Skip to main content
Log in

Drugs in Development for Acute Kidney Injury

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The care of patients with acute kidney injury (AKI) has been limited due to the lack of effective therapeutics that can either prevent AKI during high-risk situations or treat AKI once established. A revolution in the scientific understanding of the pathogenesis of AKI has led to the identification of potential therapeutic targets. These targets include pathways involved in inflammation, cellular repair and fibrosis, cellular metabolism and mitochondrial function, oxidative stress, apoptosis, and hemodynamics and oxygen delivery. Many compounds are entering early-phase clinical trials. In addition, efforts to better describe sub-categories of AKI (through endo-phenotyping) hold promise to target therapies more effectively based upon pathways that are operative in the pathogenesis. These advances bring optimism that the care of patients with AKI will be transformed with the hope of better outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2:1–139.

  2. United States Renal Data System (USRDS). https://www.usrds.org/2017/view/v1_05.aspx Accessed 14 Jan 2019.

  3. Heung M, Steffick DE, Zivin K, Gillespie BW, et al. Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of Veterans Health Administration Data. Am J Kidney Dis. 2016;67:742–52.

    Article  PubMed  Google Scholar 

  4. Chawla LS. Acute kidney injury leading to chronic kidney disease and long-term outcomes of acute kidney injury: the best opportunity to mitigate acute kidney injury. Contrib Nephrol. 2011;174:182–90.

    Article  PubMed  Google Scholar 

  5. Collister D, Pannu N, Ye F, James M, et al. Health care costs associated with AKI. Clin J Am Soc Nephrol. 2017;12:1733–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kerr M, Bedford M, Matthews B, O’Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transpl. 2014;29:1362–8.

    Article  Google Scholar 

  7. Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, et al. Cost and mortality associated with postoperative acute kidney injury. Ann Surg. 2015;261:1207–14.

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Caestecker M, Harris R. Translating knowledge into therapy for acute kidney injury. Semin Nephrol. 2018;38:88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jo SK, Rosner MH, Okusa MD. Pharmacologic treatment of acute kidney injury: why drugs haven’t worked and what is on the horizon. Clin J Am Soc Nephrol. 2007;2:356–65.

    Article  PubMed  Google Scholar 

  10. Zuk A, Palevsky PM, Fried L, Harrell FE Jr, et al. Overcoming translational barriers in acute kidney injury: a report from an NIDDK workshop. Clin J Am Soc Nephrol. 2018;13:1113–23.

    PubMed  PubMed Central  Google Scholar 

  11. Zuk A, Bonventre JV. Acute kidney injury. Annu Rev Med. 2016;67:293–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ostermann M, Liu K. Pathophysiology of AKI. Best Pract Res Clin Anesthesiol. 2017;31:305–14.

    Article  Google Scholar 

  13. Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin Nephrol. 2015;35:64–74.

    Article  PubMed  Google Scholar 

  14. AtoxBio. Atox Bio Announces Enrollment of First Patient in Phase 2 Study of Acute Kidney Injury. http://www.atoxbio.com/clinical-data-7. Accessed 12 Feb 2019.

  15. Kaempfer R, Arad G, Levy R, Hillman D, Nasie I, Rotfogel Z. CD28: direct and critical receptor for superantigen toxins. Toxins. 2013;5:1531–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bulger EM, Maier RV, Sperry J, et al. A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg. 2014;149:528–36.

    Article  CAS  PubMed  Google Scholar 

  17. Arad G, Levy R, Nasie I, Hillman D, Rotfogel Z, Barash U, et al. Binding of superantigen toxins into the CD28 homodimer interface is essential for induction of cytokine genes that mediate lethal shock. PLoS Biol. 2011;9(9):e1001149. https://doi.org/10.1371/journal.pbio.1001149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arad G, Levy R, Hillman D, Kaempfer R. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat Med. 2000;6:414–21.

    Article  CAS  PubMed  Google Scholar 

  19. Arad G, Hillman D, Levy R, Kaempfer R. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock. J Leukoc Biol. 2001;69:921–7.

    CAS  PubMed  Google Scholar 

  20. Arad G, Hillman D, Levy R, Kaempfer R. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Immunol Lett. 2004;91:141–5.

