Skip to main content
Log in

New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship

  • Current Opinion
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

A gradual rise in drug-resistant trends among Gram-negative organisms, especially carbapenem-resistant (CR) Enterobacteriaceae (CRE), CR-Pseudomonas aeruginosa, and extensively-drug-resistant (XDR) Acinetobacter baumannii, poses an enormous threat to healthcare systems worldwide. In the last decade, many pharmaceutical companies have devoted enormous resources to the development of new potent antibiotics against XDR Gram-negative pathogens, particularly CRE. Some of these novel antibiotics against CRE strains are β-lactam/β-lactamase-inhibitor combination agents, while others belong to the non-β-lactam class. Most of these antibiotics display good in vitro activity against the producers of Ambler class A, C, and D β-lactamase, although avibactam and vaborbactam are not active in vitro against metallo-β-lactamase (MβL) enzymes. Nevertheless, in vitro efficacy against the producers of some or all class B enzymes (New Delhi MβL, Verona integron-encoded MβL, etc) has been shown with cefepime-zidebactam, aztreonam-avibactam, VNRX-5133, cefiderocol, plazomicin, and eravacycline. As of Feburary 2019, drugs approved for treatment of some CRE-related infections by the US Food and Drug Administration included ceftazidime-avibactam, meropenem-vaborbactam, plazomicin, and eravacycline. Although active against extended-spectrum and AmpC β-lactamase-producing Enterobacteriaceae, delafloxacin does not show in vitro activity against CRE. Murepavadin is shown to be specifically active against CR- and colistin-resistant P. aeruginosa strains. Despite successful development of novel antibiotics, strict implementation of an antibiotic stewardship policy in combination with the use of well-established phenotypic tests and novel multiplex PCR methods for detection of the most commonly encountered β-lactamases/carbapenemases in hospitals is important for prescribing effective antibiotics against CRE and decreasing the resistance burden due to CRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jean SS, Lee WS, Lam C, Hsu CW, Chen RJ, Hsueh PR. Carbapenemase-producing Gram-negative bacteria: current epidemics, antimicrobial susceptibility and treatment options. Future Microbiol. 2015;10(3):407–25.

    Article  CAS  PubMed  Google Scholar 

  2. Jean SS, Hsueh PR, SMART Asia-Pacific Group. Distribution of ESBLs, AmpC β-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008–14: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). J Antimicrob Chemother. 2017;72(1):166–71.

    Article  CAS  PubMed  Google Scholar 

  3. Lee CH, Su TY, Ye JJ, Hsu PC, Kuo AJ, Chia JH, et al. Risk factors and clinical significance of bacteremia caused by Pseudomonas aeruginosa resistant only to carbapenems. J Microbiol Immunol Infect. 2017;50(5):677–83.

    Article  PubMed  Google Scholar 

  4. Tseng SP, Wang SF, Ma L, Wang TY, Yang TY, Siu LK, et al. The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J Microbiol Immunol Infect. 2017;50(5):653–61.

    Article  CAS  PubMed  Google Scholar 

  5. Ku YH, Chen CC, Lee MF, Chuang YC, Tang HJ, Yu WL. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J Microbiol Immunol Infect. 2017;50(6):931–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lee CM, Lai CC, Chiang HT, Lu MC, Wang LF, Tsai TL, et al. Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect. 2017;50(2):133–44.

    Article  PubMed  Google Scholar 

  7. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895.

    PubMed  PubMed Central  Google Scholar 

  8. De la Calle C, Rodríguez O, Morata L, Marco F, Cardozo C, García-Vidal C, et al. Clinical characteristics and prognosis of infections caused by OXA-48 carbapenemase producing Enterobacteriaceae in patients treated with ceftazidime-avibactam. Int J Antimicrob Agents. 2018. https://doi.org/10.1016/j.ijantimicag.2018.11.015 (Epub ahead of print).

