Skip to main content
Log in

IL-31 Inhibition as a Therapeutic Approach for the Management of Chronic Pruritic Dermatoses

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Chronic pruritus is a debilitating symptom with limited treatment options. Identifying molecular targets underlying chronic pruritic dermatoses is essential for the development of novel, targeted therapies. IL-31 is an important mediator of itch by integrating dermatologic, neural, and immune systems. IL-31 helps induce and maintain chronic pruritus via both indirect stimulation of inflammatory cells and through direct neural sensitization. IL-31 is overexpressed in various chronic pruritic skin conditions, and exogenous IL-31 induces itch and scratching behavior. Studies have demonstrated that IL-31R and IL-31 antagonism significantly reduces itch in patients with atopic dermatitis and prurigo nodularis, two extremely pruritic skin conditions. Emerging evidence, including recent phase II clinical trials of IL-31R antagonists, demonstrates that IL-31 plays an important role in itch signaling. Additional studies are ongoing to evaluate IL-31R and IL-31 antagonism as treatments of chronic pruritus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ständer S, Weisshaar E, Mettang T, Szepietowski JC, Carstens E, Ikoma A, et al. Clinical classification of itch: a position paper of the International Forum for the Study of Itch. Acta Derm Venereol. 2007;87(4):291–4. https://doi.org/10.2340/00015555-0305.

    Article  PubMed  Google Scholar 

  2. Grundmann S, Ständer S. Chronic pruritus: clinics and treatment. Ann Dermatol. 2011;23(1):1–11. https://doi.org/10.5021/ad.2011.23.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weisshaar E, Matterne U. Frontiers in Neuroscience Epidemiology of Itch. In: Carstens E, Akiyama T, editors. Itch: mechanisms and treatment. Boca Raton (FL): CRC Press/Taylor & Francis © 2014 by Taylor & Francis Group, LLC.; 2014.

  4. Kini SP, DeLong LK, Veledar E, McKenzie-Brown AM, Schaufele M, Chen SC. The impact of pruritus on quality of life: the skin equivalent of pain. Arch Dermatol. 2011;147(10):1153–6. https://doi.org/10.1001/archdermatol.2011.178.

    Article  PubMed  Google Scholar 

  5. Whang KA, Khanna R, Williams KA, Mahadevan V, Semenov Y, Kwatra SG. Health-related quality of life and economic burden of chronic pruritus. J Invest Dermatol. 2020. https://doi.org/10.1016/j.jid.2020.08.020.

    Article  PubMed  Google Scholar 

  6. Jensen P, Zachariae C, Skov L, Zachariae R. Sleep disturbance in psoriasis: a case-controlled study. Br J Dermatol. 2018;179(6):1376–84. https://doi.org/10.1111/bjd.16702.

    Article  CAS  PubMed  Google Scholar 

  7. Patel SP, Khanna R, Choi J, Williams KA, Roh YS, Hong MS, et al. Sleep disturbance in adults with chronic pruritic dermatoses is associated with increased C-reactive protein levels. J Am Acad Dermatol. 2020. https://doi.org/10.1016/j.jaad.2020.08.059.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chamlin SL, Mattson CL, Frieden IJ, Williams ML, Mancini AJ, Cella D, et al. The price of pruritus: sleep disturbance and cosleeping in atopic dermatitis. Arch Pediatr Adolesc Med. 2005;159(8):745–50. https://doi.org/10.1001/archpedi.159.8.745.

    Article  PubMed  Google Scholar 

  9. Yamamoto Y, Yamazaki S, Hayashino Y, Takahashi O, Tokuda Y, Shimbo T, et al. Association between frequency of pruritic symptoms and perceived psychological stress: a Japanese population-based study. Arch Dermatol. 2009;145(12):1384–8. https://doi.org/10.1001/archdermatol.2009.290.

    Article  PubMed  Google Scholar 

  10. Sanders KM, Akiyama T. The vicious cycle of itch and anxiety. Neurosci Biobehav Rev. 2018;87:17–26. https://doi.org/10.1016/j.neubiorev.2018.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dalgard F, Svensson A, Holm J, Sundby J. Self-reported skin morbidity among adults: associations with quality of life and general health in a Norwegian survey. J Investig Dermatol Symp Proc. 2004;9(2):120–5. https://doi.org/10.1046/j.1087-0024.2003.09111.x.

