Skip to main content
Log in

Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Phosphodiesterase (PDE) 4 inhibitors prevent the metabolism of cyclic adenosine monophosphate, thereby reducing inflammation. Inhaled PDE4 inhibitors aim to restrict systemic drug exposure to enhance the potential for clinical benefits (in the lungs) versus adverse events (systemically). The orally administered PDE4 inhibitor roflumilast reduces exacerbation rates in the subgroup of chronic obstructive pulmonary disease patients with a history of exacerbations and the presence of chronic bronchitis, but can cause PDE4 related adverse effects due to systemic exposure. CHF6001 is an inhaled PDE4 inhibitor, while inhaled ensifentrine is an inhibitor of both PDE3 and PDE4; antagonism of PDE3 facilitates smooth muscle relaxation and hence bronchodilation. These inhaled PDE inhibitors have both reported positive findings from early phase clinical trials, and have been well tolerated. Longer term trials are needed to firmly establish the clinical benefits of these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur Respir J. 2017;49(6):1700214

  2. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53.

    Article  CAS  PubMed  Google Scholar 

  3. Higham A, Quinn AM, Cancado JED, Singh D. The pathology of small airways disease in COPD: historical aspects and future directions. Respir Res. 2019;20(1):49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Woodruff PG, Agusti A, Roche N, Singh D, Martinez FJ. Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy: making progress towards personalised management. Lancet. 2015;385(9979):1789–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mathioudakis AG, Vestbo J, Singh D. Long-acting bronchodilators for chronic obstructive pulmonary disease: which one(s), how, and when? Clin Chest Med. 2020;41(3):463–74.

    Article  PubMed  Google Scholar 

  6. Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. 2019;53(5):1900164.

    Article  CAS  PubMed  Google Scholar 

  7. Singh D. Pharmacological treatment of stable chronic obstructive pulmonary disease. Respirology. 2021;26(7):643–51.

    Article  PubMed  Google Scholar 

  8. Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671–80.

    Article  CAS  PubMed  Google Scholar 

  9. Singh D, Bafadhel M, Brightling CE, Sciurba FC, Curtis JL, Martinez FJ, et al. Blood eosinophil counts in clinical trials for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020;202(5):660–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Higham A, Beech A, Wolosianka S, Jackson N, Long G, Kolsum U, et al. Type 2 inflammation in eosinophilic chronic obstructive pulmonary disease. Allergy. 2020;76:1861.

    Article  PubMed  Google Scholar 

  11. Agusti A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, et al. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J. 2017;50(4):1701655

  12. Phillips JE. Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front Pharmacol. 2020;11:259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6, 7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquino lin-4-one]. J Pharmacol Exp Ther. 2006;318(2):840–8.

    Article  CAS  PubMed  Google Scholar 

  14. Abbott-Banner KH, Page CP. Dual PDE3/4 and PDE4 inhibitors: novel treatments for COPD and other inflammatory airway diseases. Basic Clin Pharmacol Toxicol. 2014;114(5):365–76.

    Article  CAS  PubMed  Google Scholar 

  15. Lea S, Metryka A, Li J, Higham A, Bridgewood C, Villetti G, et al. The modulatory effects of the PDE4 inhibitors CHF6001 and roflumilast in alveolar macrophages and lung tissue from COPD patients. Cytokine. 2019;123:154739.

    Article  CAS  PubMed  Google Scholar 

  16. Grundy S, Plumb J, Kaur M, Ray D, Singh D. Additive anti-inflammatory effects of corticosteroids and phosphodiesterase-4 inhibitors in COPD CD8 cells. Respir Res. 2016;17:9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moretto N, Caruso P, Bosco R, Marchini G, Pastore F, Armani E, et al. CHF6001 I: a novel highly potent and selective phosphodiesterase 4 inhibitor with robust anti-inflammatory activity and suitable for topical pulmonary administration. J Pharmacol Exp Ther. 2015;352(3):559–67.

    Article  PubMed  Google Scholar 

  18. Buenestado A, Grassin-Delyle S, Guitard F, Naline E, Faisy C, Israel-Biet D, et al. Roflumilast inhibits the release of chemokines and TNF-alpha from human lung macrophages stimulated with lipopolysaccharide. Br J Pharmacol. 2012;165(6):1877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ, et al. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009;374(9691):685–94.