    Article  PubMed  Google Scholar 

  9. Mitgang EA, Hartley DM, Malchione MD, Koch M, Goodman JL. Review and mapping of carbapenem-resistant Enterobacteriaceae in Africa: using diverse data to inform surveillance gaps. Int J Antimicrob Agents. 2018;52(3):372–84.

    Article  CAS  PubMed  Google Scholar 

  10. Syue LS, Chen YH, Ko WC, Hsueh PR. New drugs for the treatment of complicated intra-abdominal infections in the era of increasing antimicrobial resistance. Int J Antimicrob Agents. 2016;47(4):250–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):318–27.

    Article  PubMed  Google Scholar 

  12. Liu CY, Lai CC, Chiang HT, Lu MC, Wang LF, Tsai TL, et al. Predominance of methicillin-resistant Staphylococcus aureus in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect. 2019;52(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  13. Avery LM, Nicolau DP. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria. Expert Opin Investig Drugs. 2018;27(4):325–38.

    Article  CAS  PubMed  Google Scholar 

  14. Smith PA, Koehler MFT, Girgis HS, Yan D, Chen Y, Chen Y, et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature. 2018;561(7722):189–94.

    Article  CAS  PubMed  Google Scholar 

  15. Domalaon R, Idowu T, Zhanel GG, Schweizer F. Antibiotic hybrids: the next generation of agents and adjuvants against Gram-negative pathogens? Clin Microbiol Rev. 2018;31(2):e00077-17.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jean SS, Lu MC, Shi ZY, Tseng SH, Wu TS, Lu PL, et al. In vitro activity of ceftazidime-avibactam, ceftolozane-tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist. 2018;11:1983–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tato M, García-Castillo M, Bofarull AM, Cantón R. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa and Enterobacteriaceae recovered in Spanish medical centers: results of the CENIT study. Int J Antimicrob Agents. 2015;46(5):502–10.

    Article  CAS  PubMed  Google Scholar 

  18. Bassetti M, Vena A, Castaldo N, Righi E, Peghin M. New antibiotics for ventilator-associated pneumonia. Curr Opin Infect Dis. 2018;31(2):177–86.

    Article  CAS  Google Scholar 

  19. Falcone M, Paterson D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother. 2016;71(10):2713–22.

    Article  CAS  PubMed  Google Scholar 

  20. Kidd JM, Kuti JL, Nicolau DP. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria. Expert Opin Pharmacother. 2018;19(4):397–408.

    Article  CAS  PubMed  Google Scholar 

  21. Sader HS, Castanheira M, Flamm RK, Farrell DJ, Jones RN. Antimicrobial activity of ceftazidime-avibactam against Gram-negative organisms collected from U.S. medical centers in 2012. Antimicrob Agents Chemother. 2014;58(3):1684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Torres A, Zhong N, Pachl J, Timsit JF, Kollef M, Chen Z, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18(3):285–95.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma R, Park TE, Moy S. Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant Gram-negative organisms. Clin Ther. 2016;38(3):431–44.

    Article  CAS  PubMed  Google Scholar 

  24. Castanheira M, Sader HS, Farrell DJ, Mendes RE, Jones RN. Activity of ceftaroline-avibactam tested against Gram-negative organism populations, including strains expressing one or more β-lactamases and methicillin-resistant Staphylococcus aureus carrying various staphylococcal cassette chromosome mec types. Antimicrob Agents Chemother. 2012;56(9):4779–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lucasti C, Vasile L, Sandesc D, Venskutonis D, McLeroth P, Lala M, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98 (26).

    Article  CAS  PubMed  Google Scholar 

  27. Sims M, Mariyanovski V, McLeroth P, Akers W, Lee YC, Brown ML, et al. Prospective, randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616–26.

    Article  CAS  PubMed  Google Scholar 

  28. World Health Organization. Antibacterial agents in clinical development. An analysis of the antibacterial clinical development pipeline, including tuberculosis. 2017. http://www.who.int/medicines/news/2017/IAU_AntibacterialAgentsClinicalDevelopment_webfinal_2017_09_19.pdf. Accessed 12 Nov 2018.