    Article  PubMed  Google Scholar 

  12. Erturk IE, Arican O, Omurlu IK, Sut N. Effect of the pruritus on the quality of life: a preliminary study. Ann Dermatol. 2012;24(4):406–12. https://doi.org/10.5021/ad.2012.24.4.406.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527–34. https://doi.org/10.1038/jid.2013.446.

    Article  CAS  PubMed  Google Scholar 

  14. Matterne U, Strassner T, Apfelbacher CJ, Diepgen TL, Weisshaar E. Measuring the prevalence of chronic itch in the general population: development and validation of a questionnaire for use in large-scale studies. Acta Derm Venereol. 2009;89(3):250–6. https://doi.org/10.2340/00015555-0641.

    Article  PubMed  Google Scholar 

  15. Shive M, Linos E, Berger T, Wehner M, Chren MM. Itch as a patient-reported symptom in ambulatory care visits in the United States. J Am Acad Dermatol. 2013;69(4):550–6. https://doi.org/10.1016/j.jaad.2013.05.029.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Weisshaar E, Szepietowski JC, Darsow U, Misery L, Wallengren J, Mettang T, et al. European guideline on chronic pruritus. Acta Derm Venereol. 2012;92(5):563–81. https://doi.org/10.2340/00015555-1400.

    Article  PubMed  Google Scholar 

  17. Johanek LM, Meyer RA, Hartke T, Hobelmann JG, Maine DN, LaMotte RH, et al. Psychophysical and physiological evidence for parallel afferent pathways mediating the sensation of itch. J Neurosci. 2007;27(28):7490–7. https://doi.org/10.1523/jneurosci.1249-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Namer B, Carr R, Johanek LM, Schmelz M, Handwerker HO, Ringkamp M. Separate peripheral pathways for pruritus in man. J Neurophysiol. 2008;100(4):2062–9. https://doi.org/10.1152/jn.90482.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schmelz M, Schmidt R, Bickel A, Handwerker HO, Torebjörk HE. Specific C-receptors for itch in human skin. J Neurosci. 1997;17(20):8003–8. https://doi.org/10.1523/jneurosci.17-20-08003.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersen HH, Elberling J, Sølvsten H, Yosipovitch G, Arendt-Nielsen L. Nonhistaminergic and mechanical itch sensitization in atopic dermatitis. Pain. 2017;158(9):1780–91. https://doi.org/10.1097/j.pain.0000000000000980.

    Article  CAS  PubMed  Google Scholar 

  21. Jeffry J, Kim S, Chen ZF. Itch signaling in the nervous system. Physiology (Bethesda). 2011;26(4):286–92. https://doi.org/10.1152/physiol.00007.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang TB, Kim BS. Pruritus in allergy and immunology. J Allergy Clin Immunol. 2019;144(2):353–60. https://doi.org/10.1016/j.jaci.2019.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amin M, Darji K, No DJ, Bhutani T, Wu JJ. Review of IL-17 inhibitors for psoriasis. J Dermatolog Treat. 2018;29(4):347–52. https://doi.org/10.1080/09546634.2017.1395796.

    Article  CAS  PubMed  Google Scholar 

  24. Hao JQ. Targeting interleukin-22 in psoriasis. Inflammation. 2014;37(1):94–9. https://doi.org/10.1007/s10753-013-9715-y.

    Article  CAS  PubMed  Google Scholar 

  25. Wawrzycki B, Pietrzak A, Grywalska E, Krasowska D, Chodorowska G, Roliński J. Interleukin-22 and its correlation with disease activity in Plaque psoriasis. Arch Immunol Ther Exp (Warsz). 2019;67(2):103–8. https://doi.org/10.1007/s00005-018-0527-5.

    Article  CAS  PubMed  Google Scholar 

  26. Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D. Targeting IL-23 in psoriasis: current perspectives. Psoriasis (Auckl). 2018;8:1–5. https://doi.org/10.2147/ptt.S98893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mussi A, Bonifati C, Carducci M, D’Agosto G, Pimpinelli F, D’Urso D, et al. Serum TNF-alpha levels correlate with disease severity and are reduced by effective therapy in plaque-type psoriasis. J Biol Regul Homeost Agents. 1997;11(3):115–8.

    CAS  PubMed  Google Scholar 

  28. Bachelez H, van de Kerkhof PC, Strohal R, Kubanov A, Valenzuela F, Lee JH, et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet. 2015;386(9993):552–61. https://doi.org/10.1016/s0140-6736(14)62113-9.

