):3258–63. https://doi.org/10.1200/jco.2011.39.8420.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 2018;24(4):737–43. https://doi.org/10.1158/1078-0432.Ccr-17-0764.

    Article  PubMed  Google Scholar 

  36. Alexander BM, Trippa L, Gaffey S, Arrillaga-Romany IC, Lee EQ, Rinne ML, et al. Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): a bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis Oncol. 2019. https://doi.org/10.1200/po.18.00071.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wick W, Dettmer S, Berberich A, Kessler T, Karapanagiotou-Schenkel I, Wick A, et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro Oncol. 2019;21(1):95–105. https://doi.org/10.1093/neuonc/noy161.

    Article  CAS  PubMed  Google Scholar 

  38. Trippa L, Wen PY, Parmigiani G, Berry DA, Alexander BM. Combining progression-free survival and overall survival as a novel composite endpoint for glioblastoma trials. Neuro Oncol. 2015;17(8):1106–13. https://doi.org/10.1093/neuonc/nou345.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147(2):297–307. https://doi.org/10.1007/s11060-020-03451-6.

    Article  PubMed  Google Scholar 

  40. Delgado-López PD, Riñones-Mena E, Corrales-García EM. Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol. 2018;20(8):939–53. https://doi.org/10.1007/s12094-017-1816-x.

    Article  PubMed  Google Scholar 

  41. Ellingson BM, Sampson J, Achrol AS, Aghi MK, Bankiewicz K, Wang C, et al. Modified RANO, immunotherapy RANO, and standard RANO response to convection-enhanced delivery of IL4R-targeted immunotoxin MDNA55 in recurrent glioblastoma. Clin Cancer Res. 2021;27(14):3916–25. https://doi.org/10.1158/1078-0432.Ccr-21-0446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galldiks N, Niyazi M, Grosu AL, Kocher M, Langen KJ, Law I, et al. Contribution of PET imaging to radiotherapy planning and monitoring in glioma patients—a report of the PET/RANO group. Neuro Oncol. 2021;23(6):881–93. https://doi.org/10.1093/neuonc/noab013.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holzgreve A, Albert NL, Galldiks N, Suchorska B. Use of PET imaging in neuro-oncological surgery. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13092093.

    Article  Google Scholar 

  44. Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, et al. Diagnostic performance of [(11)C]methionine positron emission tomography in newly diagnosed and untreated glioma based on the revised World Health Organization 2016 Classification. World Neurosurg. 2021;148:e471–81. https://doi.org/10.1016/j.wneu.2021.01.012.

    Article  PubMed  Google Scholar 

  45. Nayak L, DeAngelis LM, Brandes AA, Peereboom DM, Galanis E, Lin NU, et al. The Neurologic Assessment in Neuro-Oncology (NANO) scale: a tool to assess neurologic function for integration into the Response Assessment in Neuro-Oncology (RANO) criteria. Neuro Oncol. 2017;19(5):625–35. https://doi.org/10.1093/neuonc/nox029.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Okada H, Weller M, Huang R, Finocchiaro G, Gilbert MR, Wick W, et al. Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol. 2015;16(15):e534–42. https://doi.org/10.1016/s1470-2045(15)00088-1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chang K, Beers AL, Bai HX, Brown JM, Ly KI, Li X, et al. Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro Oncol. 2019;21(11):1412–22. https://doi.org/10.1093/neuonc/noz106.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, et al. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 2019;20(5):728–40. https://doi.org/10.1016/s1470-2045(19)30098-1.

    Article  PubMed  Google Scholar 

  49. Vogelbaum MA, Krivosheya D, Borghei-Razavi H, Sanai N, Weller M, Wick W, et al. Phase 0 and window of opportunity clinical trial design in neuro-oncology: a RANO review. Neuro Oncol. 2020;22(11):1568–79. https://doi.org/10.1093/neuonc/noaa149.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86. https://doi.org/10.1038/s41591-018-0337-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393(10172):678–88. https://doi.org/10.1016/s0140-6736(18)31791-4.