    Article  CAS  PubMed  Google Scholar 

  21. Kaempfer R, Arad G, Levy R, Hillman D. Defense against biologic warfare with superantigen toxins. Isr Med Assoc J. 2002;4:520–3.

    CAS  PubMed  Google Scholar 

  22. ClinicalTrials.gov. Identifier NCT02469857, phase III efficacy and safety study of AB103 in the treatment of patients with necrotizing soft tissue infections (ACCUTE). Bethesda: National Library of Medicine; 2015. Accessed 12 Feb 2019.

  23. ClinicalTrials.gov. Identifier NCT03403751, phase 2 study of reltecimod vs placebo in patients with sepsis-associated acute kidney injury. Bethesda: National Library of Medicine; 2018 Accessed 12 Feb 2019.

  24. Zhang Y, Darssan D, Pascoe E, Johnson D, Pi H, Dong J. Vitamin D status and mortality risk among patients on dialysis: a systematic review and meta-analysis of observational studies. Nephrol Dial Transpl. 2018;33:1742–51.

    Article  CAS  Google Scholar 

  25. Sahay M, Kalra S, Bandgar T. Renal endocrinology: the new frontier. Indian J Endocrinol Metab. 2012;16(2):154–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dusso AS. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int Suppl. 2011;1:136–41.

    Article  CAS  Google Scholar 

  27. Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wolf M, Shah A, Gutierrez O, et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 2007;72:1004–13.

    Article  CAS  PubMed  Google Scholar 

  29. Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003;349:446–56.

    Article  CAS  PubMed  Google Scholar 

  30. Wolf M, Betancourt J, Chang Y, et al. Impact of activated vitamin D and race on survival among hemodialysis patients. J Am Soc Nephrol. 2008;19:1379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teng M, Wolf M, Ofsthun MN, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol JASN. 2005;16:1115–25.

    Article  CAS  PubMed  Google Scholar 

  32. Vijayan A, Li T, Dusso A, Jain S, Coyne DW. Relationship of 1,25 dihydroxy vitamin D levels to clinical outcomes in critically ill patients with acute kidney injury. J Nephrol Ther. 2015;5:190.

    PubMed  PubMed Central  Google Scholar 

  33. Lai L, Qian J, Yang Y, et al. Is the serum vitamin D level at the time of hospital-acquired acute kidney injury diagnosis associated with prognosis? PLoS One. 2013;8:e64964.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leaf DE, Wolf M, Waikar SS, et al. FGF-23 levels in patients with AKI and risk of adverse outcomes. Clin J Am Soc Nephrol. 2012;7:1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang M, Hsu R, Hsu CY, et al. FGF-23 and PTH levels in patients with acute kidney injury: a cross-sectional case series study. Ann Intensive Care. 2011;1:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334:1448–60.

    Article  CAS  PubMed  Google Scholar 

  37. Banerjee M. Antiproliferative role of vitamin d and its analogs—a brief overview. Pubmed NCBI. http://www.ncbi.nlm.nih.gov. N.p., 2019. Web. Accessed 5 Feb 2019.

  38. Cameron LK, Lei K, Smith S, et al. Vitamin D levels in critically ill patients with acute kidney injury: a protocol for a prospective cohort study (VID-AKI). BMJ Open. 2017;7:e016486. https://doi.org/10.1136/bmjopen-2017-016486.

    Article  PubMed  PubMed Central  Google Scholar 

  39. ClinicalTrials.gov. Identifier NCT02962102, activated vitamin D for the prevention and treatment of acute kidney injury (ACTIVATE-AKI). Bethesda: National Library of Medicine; 2016. Accessed 12 Feb 2019.

  40. Peters E, Heemskerk S, Masereeuw R, Pickkers P. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis. 2014;63:1038–48.

    Article  CAS  PubMed  Google Scholar 

  41. Peters E, Masereeuw R, Pickkers P. The potential of alkaline phosphatase as a treatment for sepsis-associated acute kidney injury. Nephron Clin Pract. 2014;127:144–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pickkers P, Mehta RL, Murray PT, et al. Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury: a randomized clinical trial. JAMA. 2018;320:1998–2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol. 2003;14:128–38.

    Article  CAS  PubMed  Google Scholar 

  44. Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z. Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Ren Physiol. 2007;293:F1282–91.