    Article  CAS  PubMed  Google Scholar 

  20. Martinez FJ, Calverley PM, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385(9971):857–66.

    Article  CAS  PubMed  Google Scholar 

  21. Watz H, Bagul N, Rabe KF, Rennard S, Alagappan VK, Roman J, et al. Use of a 4-week up-titration regimen of roflumilast in patients with severe COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh D, Emirova A, Francisco C, Santoro D, Govoni M, Nandeuil MA. Efficacy and safety of CHF6001, a novel inhaled PDE4 inhibitor in COPD: the PIONEER study. Respir Res. 2020;21(1):246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Govoni M, Bassi M, Vezzoli S, Lucci G, Emirova A, Nandeuil MA, et al. Sputum and blood transcriptomics characterisation of the inhaled PDE4 inhibitor CHF6001 on top of triple therapy in patients with chronic bronchitis. Respir Res. 2020;21(1):72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Southworth T, Kaur M, Hodgson L, Facchinetti F, Villetti G, Civelli M, et al. Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine. 2019;113:68–73.

    Article  CAS  PubMed  Google Scholar 

  25. Singh D, Leaker B, Boyce M, Nandeuil MA, Collarini S, Mariotti F, et al. A novel inhaled phosphodiesterase 4 inhibitor (CHF6001) reduces the allergen challenge response in asthmatic patients. Pulm Pharmacol Ther. 2016;40:1–6.

    Article  CAS  PubMed  Google Scholar 

  26. Singh D, Abbott-Banner K, Bengtsson T, Newman K. The short-term bronchodilator effects of the dual phosphodiesterase 3 and 4 inhibitor RPL554 in COPD. Eur Respir J. 2018;52(5):1801074.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Franciosi LG, Diamant Z, Banner KH, Zuiker R, Morelli N, Kamerling IM, et al. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med. 2013;1(9):714–27.

    Article  CAS  PubMed  Google Scholar 

  28. Singh D, Beeh KM, Colgan B, Kornmann O, Leaker B, Watz H, et al. Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD. Respir Res. 2019;20(1):180.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tannheimer SL, Sorensen EA, Haran AC, Mansfield CN, Wright CD, Salmon M. Additive anti-inflammatory effects of beta 2 adrenoceptor agonists or glucocorticosteroid with roflumilast in human peripheral blood mononuclear cells. Pulm Pharmacol Ther. 2012;25(2):178–84.

    Article  CAS  PubMed  Google Scholar 

  30. Houslay MD. PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 2001;69:249–315.

    Article  CAS  PubMed  Google Scholar 

  31. Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J. 2003;370(Pt 1):1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. J Immunol. 2007;178(8):4820–31.

    Article  CAS  PubMed  Google Scholar 

  33. Pryzwansky KB, Madden VJ. Type 4A cAMP-specific phosphodiesterase is stored in granules of human neutrophils and eosinophils. Cell Tissue Res. 2003;312(3):301–11

    Article  CAS  PubMed  Google Scholar 

  34. Barber R, Baillie GS, Bergmann R, Shepherd MC, Sepper R, Houslay MD, et al. Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L332–43.

    Article  CAS  PubMed  Google Scholar 

  35. Hatzelmann A, Schudt C. Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. J Pharmacol Exp Ther. 2001;297(1):267–79.

    CAS  PubMed  Google Scholar 

  36. Kwak HJ, Song JS, Heo JY, Yang SD, Nam JY, Cheon HG. Roflumilast inhibits lipopolysaccharide-induced inflammatory mediators via suppression of nuclear factor-kappaB, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase activation. J Pharmacol Exp Ther. 2005;315(3):1188–95.

    Article  CAS  PubMed  Google Scholar 

  37. Tralau-Stewart CJ, Williamson RA, Nials AT, Gascoigne M, Dawson J, Hart GJ, et al. GSK256066, an exceptionally high-affinity and selective inhibitor of phosphodiesterase 4 suitable for administration by inhalation: in vitro, kinetic, and in vivo characterization. J Pharmacol Exp Ther. 2011;337(1):145–54.