    Article  CAS  PubMed  Google Scholar 

  29. Punwani N, Scherle P, Flores R, Shi J, Liang J, Yeleswaram S, et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol. 2012;67(4):658–64. https://doi.org/10.1016/j.jaad.2011.12.018.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev. 2008;19(5–6):347–56. https://doi.org/10.1016/j.cytogfr.2008.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diveu C, Lelièvre E, Perret D, Lak-Hal AH, Froger J, Guillet C, et al. GPL, a novel cytokine receptor related to GP130 and leukemia inhibitory factor receptor. J Biol Chem. 2003;278(50):49850–9. https://doi.org/10.1074/jbc.M307286200.

    Article  CAS  PubMed  Google Scholar 

  32. Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60. https://doi.org/10.1038/ni1084.

    Article  CAS  PubMed  Google Scholar 

  33. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol. 2013;132(2):446-54.e5. https://doi.org/10.1016/j.jaci.2013.03.050.

    Article  CAS  PubMed  Google Scholar 

  34. Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J. Human Th2 but not Th9 cells release IL-31 in a STAT6/NF-κB-dependent way. J Immunol. 2014;193(2):645–54. https://doi.org/10.4049/jimmunol.1301836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bilsborough J, Leung DY, Maurer M, Howell M, Boguniewicz M, Yao L, et al. IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol. 2006;117(2):418–25. https://doi.org/10.1016/j.jaci.2005.10.046.

    Article  CAS  PubMed  Google Scholar 

  36. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. https://doi.org/10.1016/j.jaci.2016.06.033.

    Article  CAS  PubMed  Google Scholar 

  37. Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–7. https://doi.org/10.1016/j.jaci.2005.10.033.

    Article  CAS  PubMed  Google Scholar 

  38. Ghilardi N, Li J, Hongo JA, Yi S, Gurney A, de Sauvage FJ. A novel type I cytokine receptor is expressed on monocytes, signals proliferation, and activates STAT-3 and STAT-5. J Biol Chem. 2002;277(19):16831–6. https://doi.org/10.1074/jbc.M201140200.

    Article  CAS  PubMed  Google Scholar 

  39. Hermanns HM. Oncostatin M and interleukin-31: cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 2015;26(5):545–58. https://doi.org/10.1016/j.cytogfr.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  40. Diveu C, Lak-Hal AH, Froger J, Ravon E, Grimaud L, Barbier F, et al. Predominant expression of the long isoform of GP130-like (GPL) receptor is required for interleukin-31 signaling. Eur Cytokine Netw. 2004;15(4):291–302.

    CAS  PubMed  Google Scholar 

  41. Maier E, Mittermeir M, Ess S, Neuper T, Schmiedlechner A, Duschl A, et al. Prerequisites for functional interleukin 31 signaling and its feedback regulation by suppressor of cytokine signaling 3 (SOCS3). J Biol Chem. 2015;290(41):24747–59. https://doi.org/10.1074/jbc.M115.661306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bando T, Morikawa Y, Komori T, Senba E. Complete overlap of interleukin-31 receptor A and oncostatin M receptor beta in the adult dorsal root ganglia with distinct developmental expression patterns. Neuroscience. 2006;142(4):1263–71. https://doi.org/10.1016/j.neuroscience.2006.07.009.

    Article  CAS  PubMed  Google Scholar 

  43. Tamura S, Morikawa Y, Miyajima A, Senba E. Expression of oncostatin M receptor beta in a specific subset of nociceptive sensory neurons. Eur J Neurosci. 2003;17(11):2287–98. https://doi.org/10.1046/j.1460-9568.2003.02681.x.

    Article  PubMed  Google Scholar 

  44. McCandless EE, Rugg CA, Fici GJ, Messamore JE, Aleo MM, Gonzales AJ. Allergen-induced production of IL-31 by canine Th2 cells and identification of immune, skin, and neuronal target cells. Vet Immunol Immunopathol. 2014;157(1–2):42–8. https://doi.org/10.1016/j.vetimm.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  45. Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol. 2014;133(2):448–60. https://doi.org/10.1016/j.jaci.2013.10.048.

    Article  CAS  PubMed  Google Scholar 

  46. Raap U, Gehring M, Kleiner S, Rüdrich U, Eiz-Vesper B, Haas H, et al. Human basophils are a source of—and are differentially activated by—IL-31. Clin Exp Allergy. 2017;47(4):499–508. https://doi.org/10.1111/cea.12875.