    Article  CAS  Google Scholar 

  45. Thompson JD, Kornbrust DJ, Foy JW-D, Solano ECR, Schneider DJ, Feinstein E, Molitoris BA, Erlich S. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 2012;22:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molitoris BA, Dagher PC, Sandoval RM, Campos SB, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J Am Soc Nephrol. 2009;20:1754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Demirjian S, Ailawadi G, Polinsky M, Bitran D, et al. Safety and tolerability study of an intravenously administered small interfering ribonucleic acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int Rep. 2017;2:836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  48. ClinicalTrials.gov. Identifier NCT02610283. A study to evaluate efficacy and safety of QPI-1002 for prevention of acute kidney injury following cardiac surgery. Bethesda: National Library of Medicine; 2015. Accessed 12 Feb 2019.

  49. Quark Pharmaceuticals, Inc. Quark Pharmaceuticals, Inc announces first patient dosed in phase 3 clinical trial of QPI-1002 for prevention of acute kidney injury following cardiac surgery. http://quarkpharma.com/?p=12506. Accessed 12 Feb 2019.

  50. Jiang WG, Hiscox S. Hepatocyte growth factor/scatter factor, a cytokine playing multiple and converse roles. Histol Histopathol. 1997;1997(12):537–55.

    Google Scholar 

  51. Matsumoto K, Nakamura T. Roles of HGF as a pleiotropic factor in organ regeneration. EXS. 1993;65:225–49.

    CAS  PubMed  Google Scholar 

  52. Weidner KM, Sachs M, Birchmeier W. The Met receptor tyrosine kinase transduces motility, proliferation, and morphogenic signals of scatter factor/hepatocyte growth factor in epithelial cells. J Cell Biol. 1993;121:145–54.

    Article  CAS  PubMed  Google Scholar 

  53. Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3(1 Suppl):S7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Enhanced expression of hepatocyte growth factor/c-met by myocardial ischemia and reperfusion in a rat model. Circulation. 1997;95:2552–8.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou D, Tan RJ, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gong R, Rifai A, Tolbert EM, Biswas P, Centracchio JN, Dworkin LD. Hepatocyte growth factor ameliorates renal interstitial inflammation in rat remnant kidney by modulating tubular expression of macrophage chemoattractant protein-1 and RANTES. J Am Soc Nephrol. 2004;15:2868–81.

    Article  CAS  PubMed  Google Scholar 

  57. Dai C, Yang J, Liu Y. Single injection of naked plasmid encoding hepatocyte growth factor prevents cell death and ameliorates acute renal failure in mice. J Am Soc Nephrol. 2002;13:411–22.

    CAS  PubMed  Google Scholar 

  58. Fiaschi-Taesch NM, Santos S, Reddy V, Van Why SK, et al. Prevention of acute ischemic renal failure by targeted delivery of growth factors to the proximal tubule in transgenic mice: the efficacy of parathyroid hormone-related protein and hepatocyte growth factor. J Am Soc Nephrol. 2004;15:112–25.

    Article  CAS  PubMed  Google Scholar 

  59. Kamimoto M, Mizuno S, Matsumoto K, Nakamura T. Hepatocyte growth factor prevents multiple organ injuries in endotoxemic mice through a heme oxygenase-1-dependent mechanism. Biochem Biophys Res Commun. 2009;380:333–7.

    Article  CAS  PubMed  Google Scholar 

  60. Liu Y, Tolbert EM, Lin L, Thursby MA, Sun AM, Nakamura T, Dworkin LD. Up-regulation of hepatocyte growth factor receptor: an amplification and targeting mechanism for hepatocyte growth factor action in acute renal failure. Kidney Int. 1999;55:442–53.

    Article  CAS  PubMed  Google Scholar 

  61. Nakatani T, Kim T, Uchida J, Kumata N, Kawashima H, Sugimura K. Hepatocyte growth factor ameliorates renal hemodynamic disorder after ischemia/reperfusion. Int J Mol Med. 2002;10:217–9.

    CAS  PubMed  Google Scholar 

  62. Narayan P, Duan B, Jiang K, et al. Late intervention with the small molecule BB3 mitigates postischemic kidney injury. Am J Physiol Renal Physiol. 2016;311:F352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. ClinicalTrials.gov. Identifier NCT01286727. Study to improve renal function after kidney transplantation. Bethesda: National Library of Medicine; 2011. Accessed 12 Feb 2019.