    Article  CAS  PubMed  Google Scholar 

  38. Salvator H, Grassin-Delyle S, Naline E, Brollo M, Fournier C, Couderc LJ, et al. Contrasting effects of adipokines on the cytokine production by primary human bronchial epithelial cells: inhibitory effects of adiponectin. Front Pharmacol. 2020;11:56.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suzuki O, Goto T, Yoshino T, Nakamura S, Maeda H. The role of phosphodiesterase 4B in IL-8/LTB4-induced human neutrophil chemotaxis evaluated with a phosphodiesterase 4B inhibitor. Acta Pharm. 2015;65(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  40. Ariga M, Neitzert B, Nakae S, Mottin G, Bertrand C, Pruniaux MP, et al. Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation. J Immunol. 2004;173(12):7531–8.

    Article  CAS  PubMed  Google Scholar 

  41. Lea S, Plumb J, Metcalfe H, Spicer D, Woodman P, Fox JC, et al. The effect of peroxisome proliferator-activated receptor-gamma ligands on in vitro and in vivo models of COPD. Eur Respir J. 2014;43(2):409–20.

    Article  CAS  PubMed  Google Scholar 

  42. Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G. Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med. 2005;172(7):848–53.

    Article  PubMed  Google Scholar 

  43. Leclerc O, Lagente V, Planquois JM, Berthelier C, Artola M, Eichholtz T, et al. Involvement of MMP-12 and phosphodiesterase type 4 in cigarette smoke-induced inflammation in mice. Eur Respir J. 2006;27(6):1102–9.

    Article  CAS  PubMed  Google Scholar 

  44. Villetti G, Carnini C, Battipaglia L, Preynat L, Bolzoni PT, Bassani F, et al. CHF6001 II: a novel phosphodiesterase 4 inhibitor, suitable for topical pulmonary administration–in vivo preclinical pharmacology profile defines a potent anti-inflammatory compound with a wide therapeutic window. J Pharmacol Exp Ther. 2015;352(3):568–78.

    Article  PubMed  Google Scholar 

  45. Edmondson SD, Mastracchio A, He J, Chung CC, Forrest MJ, Hofsess S, et al. Benzyl vinylogous amide substituted aryldihydropyridazinones and aryldimethylpyrazolones as potent and selective PDE3B inhibitors. Bioorg Med Chem Lett. 2003;13(22):3983–7.

    Article  CAS  PubMed  Google Scholar 

  46. Beute J, Lukkes M, Koekoek EP, Nastiti H, Ganesh K, de Bruijn MJ, et al. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight. 2018;3(2):e94888

  47. Gantner F, Schudt C, Wendel A, Hatzelmann A. Characterization of the phosphodiesterase (PDE) pattern of in vitro-generated human dendritic cells (DC) and the influence of PDE inhibitors on DC function. Pulm Pharmacol Ther. 1999;12(6):377–86.

    Article  CAS  PubMed  Google Scholar 

  48. Milara J, Navarro A, Almudever P, Lluch J, Morcillo EJ, Cortijo J. Oxidative stress-induced glucocorticoid resistance is prevented by dual PDE3/PDE4 inhibition in human alveolar macrophages. Clin Exp Allergy. 2011;41(4):535–46.

    Article  CAS  PubMed  Google Scholar 

  49. Giembycz MA, Corrigan CJ, Seybold J, Newton R, Barnes PJ. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T-lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. Br J Pharmacol. 1996;118(8):1945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabe KF, Tenor H, Dent G, Schudt C, Liebig S, Magnussen H. Phosphodiesterase isozymes modulating inherent tone in human airways: identification and characterization. Am J Physiol. 1993;264(5 Pt 1):L458–64.

    CAS  PubMed  Google Scholar 

  51. Billington CK, Le Jeune IR, Young KW, Hall IP. A major functional role for phosphodiesterase 4D5 in human airway smooth muscle cells. Am J Respir Cell Mol Biol. 2008;38(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  52. Myou S, Fujimura M, Kamio Y, Hirose T, Kita T, Tachibana H, et al. Bronchodilator effects of intravenous olprinone, a phosphodiesterase 3 inhibitor, with and without aminophylline in asthmatic patients. Br J Clin Pharmacol. 2003;55(4):341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirota K, Yoshioka H, Kabara S, Kudo T, Ishihara H, Matsuki A. A comparison of the relaxant effects of olprinone and aminophylline on methacholine-induced bronchoconstriction in dogs. Anesth Analg. 2001;93(1):230–3.