    Article  CAS  PubMed  Google Scholar 

  47. Cheung PF, Wong CK, Ho AW, Hu S, Chen DP, Lam CW. Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol. 2010;22(6):453–67. https://doi.org/10.1093/intimm/dxq027.

    Article  CAS  PubMed  Google Scholar 

  48. Yamaoka K, Okayama Y, Kaminuma O, Katayama K, Mori A, Tatsumi H, et al. Proteomic approach to FcepsilonRI aggregation-initiated signal transduction cascade in human mast cells. Int Arch Allergy Immunol. 2009;149(Suppl 1):73–6. https://doi.org/10.1159/000211376.

    Article  CAS  PubMed  Google Scholar 

  49. Kasraie S, Niebuhr M, Baumert K, Werfel T. Functional effects of interleukin 31 in human primary keratinocytes. Allergy. 2011;66(7):845–52. https://doi.org/10.1111/j.1398-9995.2011.02545.x.

    Article  CAS  PubMed  Google Scholar 

  50. Kunsleben N, Rüdrich U, Gehring M, Novak N, Kapp A, Raap U. IL-31 induces chemotaxis, calcium mobilization, release of reactive oxygen species, and CCL26 in eosinophils, which are capable to release IL-31. J Invest Dermatol. 2015;135(7):1908–11. https://doi.org/10.1038/jid.2015.106.

    Article  CAS  PubMed  Google Scholar 

  51. Cornelissen C, Lüscher-Firzlaff J, Baron JM, Lüscher B. Signaling by IL-31 and functional consequences. Eur J Cell Biol. 2012;91(6–7):552–66. https://doi.org/10.1016/j.ejcb.2011.07.006.

    Article  CAS  PubMed  Google Scholar 

  52. Chattopadhyay S, Tracy E, Liang P, Robledo O, Rose-John S, Baumann H. Interleukin-31 and oncostatin-M mediate distinct signaling reactions and response patterns in lung epithelial cells. J Biol Chem. 2007;282(5):3014–26. https://doi.org/10.1074/jbc.M609655200.

    Article  CAS  PubMed  Google Scholar 

  53. Ip WK, Wong CK, Li ML, Li PW, Cheung PF, Lam CW. Interleukin-31 induces cytokine and chemokine production from human bronchial epithelial cells through activation of mitogen-activated protein kinase signalling pathways: implications for the allergic response. Immunology. 2007;122(4):532–41. https://doi.org/10.1111/j.1365-2567.2007.02668.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feld M, Garcia R, Buddenkotte J, Katayama S, Lewis K, Muirhead G, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol. 2016;138(2):500-8.e24. https://doi.org/10.1016/j.jaci.2016.02.020.

    Article  CAS  PubMed  Google Scholar 

  55. Sun S, Dong X. Trp channels and itch. Semin Immunopathol. 2016;38(3):293–307. https://doi.org/10.1007/s00281-015-0530-4.

    Article  PubMed  Google Scholar 

  56. Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(7):535–47. https://doi.org/10.1038/nrn1950.

    Article  CAS  PubMed  Google Scholar 

  57. Hänel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K, et al. Control of the physical and antimicrobial skin barrier by an IL-31-IL-1 signaling network. J Immunol. 2016;196(8):3233–44. https://doi.org/10.4049/jimmunol.1402943.

    Article  CAS  PubMed  Google Scholar 

  58. Singh B, Jegga AG, Shanmukhappa KS, Edukulla R, Khurana Hershey GH, Medvedovic M, et al. IL-31-driven skin remodeling involves epidermal cell proliferation and thickening that lead to impaired skin-barrier function. PLoS ONE. 2016;11(8):e0161877. https://doi.org/10.1371/journal.pone.0161877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Groves RW, Mizutani H, Kieffer JD, Kupper TS. Inflammatory skin disease in transgenic mice that express high levels of interleukin 1 alpha in basal epidermis. Proc Natl Acad Sci USA. 1995;92(25):11874–8. https://doi.org/10.1073/pnas.92.25.11874.

    Article  CAS  PubMed  Google Scholar 

  60. O’Shaughnessy RF, Choudhary I, Harper JI. Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis. Hum Mol Genet. 2010;19(13):2594–605. https://doi.org/10.1093/hmg/ddq145.