  64. ClinicalTrials.gov. Identifier NCT02474667. Reduce the severity of DGF in recipients of a deceased donor kidney. Bethesda: National Library of Medicine; 2015. Accessed 12 Feb 2019.

  65. ClinicalTrials.gov. Identifier NCT02771509. Study to prevent acute kidney injury after cardiac surgery involving cardiopulmonary bypass. Bethesda: National Library of Medicine; 2016. Accessed 12 Feb 2019.

  66. Murphy PG, Myers DS, Davies MJ, et al. The antioxidant potential of propofol (2,6-diisopropylphenol). Br J Anaesth. 1992;68:613–8.

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez-Lopez JM, Sanchez-Conde P, Lozano FS. Laboratory investigation: effects of propofol on the systemic inflammatory response during aortic surgery. Can J Anaesth. 2006;53:701–10.

    Article  PubMed  Google Scholar 

  68. Sanchez-Conde P, Rodriguez-Lopez JM, Nicolas JL, et al. The comparative abilities of propofol and sevoflurane to modulate inflammation and oxidative stress in the kidney after aortic cross-clamping. Anesth Analg. 2008;106:371–8.

    Article  CAS  PubMed  Google Scholar 

  69. Wang HH, Zhou HY, Chen CC, Zhang XL, Cheng G. Propofol attenuation of renal ischemia/reperfusion injury involves heme oxygenase-1. Acta Pharmacol Sin. 2007;28:1175–80.

    Article  CAS  PubMed  Google Scholar 

  70. Feng Y, Bai T, Ma H, Wang JK. Propofol attenuates human proximal renal tubular epithelial cell injury induced by anoxia-reoxygenation. Lab Med. 2008;39:356–60.

    Article  Google Scholar 

  71. Assad AR, Delou JM, Fonseca LM, Villela NR, Nascimento JH, Verçosa N, et al. The role of KATP channels on propofol preconditioning in a cellular model of renal ischemia-reperfusion. Anesth Analg. 2009;109:1486–92.

    Article  CAS  PubMed  Google Scholar 

  72. Obal D, Dettwiler S, Favoccia C, Rascher K, Preckel B, Schlack W. Effect of sevoflurane preconditioning on ischaemia/reperfusion injury in the rat kidney in vivo. Eur J Anesthesiol. 2006;23:319–26.

    Article  CAS  Google Scholar 

  73. Higuchi H, Sumita S, Wada H, Ura T, Ikemoto T, Nakai T, et al. Effects of sevoflurane and isoflurane on renal function and on possible markers of nephrotoxicity. Anesthesiology. 1998;89:307–22.

    Article  CAS  PubMed  Google Scholar 

  74. Bang JY, Lee J, Oh J, Song JG, Hwang GS. The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study. Anesth Analg. 2016;123:363–70.

    Article  CAS  PubMed  Google Scholar 

  75. Yoo Y-C, Shim J-K, Song Y, et al. Anesthetics influence the incidence of acute kidney injury following valvular heart surgery. Kidney Int. 2014;86:414–522.

    Article  CAS  PubMed  Google Scholar 

  76. Ammar AS, Mahmoud KM. Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J Anaesth. 2016;10:301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leite TT, Macedo E, Martins Ida S, Neves FM, Liborio AB. Renal outcomes in critically ill patients receiving propofol or midazolam. Clin J Am Soc Nephrol. 2015;10:1937–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim N, Lee JG, Lee SH, Nam KS, et al. A comparison of propofol based total intravenous anesthesia and sevoflurane based balanced anesthesia on renal protection during lung transplantation under extracorporeal membrane oxygenation—a prospective, randomized trial. J Heart Lung Transplant. 2017;36:S116–7.

    Article  Google Scholar 

  79. Nieuwenhuijs-Moeke GJ, et al. Propofol-based anaesthesia versus sevoflurane-based anaesthesia for living donor kidney transplantation: results of the VAPOR-1 randomized controlled trial. Br J Anaesth. 2017;118:720–32.

    Article  CAS  PubMed  Google Scholar 

  80. Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.