    Article  CAS  PubMed  Google Scholar 

  52. Blumenthal DT, Gorlia T, Gilbert MR, Kim MM, Burt Nabors L, Mason WP, et al. Is more better? The impact of extended adjuvant temozolomide in newly diagnosed glioblastoma: a secondary analysis of EORTC and NRG Oncology/RTOG. Neuro Oncol. 2017;19(8):1119–26. https://doi.org/10.1093/neuonc/nox025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085–91. https://doi.org/10.1200/jco.2013.49.6968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stupp R, Hegi ME, Neyns B, Goldbrunner R, Schlegel U, Clement PM, et al. Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(16):2712–8. https://doi.org/10.1200/jco.2009.26.6650.

    Article  CAS  PubMed  Google Scholar 

  55. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071–22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(10):1100–8. https://doi.org/10.1016/s1470-2045(14)70379-1.

    Article  CAS  PubMed  Google Scholar 

  56. Nabors LB, Fink KL, Mikkelsen T, Grujicic D, Tarnawski R, Nam DH, et al. Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study. Neuro Oncol. 2015;17(5):708–17. https://doi.org/10.1093/neuonc/nou356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roth P, Reijneveld J, Gorlia T, Dhermain F, De Vos F, Vanlancker M, et al (2019) P14.124 EORTC 1709/CCTG CE.8: a phase III trial of marizomib in combination with standard temozolomide-based radiochemotherapy versus standard temozolomide-based radiochemotherapy alone in patients with newly diagnosed glioblastoma. Neuro-Oncology 21(Suppl 3):iii98–iii. https://doi.org/10.1093/neuonc/noz126.359.

  58. Butowski N, Chang SM, Lamborn KR, Polley MY, Pieper R, Costello JF, et al. Phase II and pharmacogenomics study of enzastaurin plus temozolomide during and following radiation therapy in patients with newly diagnosed glioblastoma multiforme and gliosarcoma. Neuro Oncol. 2011;13(12):1331–8. https://doi.org/10.1093/neuonc/nor130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN, et al. The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res. 2005;65(16):7462–9. https://doi.org/10.1158/0008-5472.Can-05-0071.

    Article  CAS  PubMed  Google Scholar 

  60. Kreisl TN, Kotliarova S, Butman JA, Albert PS, Kim L, Musib L, et al. A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro Oncol. 2010;12(2):181–9. https://doi.org/10.1093/neuonc/nop042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wick W, Steinbach JP, Platten M, Hartmann C, Wenz F, von Deimling A, et al. Enzastaurin before and concomitant with radiation therapy, followed by enzastaurin maintenance therapy, in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation. Neuro Oncol. 2013;15(10):1405–12. https://doi.org/10.1093/neuonc/not100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Omuro A, Vlahovic G, Lim M, Sahebjam S, Baehring J, Cloughesy T, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol. 2018;20(5):674–86. https://doi.org/10.1093/neuonc/nox208.

    Article  CAS  PubMed  Google Scholar 

  63. Gan HK, Reardon DA, Lassman AB, Merrell R, van den Bent M, Butowski N, et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol. 2018;20(6):838–47. https://doi.org/10.1093/neuonc/nox202.

    Article  CAS  PubMed  Google Scholar 

  64. Lassman AB, van den Bent MJ, Gan HK, Reardon DA, Kumthekar P, Butowski N, et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol. 2019;21(1):106–14. https://doi.org/10.1093/neuonc/noy091.

    Article  CAS  PubMed  Google Scholar 

  65. Padovan M, Eoli M, Pellerino A, Rizzato S, Caserta C, Simonelli M, et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: real-world experience from a multicenter study of Italian Asso. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13112773.

    Article  Google Scholar 

  66. van den Bent M, Gan HK, Lassman AB, Kumthekar P, Merrell R, Butowski N, et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol. 2017;80(6):1209–17. https://doi.org/10.1007/s00280-017-3451-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13. https://doi.org/10.1016/j.jocn.2018.05.002.

    Article  PubMed  Google Scholar 

  68. Richardson TE, Kumar A, Xing C, Hatanpaa KJ, Walker JM. Overcoming the odds: toward a molecular profile of long-term survival in glioblastoma. J Neuropathol Exp Neurol. 2020;79(10):1031–7. https://doi.org/10.1093/jnen/nlaa102.