    Article  CAS  PubMed  Google Scholar 

  61. Yagi Y, Andoh A, Nishida A, Shioya M, Nishimura T, Hashimoto T, et al. Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med. 2007;19(6):941–6.

    CAS  PubMed  Google Scholar 

  62. Hanifin JMaR, G. . Diagnostic features of atopic dermatitis. Acta Derm Venereol (Stockh). 1980;92:44–7.

    Google Scholar 

  63. Arai I, Tsuji M, Takeda H, Akiyama N, Saito S. A single dose of interleukin-31 (IL-31) causes continuous itch-associated scratching behaviour in mice. Exp Dermatol. 2013;22(10):669–71. https://doi.org/10.1111/exd.12222.

    Article  CAS  PubMed  Google Scholar 

  64. Takaoka A, Arai I, Sugimoto M, Yamaguchi A, Tanaka M, Nakaike S. Expression of IL-31 gene transcripts in NC/Nga mice with atopic dermatitis. Eur J Pharmacol. 2005;516(2):180–1. https://doi.org/10.1016/j.ejphar.2005.04.040.

    Article  CAS  PubMed  Google Scholar 

  65. Grimstad O, Sawanobori Y, Vestergaard C, Bilsborough J, Olsen UB, Grønhøj-Larsen C, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol. 2009;18(1):35–43. https://doi.org/10.1111/j.1600-0625.2008.00766.x.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzales AJ, Humphrey WR, Messamore JE, Fleck TJ, Fici GJ, Shelly JA et al. Interleukin-31: its role in canine pruritus and naturally occurring canine atopic dermatitis. Vet Dermatol. 2013;24(1):48-53.e11-2. https://doi.org/10.1111/j.1365-3164.2012.01098.x.

  67. Lewis KE, Holdren MS, Maurer MF, Underwood S, Meengs B, Julien SH, et al. Interleukin (IL) 31 induces in cynomolgus monkeys a rapid and intense itch response that can be inhibited by an IL-31 neutralizing antibody. J Eur Acad Dermatol Venereol. 2017;31(1):142–50. https://doi.org/10.1111/jdv.13794.

    Article  CAS  PubMed  Google Scholar 

  68. Hawro T, Saluja R, Weller K, Altrichter S, Metz M, Maurer M. Interleukin-31 does not induce immediate itch in atopic dermatitis patients and healthy controls after skin challenge. Allergy. 2014;69(1):113–7. https://doi.org/10.1111/all.12316.

    Article  CAS  PubMed  Google Scholar 

  69. Oetjen LK, Mack MR, Feng J, Whelan TM, Niu H, Guo CJ, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell. 2017;171(1):217-28.e13. https://doi.org/10.1016/j.cell.2017.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nygaard U, Hvid M, Johansen C, Buchner M, Fölster-Holst R, Deleuran M, et al. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J Eur Acad Dermatol Venereol. 2016;30(11):1930–8. https://doi.org/10.1111/jdv.13679.

    Article  CAS  PubMed  Google Scholar 

  71. Lu J, Wu K, Zeng Q, Xiang Y, Gao L, Huang J. Serum interleukin-31 level and pruritus in atopic dermatitis: a Meta-analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43(2):124–30. https://doi.org/10.11817/j.issn.1672-7347.2018.02.003.

    Article  PubMed  Google Scholar 

  72. Raap U, Wichmann K, Bruder M, Ständer S, Wedi B, Kapp A, et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol. 2008;122(2):421–3. https://doi.org/10.1016/j.jaci.2008.05.047.

    Article  CAS  PubMed  Google Scholar 

  73. Raap U, Weißmantel S, Gehring M, Eisenberg AM, Kapp A, Fölster-Holst R. IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. Pediatr Allergy Immunol. 2012;23(3):285–8. https://doi.org/10.1111/j.1399-3038.2011.01241.x.

    Article  PubMed  Google Scholar 

  74. Ezzat MH, Hasan ZE, Shaheen KY. Serum measurement of interleukin-31 (IL-31) in paediatric atopic dermatitis: elevated levels correlate with severity scoring. J Eur Acad Dermatol Venereol. 2011;25(3):334–9. https://doi.org/10.1111/j.1468-3083.2010.03794.x.

    Article  CAS  PubMed  Google Scholar 

  75. Nobbe S, Dziunycz P, Mühleisen B, Bilsborough J, Dillon SR, French LE, et al. IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Derm Venereol. 2012;92(1):24–8. https://doi.org/10.2340/00015555-1191.