    Article  CAS  PubMed  Google Scholar 

  81. Ferenbach DA, Nkejabega NC, McKay J, Choudhary AK, Vernon MA, Beesley MF, et al. The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. Kidney Int. 2011;79(9):966–76.

    Article  CAS  PubMed  Google Scholar 

  82. Thomas RA, Czopek A, Bellamy CO, McNally SJ, Kluth DC, Marson LP. Hemin preconditioning upregulates Heme oxygenase-1 in deceased donor renal transplant recipients: a randomized, controlled, phase IIB trial. Transplantation. 2016;100:176–83.

    Article  PubMed  Google Scholar 

  83. Guerci P, Ergin B, Ince C. The macro- and microcirculation of the kidney. Best Pract Res Clin Anesthesiol. 2017;31:315–29.

    Article  Google Scholar 

  84. Chawla LS, Busse L, Brasha-Mitchell E. Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care. 2014;18:534.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Brown NJ, Vaughan DE. Angiotensin-converting enzyme inhibitors. Circulation. 1998;97:1411–20.

    Article  CAS  PubMed  Google Scholar 

  86. Correa TD, Jeger V, Pereira AJ, Takala J, Djafarzadeh S, Jakob SM. Angiotensin II in septic shock: effects on tissue perfusion, organ function, and mitochondrial respiration in a porcine model of fecal peritonitis. Crit Care Med. 2014;42:e550–9.

    Article  CAS  PubMed  Google Scholar 

  87. Correa TD, Takala J, Jakob SM. Angiotensin II in septic shock. Crit Care. 2015;19:98.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wan L, Langenberg C, Bellomo R, May CN. Angiotensin II in experimental hyperdynamic sepsis. Crit Care. 2009;13:R190.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Khanna A, English SW, Wang XS, et al. ATHOS-3 Investigators: angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017;337:419–30.

    Article  Google Scholar 

  90. Tumlin JA, Murughan R, Deane AM, Ostermann M, et al. Outcomes in patients with vasodilatory shock and renal replacement therapy treated with intravenous angiotensin II. Crit Care Med. 2018;46:949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nieminen MS, Pollesello P, Vajda G, et al. Effects of levosimendan on the energy balance: preclinical and clinical evidence. J Cardiovasc Pharmacol. 2009;53:302–10.

    Article  CAS  PubMed  Google Scholar 

  92. Faisal SA, Apatov DA, Ramakrishna H, Weiner MM. Levosimendan in cardiac surgery: evaluating the evidence. J Cardiovasc Vasc Anesth. 2018. https://doi.org/10.1053/j.jvca.2018.05.035.

    Article  Google Scholar 

  93. Zhou C, Gong J, Chen D, Wang W, et al. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67:408–16.

    Article  CAS  PubMed  Google Scholar 

  94. Mouchiroud L, Houtkooper RH, Auwerx J. NAD (+) metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013;48:397–408.

    Article  CAS  PubMed  Google Scholar 

  95. Mehr AP, Tran MT, Ralto KM, Leaf DE, et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat Med. 2018;24:1351–9.

    Article  CAS  PubMed Central  Google Scholar 

  96. Mount PF, Power DA. Balancing the energy equation for healthy kidneys. J Pathol. 2015;237:407–10.

    Article  CAS  PubMed  Google Scholar 

  97. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium. 2009;45:643–50.

    Article  CAS  PubMed  Google Scholar 

  98. Szeto H. Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J Am Soc Nephrol. 2017;28:2856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Choi YM, Kim HK, Shim W, Anwar MA, et al. Mechanism of cisplatin-induced cytotoxicity is correlated to impaired metabolism due to mitochondrial ROS generation. PLoS One. 2015;10:e0135083 (pmid:26247588).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palevsky PM. Endpoints for clinical trials of acute kidney injury. Nephron. 2018;140:111–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell H. Rosner.

Ethics declarations

Conflict of interest

MHR: member of data safety-monitoring board for clinical studies funded by: Reata, Retrophin; consultant for Baxter Healthcare; editoral board for Clinical Journal of the American Society of Nephrology. MH: none.

Funding

No funding was received for the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulse, M., Rosner, M.H. Drugs in Development for Acute Kidney Injury. Drugs 79, 811–821 (2019). https://doi.org/10.1007/s40265-019-01119-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01119-8

Navigation