    Article  PubMed  Google Scholar 

  69. Burgenske DM, Yang J, Decker PA, Kollmeyer TM, Kosel ML, Mladek AC, et al. Molecular profiling of long-term IDH-wildtype glioblastoma survivors. Neuro Oncol. 2019;21(11):1458–69. https://doi.org/10.1093/neuonc/noz129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019;20(1):110–9. https://doi.org/10.1016/s1470-2045(18)30675-2.

    Article  CAS  PubMed  Google Scholar 

  71. Franceschi E, Stupp R, van den Bent MJ, van Herpen C, Laigle Donadey F, Gorlia T, et al. EORTC 26083 phase I/II trial of dasatinib in combination with CCNU in patients with recurrent glioblastoma. Neuro Oncol. 2012;14(12):1503–10. https://doi.org/10.1093/neuonc/nos256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Franceschi E, Bartolotti M, Tosoni A, Bartolini S, Sturiale C, Fioravanti A, et al. The effect of re-operation on survival in patients with recurrent glioblastoma. Anticancer Res. 2015;35(3):1743–8.

    PubMed  Google Scholar 

  73. Brandes AA, Tosoni A, Franceschi E, Blatt V, Santoro A, Faedi M, et al. Fotemustine as second-line treatment for recurrent or progressive glioblastoma after concomitant and/or adjuvant temozolomide: a phase II trial of Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemother Pharmacol. 2009;64(4):769–75. https://doi.org/10.1007/s00280-009-0926-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brandes AA, Finocchiaro G, Zagonel V, Reni M, Caserta C, Fabi A, et al. AVAREG: a phase II, randomized, noncomparative study of fotemustine or bevacizumab for patients with recurrent glioblastoma. Neuro Oncol. 2016;18(9):1304–12. https://doi.org/10.1093/neuonc/now035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McBain C, Lawrie TA, Rogozińska E, Kernohan A, Robinson T, Jefferies S. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst Rev. 2021;5(1):Cd013579. https://doi.org/10.1002/14651858.CD013579.pub2.

    Article  PubMed  Google Scholar 

  76. Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, et al. Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer. 2007;96(7):1047–51. https://doi.org/10.1038/sj.bjc.6603669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sepúlveda-Sánchez JM, Vaz M, Balañá C, Gil-Gil M, Reynés G, Gallego Ó, et al. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 2017;19(11):1522–31. https://doi.org/10.1093/neuonc/nox105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol. 2009;27(8):1268–74. https://doi.org/10.1200/jco.2008.17.5984.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel JS, et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020;22(5):684–93. https://doi.org/10.1093/neuonc/noz222.

    Article  CAS  Google Scholar 

  80. Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O, et al. A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro Oncol. 2016;18(8):1146–56. https://doi.org/10.1093/neuonc/now009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Capper D, von Deimling A, Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, et al. Biomarker and histopathology evaluation of patients with recurrent glioblastoma treated with galunisertib, lomustine, or the combination of galunisertib and lomustine. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18050995.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hoogstrate Y, Vallentgoed W, Kros JM, de Heer I, de Wit M, Eoli M, et al. EGFR mutations are associated with response to depatux-m in combination with temozolomide and result in a receptor that is hypersensitive to ligand. Neurooncol Adv. 2020;2(1):vdz051. https://doi.org/10.1093/noajnl/vdz051.

    Article  PubMed  Google Scholar 

  83. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40. https://doi.org/10.1200/jco.2008.19.8721.

    Article  CAS  PubMed  Google Scholar 

  84. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med. 2017;377(20):1954–63. https://doi.org/10.1056/NEJMoa1707358.

    Article  CAS  PubMed  Google Scholar 

  85. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, et al. Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol. 2018;140(2):477–83. https://doi.org/10.1007/s11060-018-2977-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee EQ, Trippa L, Fell G, Rahman R, Arrillaga-Romany I, Touat M, et al. Preliminary results of the abemaciclib arm in the Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): A phase II platform trial using Bayesian adaptive randomization. J Clin Oncol. 2021;39(15_suppl):2014. https://doi.org/10.1200/JCO.2021.39.15_suppl.2014.