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt DT, Watson N, Dent G, Ruhlmann E, Branscheid D, Magnussen H, et al. The effect of selective and non-selective phosphodiesterase inhibitors on allergen- and leukotriene C(4)-induced contractions in passively sensitized human airways. Br J Pharmacol. 2000;131(8):1607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Challiss RA, Adams D, Mistry R, Nicholson CD. Modulation of spasmogen-stimulated Ins(1,4,5)P3 generation and functional responses by selective inhibitors of types 3 and 4 phosphodiesterase in airways smooth muscle. Br J Pharmacol. 1998;124(1):47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 isoforms in cardiac muscle. J Cardiovasc Dev Dis. 2018;5(1):10.

    Article  PubMed Central  Google Scholar 

  57. Jones NA, Leport M, Holand T, Vos T, Morgan M, Fink M, et al. Phosphodiesterase (PDE) 7 in inflammatory cells from patients with asthma and COPD. Pulm Pharmacol Ther. 2007;20(1):60–8.

    Article  CAS  PubMed  Google Scholar 

  58. Nakata A, Ogawa K, Sasaki T, Koyama N, Wada K, Kotera J, et al. Potential role of phosphodiesterase 7 in human T cell function: comparative effects of two phosphodiesterase inhibitors. Clin Exp Immunol. 2002;128(3):460–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Castano T, Wang H, Campillo NE, Ballester S, Gonzalez-Garcia C, Hernandez J, et al. Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. ChemMedChem. 2009;4(5):866–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Szczypka M. Role of phosphodiesterase 7 (PDE7) in T cell activity. Effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. Int J Mol Sci. 2020;21(17):6118.

    Article  CAS  PubMed Central  Google Scholar 

  61. Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(2):154–61.

    Article  CAS  PubMed  Google Scholar 

  62. Rennard SI, Calverley PM, Goehring UM, Bredenbroker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast—the importance of defining different subsets of patients with COPD. Respir Res. 2011;12:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbroker D, Bethke TD. Roflumilast—an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005;366(9485):563–71.

    Article  CAS  PubMed  Google Scholar 

  64. Fabbri LM, Calverley PM, Izquierdo-Alonso JL, Bundschuh DS, Brose M, Martinez FJ, et al. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials. Lancet. 2009;374(9691):695–703.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez FJ, Rabe KF, Sethi S, Pizzichini E, McIvor A, Anzueto A, et al. Effect of roflumilast and inhaled corticosteroid/long-acting beta2-agonist on chronic obstructive pulmonary disease exacerbations (RE(2)SPOND). A randomized clinical trial. Am J Respir Crit Care Med. 2016;194(5):559–67.

    Article  CAS  PubMed  Google Scholar 

  66. Kardos P, Mokros I, Sauer R, Vogelmeier CF. Health status in patients with COPD treated with roflumilast: two large noninterventional real-life studies: DINO and DACOTA. Int J Chron Obstruct Pulmon Dis. 2018;13:1455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Janjua S, Fortescue R, Poole P. Phosphodiesterase-4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;5: CD002309.

    PubMed  Google Scholar 

  68. Martinez FJ, Rabe KF, Calverley PMA, Fabbri LM, Sethi S, Pizzichini E, et al. Determinants of response to roflumilast in severe COPD: pooled analysis of two randomized trials. Am J Respir Crit Care Med. 2018;198:1268–78.

    Article  CAS  PubMed  Google Scholar 

  69. Rabe KF, Watz H, Baraldo S, Pedersen F, Biondini D, Bagul N, et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): a 16-week, randomised, placebo-controlled trial. Lancet Respir Med. 2018;6(11):827–36.