    Article  CAS  PubMed  Google Scholar 

  76. Schulz F, Marenholz I, Fölster-Holst R, Chen C, Sternjak A, Baumgrass R, et al. A common haplotype of the IL-31 gene influencing gene expression is associated with nonatopic eczema. J Allergy Clin Immunol. 2007;120(5):1097–102. https://doi.org/10.1016/j.jaci.2007.07.065.

    Article  CAS  PubMed  Google Scholar 

  77. Neis MM, Peters B, Dreuw A, Wenzel J, Bieber T, Mauch C, et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol. 2006;118(4):930–7. https://doi.org/10.1016/j.jaci.2006.07.015.

    Article  CAS  PubMed  Google Scholar 

  78. Lin MW, Lee DD, Liu TT, Lin YF, Chen SY, Huang CC, et al. Novel IL31RA gene mutation and ancestral OSMR mutant allele in familial primary cutaneous amyloidosis. Eur J Hum Genet. 2010;18(1):26–32. https://doi.org/10.1038/ejhg.2009.135.

    Article  CAS  PubMed  Google Scholar 

  79. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26(6):484–97. https://doi.org/10.1016/j.tim.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  80. Blicharz L, Rudnicka L, Samochocki Z. Staphylococcus aureus: an underestimated factor in the pathogenesis of atopic dermatitis? Postepy Dermatol Alergol. 2019;36(1):11–7. https://doi.org/10.5114/ada.2019.82821.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kowalski EH, Kneiber D, Valdebran M, Patel U, Amber KT. Treatment-resistant prurigo nodularis: challenges and solutions. Clin Cosmet Investig Dermatol. 2019;12:163–72. https://doi.org/10.2147/ccid.S188070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang AH, Canner JK, Khanna R, Kang S, Kwatra SG. Real-world prevalence of Prurigo Nodularis and burden of associated Diseases. J Invest Dermatol. 2020;140(2):480-3.e4. https://doi.org/10.1016/j.jid.2019.07.697.

    Article  CAS  PubMed  Google Scholar 

  83. Kwatra SG. Breaking the itch-scratch cycle in Prurigo Nodularis. N Engl J Med. 2020;382(8):757–8. https://doi.org/10.1056/NEJMe1916733.

    Article  PubMed  Google Scholar 

  84. Williams KA, Huang AH, Belzberg M, Kwatra SG. Prurigo nodularis: pathogenesis and management. J Am Acad Dermatol. 2020. https://doi.org/10.1016/j.jaad.2020.04.182.

    Article  PubMed  Google Scholar 

  85. Whang KA, Kang S, Kwatra SG. Inpatient burden of prurigo nodularis in the United States. Medicines (Basel). 2019. https://doi.org/10.3390/medicines6030088.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boozalis E, Tang O, Patel S, Semenov YR, Pereira MP, Stander S, et al. Ethnic differences and comorbidities of 909 prurigo nodularis patients. J Am Acad Dermatol. 2018;79(4):714-9.e3. https://doi.org/10.1016/j.jaad.2018.04.047.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Park K, Mori T, Nakamura M, Tokura Y. Increased expression of mRNAs for IL-4, IL-17, IL-22 and IL-31 in skin lesions of subacute and chronic forms of prurigo. Eur J Dermatol. 2011;21(1):135–6. https://doi.org/10.1684/ejd.2010.1196.

    Article  PubMed  Google Scholar 

  88. Hashimoto T, Nattkemper LA, Kim HS, Kursewicz CD, Fowler E, Shah SM, et al. Itch intensity in prurigo nodularis is closely related to dermal interleukin-31, oncostatin M, IL-31 receptor alpha and oncostatin M receptor beta. Exp Dermatol. 2021. https://doi.org/10.1111/exd.14279.

    Article  PubMed  Google Scholar 

  89. Gibbs BF, Patsinakidis N, Raap U. Role of the pruritic cytokine IL-31 in autoimmune skin diseases. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.01383.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bonciani D, Quintarelli L, Del Bianco E, Bianchi B, Caproni M. Serum levels and tissue expression of interleukin-31 in dermatitis herpetiformis and bullous pemphigoid. J Dermatol Sci. 2017;87(2):210–2. https://doi.org/10.1016/j.jdermsci.2017.04.008.