  87. Kaley T, Touat M, Subbiah V, Hollebecque A, Rodon J, Lockhart AC, et al. BRAF inhibition in BRAF(V600)-mutant gliomas: results from the VE-BASKET study. J Clin Oncol. 2018;36(35):3477–84. https://doi.org/10.1200/jco.2018.78.9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wen P, Stein A, van den Bent M, De Greve J, Dietrich S, De Vos F, et al. ACTR-30. Updated efficacy and safety of dabrafenib plus trametinib in patients with recurrent/refractory braf V600E–mutated high-grade glioma (HGG) and low-grade glioma (LGG). Neuro-Oncology. 2019;21(Suppl 6):vi19–vi20. https://doi.org/10.1093/neuonc/noz175.073.

  89. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos F, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53–64. https://doi.org/10.1016/s1470-2045(21)00578-7.

    Article  CAS  PubMed  Google Scholar 

  90. Drilon AE, DuBois SG, Farago AF, Geoerger B, Grilley-Olson JE, Hong DS, et al. Activity of larotrectinib in TRK fusion cancer patients with brain metastases or primary central nervous system tumors. J Clin Oncol. 2019; 37(15_suppl):2006. https://doi.org/10.1200/JCO.2019.37.15_suppl.2006.

  91. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/s1470-2045(17)30517-x.

    Article  CAS  PubMed  Google Scholar 

  92. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soler DC, Kerstetter-Fogle A, McCormick TS, Sloan AE. Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol. 2021. https://doi.org/10.1007/s11060-021-03902-8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168(4):724–40. https://doi.org/10.1016/j.cell.2017.01.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. https://doi.org/10.1182/blood-2014-01-552174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hombach A, Wieczarkowiecz A, Marquardt T, Heuser C, Usai L, Pohl C, et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3 zeta signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3 zeta signaling receptor molecule. J Immunol. 2001;167(11):6123–31. https://doi.org/10.4049/jimmunol.167.11.6123.

    Article  CAS  PubMed  Google Scholar 

  99. Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. https://doi.org/10.15252/emmm.201607485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. https://doi.org/10.1056/NEJMra1706169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Upreti D, Bakhshinyan D, Bloemberg D, Vora P, Venugopal C, Singh SK. Strategies to enhance the efficacy of T-cell therapy for central nervous system tumors. Front Immunol. 2020;11: 599253. https://doi.org/10.3389/fimmu.2020.599253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao Z, Condomines M, van der Stegen SJC, Perna F, Kloss CC, Gunset G, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–28. https://doi.org/10.1016/j.ccell.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Land CA, Musich PR, Haydar D, Krenciute G, Xie Q. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020;18(1):428. https://doi.org/10.1186/s12967-020-02598-0.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Joshi BH, Plautz GE, Puri RK. Interleukin-13 receptor alpha chain: a novel tumor-associated transmembrane protein in primary explants of human malignant gliomas. Cancer Res. 2000;60(5):1168–72.

    CAS  PubMed  Google Scholar 

  105. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.Ccr-15-0428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3(8):1094–101. https://doi.org/10.1001/jamaoncol.2017.0184.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Heimberger AB, Suki D, Yang D, Shi W, Aldape K. The natural history of EGFR and EGFRvIII in glioblastoma patients. J Transl Med. 2005;3:38. https://doi.org/10.1186/1479-5876-3-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42(4):126–35. https://doi.org/10.1097/cji.0000000000000260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017. https://doi.org/10.1126/scitranslmed.aaa0984.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sampson JH, Choi BD, Sanchez-Perez L, Suryadevara CM, Snyder DJ, Flores CT, et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 2014;20(4):972–84. https://doi.org/10.1158/1078-0432.Ccr-13-0709.

    Article  CAS  PubMed  Google Scholar 

  112. Abbott RC, Verdon DJ, Gracey FM, Hughes-Parry HE, Iliopoulos M, Watson KA, et al. Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunol. 2021;10(5): e1283. https://doi.org/10.1002/cti2.1283.

    Article  CAS  Google Scholar 

  113. Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 2019;37(9):1049–58. https://doi.org/10.1038/s41587-019-0192-1.

    Article  CAS  PubMed  Google Scholar 

  114. Chuntova P, Hou Y, Naka R, Yamamichi A, Chen T, Goretsky Y, et al. Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro Oncol. 2021. https://doi.org/10.1093/neuonc/noab182.