    Article  CAS  PubMed  Google Scholar 

  70. Mariotti F, Govoni M, Lucci G, Santoro D, Nandeuil MA. Safety, tolerability, and pharmacokinetics of single and repeat ascending doses of CHF6001, a novel inhaled phosphodiesterase-4 inhibitor: two randomized trials in healthy volunteers. Int J Chron Obstruct Pulmon Dis. 2018;13:3399–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stockley RA, Halpin DMG, Celli BR, Singh D. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med. 2019;199(10):1195–204.

    Article  CAS  PubMed  Google Scholar 

  72. Singh D, Watz H, Beeh KM, Kornmann O, Leaker B, Colgan B, et al. COPD sputum eosinophils: relationship to blood eosinophils and the effect of inhaled PDE4 inhibition. Eur Respir J. 2020;56(2):2000237.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Singh D, Bassi M, Balzano D, Lucci G, Emirova A, Anna Nandeuil M, et al. COPD patients with chronic bronchitis and higher sputum eosinophil counts show increased type-2 and PDE4 gene expression in sputum. J Cell Mol Med. 2020;25:905–18.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kolsum U, Damera G, Pham TH, Southworth T, Mason S, Karur P, et al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol. 2017;140(4):1181–4.

    Article  PubMed  Google Scholar 

  75. George L, Taylor AR, Esteve-Codina A, Soler Artigas M, Thun GA, Bates S, et al. Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy. 2020;75(2):370–80.

    Article  CAS  PubMed  Google Scholar 

  76. Singh D, Martinez FJ, Watz H, Bengtsson T, Maurer BT. A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir Res. 2020;21(1):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khurana S, Ravi A, Sutula J, Milone R, Williamson R, Plumb J, et al. Clinical characteristics and airway inflammation profile of COPD persistent sputum producers. Respir Med. 2014;108(12):1761–70.

    Article  CAS  PubMed  Google Scholar 

  78. Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, Cote J, Duong M, Killian KJ, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res. 2011;26(12):140.

    Article  Google Scholar 

  79. Wang Z, Locantore N, Haldar K, Ramsheh MY, Beech AS, Ma W, et al. Inflammatory endotype associated airway microbiome in COPD clinical stability and exacerbations—a multi-cohort longitudinal analysis. Am J Respir Crit Care Med. 2021 Jun 15;203(12):1488-1502

  80. Beech AS, Lea S, Kolsum U, Wang Z, Miller BE, Donaldson GC, et al. Bacteria and sputum inflammatory cell counts; a COPD cohort analysis. Respir Res. 2020;21(1):289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vestbo J, Tan L, Atkinson G, Ward J, Uk GST. A controlled trial of 6-weeks’ treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur Respir J. 2009;33(5):1039–44.

    Article  CAS  PubMed  Google Scholar 

  82. Watz H, Mistry SJ, Lazaar AL, Investigators IPC. Safety and tolerability of the inhaled phosphodiesterase 4 inhibitor GSK256066 in moderate COPD. Pulm Pharmacol Ther. 2013;26(5):588–95.

    Article  CAS  PubMed  Google Scholar 

  83. De Savi C, Cox RJ, Warner DJ, Cook AR, Dickinson MR, McDonough A, et al. Efficacious inhaled PDE4 inhibitors with low emetic potential and long duration of action for the treatment of COPD. J Med Chem. 2014;57(11):4661–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dave Singh, Simon Lea and Alexander Mathioudakis are supported by the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre (BRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Singh.

Ethics declarations

Funding

Not applicable.

Conflict of interest

DS has received sponsorship to attend and speak at international meetings, honoraria for lecturing or attending advisory boards from the following companies: Aerogen, AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, CSL Behring, Epiendo, Genentech, GlaxoSmithKline, Glenmark, Gossamerbio, Kinaset, Menarini, Novartis, Pulmatrix, Sanofi, Teva, Theravance and Verona. AGM reports a competitive research grant from Boehringer Ingelheim, outside the submitted work. SL has no conflict of interests.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

D.S., S.L. and A.G.M. conducted the literature reviews and contributed to the writing and critical review of the manuscript. The final version was approved by all authors.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Lea, S. & Mathioudakis, A.G. Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 81, 1821–1830 (2021). https://doi.org/10.1007/s40265-021-01616-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01616-9

Navigation