    Article  CAS  PubMed  Google Scholar 

  91. Hashimoto T, Kursewicz CD, Fayne RA, Nanda S, Shah SM, Nattkemper L, et al. Pathophysiologic mechanisms of itch in bullous pemphigoid. J Am Acad Dermatol. 2020;83(1):53–62. https://doi.org/10.1016/j.jaad.2019.07.060.

    Article  CAS  PubMed  Google Scholar 

  92. Huang HT, Chen JM, Guo J, Lan Y, Wei YS. The association of interleukin-31 polymorphisms with interleukin-31 serum levels and risk of systemic lupus erythematosus. Rheumatol Int. 2016;36(6):799–805. https://doi.org/10.1007/s00296-016-3422-6.

    Article  CAS  PubMed  Google Scholar 

  93. Yosipovitch G, Tan A, LoSicco K, Manabat CG, Kannagra A, Carroll C, et al. A comparative study of clinical characteristics, work-up, treatment, and association to malignancy in dermatomyositis between two tertiary skin centers in the USA and Singapore. Int J Dermatol. 2013;52(7):813–9. https://doi.org/10.1111/j.1365-4632.2011.05449.x.

    Article  PubMed  Google Scholar 

  94. Kim HJ, Zeidi M, Bonciani D, Pena SM, Tiao J, Sahu S, et al. Itch in dermatomyositis: the role of increased skin interleukin-31. Br J Dermatol. 2018;179(3):669–78. https://doi.org/10.1111/bjd.16498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guarneri F, Minciullo PL, Mannucci C, Calapai F, Saitta S, Cannavò SP, et al. IL-31 and IL-33 circulating levels in allergic contact dermatitis. Eur Ann Allergy Clin Immunol. 2015;47(5):156–8.

    CAS  PubMed  Google Scholar 

  96. Hashimoto T, Kursewicz CD, Fayne RA, Nanda S, Shah SM, Nattkemper L, et al. Mechanisms of itch in stasis dermatitis: significant role of IL-31 from macrophages. J Invest Dermatol. 2020;140(4):850-9.e3. https://doi.org/10.1016/j.jid.2019.09.012.

    Article  CAS  PubMed  Google Scholar 

  97. Hashimoto T, Satoh T, Yokozeki H. Pruritus in ordinary scabies: IL-31 from macrophages induced by overexpression of thymic stromal lymphopoietin and periostin. Allergy. 2019;74(9):1727–37. https://doi.org/10.1111/all.13870.

    Article  CAS  PubMed  Google Scholar 

  98. Lange M, Gleń J, Zabłotna M, Nedoszytko B, Sokołowska-Wojdyło M, Rębała K, et al. Interleukin-31 polymorphisms and serum IL-31 level in patients with mastocytosis: correlation with Clinical Presen-tation and Pruritus. Acta Derm Venereol. 2017;97(1):47–53. https://doi.org/10.2340/00015555-2474.

    Article  CAS  PubMed  Google Scholar 

  99. Wright A, Wijeratne A, Hung T, Gao W, Whittaker S, Morris S, et al. Prevalence and severity of pruritus and quality of life in patients with cutaneous T-cell lymphoma. J Pain Symptom Manage. 2013;45(1):114–9. https://doi.org/10.1016/j.jpainsymman.2012.01.012.

    Article  PubMed  Google Scholar 

  100. Singer EM, Shin DB, Nattkemper LA, Benoit BM, Klein RS, Didigu CA, et al. IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol. 2013;133(12):2783–5. https://doi.org/10.1038/jid.2013.227.

    Article  CAS  PubMed  Google Scholar 

  101. Ohmatsu H, Sugaya M, Suga H, Morimura S, Miyagaki T, Kai H, et al. Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm Venereol. 2012;92(3):282–3. https://doi.org/10.2340/00015555-1345.

    Article  CAS  PubMed  Google Scholar 

  102. Nattkemper LA, Martinez-Escala ME, Gelman AB, Singer EM, Rook AH, Guitart J, et al. Cutaneous T-cell lymphoma and pruritus: the expression of IL-31 and its receptors in the skin. Acta Derm Venereol. 2016;96(7):894–8. https://doi.org/10.2340/00015555-2417.

    Article  CAS  PubMed  Google Scholar 

  103. Cedeno-Laurent F, Singer EM, Wysocka M, Benoit BM, Vittorio CC, Kim EJ, et al. Improved pruritus correlates with lower levels of IL-31 in CTCL patients under different therapeutic modalities. Clin Immunol. 2015;158(1):1–7. https://doi.org/10.1016/j.clim.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nemoto O, Furue M, Nakagawa H, Shiramoto M, Hanada R, Matsuki S, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. https://doi.org/10.1111/bjd.14207.