    Article  PubMed  Google Scholar 

  115. Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, et al. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aaw2672.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tang X, Zhao S, Zhang Y, Wang Y, Zhang Z, Yang M, et al. B7–H3 as a novel CAR-t therapeutic target for glioblastoma. Mol Ther Oncolytics. 2019;14:279–87. https://doi.org/10.1016/j.omto.2019.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jin L, Ge H, Long Y, Yang C, Chang YE, Mu L, et al. CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol. 2018;20(1):55–65. https://doi.org/10.1093/neuonc/nox116.

    Article  CAS  PubMed  Google Scholar 

  118. Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, et al. CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun. 2019;10(1):4016. https://doi.org/10.1038/s41467-019-11869-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3(10):541–51. https://doi.org/10.1158/1541-7786.Mcr-05-0056.

    Article  CAS  PubMed  Google Scholar 

  120. Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21(3):629–37. https://doi.org/10.1038/mt.2012.210.

    Article  CAS  PubMed  Google Scholar 

  121. Lin Q, Ba T, Ho J, Chen D, Cheng Y, Wang L, et al. First-in-human trial of EphA2-redirected CAR T-cells in patients with recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol. 2021;11: 694941. https://doi.org/10.3389/fonc.2021.694941.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 2018;23(7):2130–41. https://doi.org/10.1016/j.celrep.2018.04.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20(13):3025–33. https://doi.org/10.1016/j.celrep.2017.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Woroniecka K, Fecci PE. T-cell exhaustion in glioblastoma. Oncotarget. 2018;9(82):35287–8. https://doi.org/10.18632/oncotarget.26228.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tudor T, Binder ZA, O’Rourke DM. CAR T cells. Neurosurg Clin N Am. 2021;32(2):249–63. https://doi.org/10.1016/j.nec.2020.12.005.

    Article  PubMed  Google Scholar 

  126. Wei J, Wu A, Kong LY, Wang Y, Fuller G, Fokt I, et al. Hypoxia potentiates glioma-mediated immunosuppression. PLoS ONE. 2011;6(1): e16195. https://doi.org/10.1371/journal.pone.0016195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Agrawal NS, Miller R, Jr., Lal R, Mahanti H, Dixon-Mah YN, DeCandio ML, et al. Current studies of immunotherapy on glioblastoma. J Neurol Neurosurg. 2014;1(1)

  128. Hegde PS, Karanikas V, Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin Cancer Res. 2016;22(8):1865–74. https://doi.org/10.1158/1078-0432.Ccr-15-1507.

    Article  CAS  PubMed  Google Scholar 

  129. Joyce JA, Fearon DT. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015;348(6230):74–80. https://doi.org/10.1126/science.aaa6204.

    Article  CAS  PubMed  Google Scholar 

  130. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216(1):15–24. https://doi.org/10.1002/path.2370.

    Article  CAS  PubMed  Google Scholar 

  131. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Agarwal P, Pajor MJ, Anson DM, Guda MR, Labak CM, Tsung AJ, et al. Elucidating immunometabolic targets in glioblastoma. Am J Cancer Res. 2017;7(10):1990–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, et al. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood. 2009;114(4):844–59. https://doi.org/10.1182/blood-2008-12-195941.

    Article  CAS  PubMed  Google Scholar 

  134. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009;69(7):3077–85. https://doi.org/10.1158/0008-5472.Can-08-2281.

    Article  CAS  PubMed  Google Scholar 

  135. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9. https://doi.org/10.1038/ni.2035.

    Article  CAS  PubMed  Google Scholar 

  136. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99. https://doi.org/10.1038/nri3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003;4(3):235–40. https://doi.org/10.1038/ni887.

    Article  CAS  PubMed  Google Scholar 

  138. Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics. 2017;9:59. https://doi.org/10.1186/s13148-017-0358-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pandiyan K, You JS, Yang X, Dai C, Zhou XJ, Baylin SB, et al. Functional DNA demethylation is accompanied by chromatin accessibility. Nucleic Acids Res. 2013;41(7):3973–85. https://doi.org/10.1093/nar/gkt077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, et al. The epigenetic landscape of T cell exhaustion. Science. 2016;354(6316):1165–9. https://doi.org/10.1126/science.aae0491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, et al. Epigenetic landscapes reveal transcription factors that regulate CD8(+) T cell differentiation. Nat Immunol. 2017;18(5):573–82. https://doi.org/10.1038/ni.3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021. https://doi.org/10.1126/science.aba1786.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, et al. GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 2022;40(1):53-69.e9. https://doi.org/10.1016/j.ccell.2021.12.005.

    Article  CAS  PubMed  Google Scholar 

  144. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545–54. https://doi.org/10.1056/NEJMoa1708566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. The Lancet O. CAR T-cell therapy for solid tumours. Lancet Oncol. 2021;22(7):893. https://doi.org/10.1016/s1470-2045(21)00353-3.

    Article  Google Scholar 

  147. Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019;15(8):813–22. https://doi.org/10.1080/1744666x.2019.1629904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Herold MJ, McPherson KG, Reichardt HM. Glucocorticoids in T cell apoptosis and function. Cell Mol Life Sci. 2006;63(1):60–72. https://doi.org/10.1007/s00018-005-5390-y.

    Article  CAS  PubMed  Google Scholar 

  149. Liu S, Deng B, Yin Z, Pan J, Lin Y, Ling Z, et al. Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia. Blood Cancer J. 2020;10(2):15. https://doi.org/10.1038/s41408-020-0280-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Topp M, Van Meerten T, Houot R, Minnema MC, Milpied N, Lugtenburg PJ, et al. Earlier steroid use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory large B cell lymphoma. Blood. 2019;134(Supplement_1):243. https://doi.org/10.1182/blood-2019-126081.

  151. Gauthier J, Turtle CJ. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr Res Transl Med. 2018;66(2):50–2. https://doi.org/10.1016/j.retram.2018.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19. https://doi.org/10.1158/2159-8290.Cd-17-0698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–71. https://doi.org/10.1158/2159-8290.Cd-17-1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Siegler EL, Kenderian SS. Neurotoxicity and cytokine release syndrome after chimeric antigen receptor T cell therapy: insights into mechanisms and novel therapies. Front Immunol. 2020;11:1973. https://doi.org/10.3389/fimmu.2020.01973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95. https://doi.org/10.1182/blood-2014-05-552729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5. https://doi.org/10.1126/science.aar6711.

    Article  CAS  PubMed  Google Scholar 

  157. Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev. 2019;290(1):60–84. https://doi.org/10.1111/imr.12773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32(9):1970–83. https://doi.org/10.1038/s41375-018-0065-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Georgiadis C, Preece R, Nickolay L, Etuk A, Petrova A, Ladon D, et al. Long terminal repeat CRISPR-CAR-coupled “universal” T cells mediate potent anti-leukemic effects. Mol Ther. 2018;26(5):1215–27. https://doi.org/10.1016/j.ymthe.2018.02.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sutherland AR, Owens MN, Geyer CR. Modular chimeric antigen receptor systems for universal CAR T cell retargeting. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197222.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11(1):132. https://doi.org/10.1186/s13045-018-0677-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lin H, Cheng J, Mu W, Zhou J, Zhu L. Advances in universal CAR-T cell therapy. Front Immunol. 2021;12: 744823. https://doi.org/10.3389/fimmu.2021.744823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64. https://doi.org/10.1158/0008-5472.Can-14-3321.

    Article  CAS  PubMed  Google Scholar 

  164. Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res. 2017;27(1):154–7. https://doi.org/10.1038/cr.2016.142.

    Article  CAS  PubMed  Google Scholar 

  165. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66. https://doi.org/10.1158/1078-0432.Ccr-16-1300.

    Article  CAS  PubMed  Google Scholar 

  166. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014;23(R1):R40–6. https://doi.org/10.1093/hmg/ddu125.

    Article  CAS  PubMed  Google Scholar 

  167. Guo Y, Xu B, Wu Z, Bo J, Tong C, Chen D, et al. Mutant B2M-HLA-E and B2M-HLA-G fusion proteins protects universal chimeric antigen receptor-modified T cells from allogeneic NK cell-mediated lysis. Eur J Immunol. 2021;51(10):2513–21. https://doi.org/10.1002/eji.202049107.

    Article  CAS  PubMed  Google Scholar 

  168. Riteau B, Menier C, Khalil-Daher I, Martinozzi S, Pla M, Dausset J, et al. HLA-G1 co-expression boosts the HLA class I-mediated NK lysis inhibition. Int Immunol. 2001;13(2):193–201. https://doi.org/10.1093/intimm/13.2.193.