    Article  CAS  PubMed  Google Scholar 

  105. Ruzicka T, Hanifin JM, Furue M, Pulka G, Mlynarczyk I, Wollenberg A, et al. Anti-Interleukin-31 receptor a antibody for atopic dermatitis. N Engl J Med. 2017;376(9):826–35. https://doi.org/10.1056/NEJMoa1606490.

    Article  CAS  PubMed  Google Scholar 

  106. Kabashima K, Furue M, Hanifin JM, Pulka G, Wollenberg A, Galus R, et al. Nemolizumab in patients with moderate-to-severe atopic dermatitis: randomized, phase II, long-term extension study. J Allergy Clin Immunol. 2018;142(4):1121-30.e7. https://doi.org/10.1016/j.jaci.2018.03.018.

    Article  CAS  PubMed  Google Scholar 

  107. Silverberg JI, Pinter A, Pulka G, Poulin Y, Bouaziz JD, Wollenberg A, et al. Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus. J Allergy Clin Immunol. 2020;145(1):173–82. https://doi.org/10.1016/j.jaci.2019.08.013.

    Article  CAS  PubMed  Google Scholar 

  108. Kabashima K, Matsumura T, Komazaki H, Kawashima M. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med. 2020;383(2):141–50. https://doi.org/10.1056/NEJMoa1917006.

    Article  CAS  PubMed  Google Scholar 

  109. Ständer S, Yosipovitch G, Legat FJ, Lacour JP, Paul C, Narbutt J, et al. Trial of nemolizumab in moderate-to-severe Prurigo Nodularis. N Engl J Med. 2020;382(8):706–16. https://doi.org/10.1056/NEJMoa1908316.

    Article  PubMed  Google Scholar 

  110. Kiniksa Announces Phase 2 Clinical Trial of Vixarelimab (KPL-716) in Prurigo Nodularis Meets Primary Efficacy Endpoint. kiniksa.com. https://investors.kiniksa.com/news-releases/news-release-details/kiniksa-announces-phase-2-clinical-trial-vixarelimab-kpl-716. Accessed 1 Sep 2020.

  111. Souza CP, Rosychuk RAW, Contreras ET, Schissler JR, Simpson AC. A retrospective analysis of the use of lokivetmab in the management of allergic pruritus in a referral population of 135 dogs in the western USA. Vet Dermatol. 2018;29(6):489-e164. https://doi.org/10.1111/vde.12682.

    Article  PubMed  Google Scholar 

  112. Michels GM, Ramsey DS, Walsh KF, Martinon OM, Mahabir SP, Hoevers JD, et al. A blinded, randomized, placebo-controlled, dose determination trial of lokivetmab (ZTS-00103289), a caninized, anti-canine IL-31 monoclonal antibody in client owned dogs with atopic dermatitis. Vet Dermatol. 2016;27(6):478-e129. https://doi.org/10.1111/vde.12376.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Sylvie Gabriel and Rajeev Chavda, employees of Galderma SA, for their guidance and input based on prior studies on nemolizumab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn G. Kwatra.

Ethics declarations

Funding

Dr. Kwatra has received grant funding from Pfizer Inc., Kiniksa Pharmaceuticals, and Galderma.

Conflict of Interest

Dr. Shawn G. Kwatra is on the advisory board for Abbvie, Incyte Corporation, Galderma, Menlo Therapeutics, Pfizer Inc., and Regeneron Pharmaceuticals, and has received grant funding from Pfizer Inc., Galderma SA, and Kiniksa Pharmaceuticals. He is also a recipient of a Dermatology Foundation Medical Dermatology Career Development Award. The other author(s) have no conflicts of interest to declare.

Ethics Approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material (Data Transparency)

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Author Contributions

YSR: study design, data collection, manuscript writing. JC, NS, MB, SG, RC, MMK: manuscript editing. SGK: overall supervision, study design, data collection, manuscript editing. All authors read and approved the final version. The content in this manuscript has not been published or submitted for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, Y.S., Choi, J., Sutaria, N. et al. IL-31 Inhibition as a Therapeutic Approach for the Management of Chronic Pruritic Dermatoses. Drugs 81, 895–905 (2021). https://doi.org/10.1007/s40265-021-01521-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-021-01521-1

Navigation