    Article  CAS  PubMed  Google Scholar 

  169. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci USA. 1997;94(10):5249–54. https://doi.org/10.1073/pnas.94.10.5249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013;122(8):1341–9. https://doi.org/10.1182/blood-2013-03-478255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tykodi SS, Fujii N, Vigneron N, Lu SM, Mito JK, Miranda MX, et al. C19orf48 encodes a minor histocompatibility antigen recognized by CD8+ cytotoxic T cells from renal cell carcinoma patients. Clin Cancer Res. 2008;14(16):5260–9. https://doi.org/10.1158/1078-0432.Ccr-08-0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–8. https://doi.org/10.1038/nm.4441.

    Article  CAS  PubMed  Google Scholar 

  173. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8(10):1219–26. https://doi.org/10.1158/2159-8290.Cd-18-0442.

    Article  CAS  PubMed  Google Scholar 

  174. Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest. 2016;126(8):3036–52. https://doi.org/10.1172/jci83416.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018;20(4):506–18. https://doi.org/10.1093/neuonc/nox182.

    Article  CAS  PubMed  Google Scholar 

  176. Chen N, Morello A, Tano Z, Adusumilli PS. CAR T-cell intrinsic PD-1 checkpoint blockade: a two-in-one approach for solid tumor immunotherapy. Oncoimmunology. 2017;6(2): e1273302. https://doi.org/10.1080/2162402x.2016.1273302.

    Article  PubMed  Google Scholar 

  177. Daher M, Melo Garcia L, Li Y, Rezvani K. CAR-NK cells: the next wave of cellular therapy for cancer. Clin Transl Immunol. 2021;10(4): e1274. https://doi.org/10.1002/cti2.1274.

    Article  CAS  Google Scholar 

  178. Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019;40(2):142–58. https://doi.org/10.1016/j.it.2018.12.003.

    Article  CAS  PubMed  Google Scholar 

  179. Burger MC, Zhang C, Harter PN, Romanski A, Strassheimer F, Senft C, et al. CAR-engineered NK cells for the treatment of glioblastoma: turning Innate effectors into precision tools for cancer immunotherapy. Front Immunol. 2019;10:2683. https://doi.org/10.3389/fimmu.2019.02683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Genßler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M, et al. Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology. 2016;5(4): e1119354. https://doi.org/10.1080/2162402x.2015.1119354.

    Article  PubMed  Google Scholar 

  181. Han J, Chu J, Keung Chan W, Zhang J, Wang Y, Cohen JB, et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 2015;5:11483. https://doi.org/10.1038/srep11483.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Müller N, Michen S, Tietze S, Töpfer K, Schulte A, Lamszus K, et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother. 2015;38(5):197–210. https://doi.org/10.1097/cji.0000000000000082.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Murakami T, Nakazawa T, Natsume A, Nishimura F, Nakamura M, Matsuda R, et al. Novel human NK cell line carrying CAR targeting EGFRvIII induces antitumor effects in glioblastoma cells. Anticancer Res. 2018;38(9):5049–56. https://doi.org/10.2187/anticanres.12824.

    Article  CAS  PubMed  Google Scholar 

  184. Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P, et al. ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 2016. https://doi.org/10.1093/jnci/djv375.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ramanathan A, Lorimer IAJ. Engineered cells as glioblastoma therapeutics. Cancer Gene Ther. 2021. https://doi.org/10.1038/s41417-021-00320-w.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–53. https://doi.org/10.1038/s41587-020-0462-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

VDN, LG, and EF conceived the idea and contributed to editing of the manuscript. AAB, SB, and AT contributed to reviewing the manuscript and to editing the final draft.

Corresponding author

Correspondence to Enrico Franceschi.

Ethics declarations

Funding

No external funding was used to assist in the preparation of this manuscript.

Conflicts of interest

Vincenzo Di Nunno, Enrico Franceschi, Alicia Tosoni, Lidia Gatto, Stefania Bartolini, and Alba Ariela Brandes declare they have no conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatto, L., Di Nunno, V., Franceschi, E. et al. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date?. Drugs 82, 491–510 (2022). https://doi.org/10.1007/s40265-022-01702-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-022-01702-6

Navigation