  29. Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1373–85.

    Article  CAS  PubMed  Google Scholar 

  30. Livermore DM, Mushtaq S, Warner M, Woodford N. Activity of OP0595/β-lactam combinations against Gram-negative bacteria with extended-spectrum, AmpC and carbapenem-hydrolysing β-lactamases. J Antimicrob Chemother. 2015;70(11):3032–41.

    Article  CAS  PubMed  Google Scholar 

  31. Bentley D, Fettner S, Patel K, Zwanziger E, Attley G, Rodriguez I, et al. (P2214) Safety, tolerability, and pharmacokinetics of nacubactam, a novel β-lactamase inhibitor, administered alone and with meropenem in healthy volunteers. In: 28th European congress of clinical microbiology and infectious diseases, Madrid, Spain, 21–24 April, 2018.

  32. Dhillon S. Meropenem/vaborbactam: a review in complicated urinary tract infections. Drugs. 2018;78(12):1259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wong D, van Duin D. Novel β-lactamase inhibitors: unlocking their potential in therapy. Drugs. 2017;77(6):615–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, Mathers AJ, Bassetti M, Vazquez J, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Daigle D, Hamrick J, Chatwin C, Kurepina N, Kreiswirth BN, Shields RK, et al. Cefepime/VNRX-5133 broad-spectrum activity is maintained against emerging KPC- and PDC-variants in multidrug-resistant K. pneumoniae and P. aeruginosa. Open Forum Infect Dis. 2018;5(Suppl 1):S419–20.

    Article  PubMed Central  Google Scholar 

  36. Paul Taylor N. VenatoRx raises $42 M to take drug for breaking bacterial resistance to approval [Internet]. FierceBiotech. 2017. https://www.fiercebiotech.com/biotech/venatorx-raises-42m-to-take-drug-for-breaking-bacterial-resistance-to-approval. Accessed 5 Nov 2018.

  37. Crandon JL, Nicolau DP. In vitro activity of cefepime/AAI101 and comparators against cefepime non-susceptible Enterobacteriaceae. Pathogens. 2015;4(3):620–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allerca announces initiation of a phase 2 clinical trial for its novel antibiotics to treat resistant bacterial infections [Internet]. Weil am Rhein (Germany): Allerca Therapeutics. 2017. http://allecra.com/2017/09/07/allecra-announces-initiation-of-a-phase-2-clinical-trial-for-its-novel-antibiotic-to-treat-resistant-bacterial-infections/. Accessed 16 Nov 2018.

  39. Falagas ME, Mavroudis AD, Vardakas KZ. The antibiotic pipeline for multi-drug resistant gram negative bacteria: what can we expect? Expert Rev Anti Infect Ther. 2016;14(8):747–63.

    Article  CAS  PubMed  Google Scholar 

  40. Dobias J, Dénervaud-Tendon V, Poirel L, Nordmann P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis. 2017;36(12):2319–27.

    Article  CAS  PubMed  Google Scholar 

  41. Hsueh SC, Lee YJ, Huang YT, Liao CH, Tsuji M, Hsueh PR. In vitro activities of cefiderocol, ceftolozane/tazobactam, ceftazidime/avibactam and other comparative drugs against imipenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, and Stenotrophomonas maltophilia, all associated with bloodstream infections in Taiwan. J Antimicrob Chemother. 2019;74(2):380–6.

    Article  PubMed  Google Scholar 

  42. Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2016;61(1):e01381-16.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–28.

    Article  CAS  PubMed  Google Scholar 

  44. Matsunaga Y, Echols R, Katsube T, Yamano Y, Ariyasu M, Nagata TD. Cefiderocol (S-649266) for nosocomial pneumonia caused by Gram-negative pathogens: study design of APEKS-NP, a phase 3 double-blind parallel-group randomized clinical trial. Am J Respir Crit Care Med. 2018;197:A3290.

    Google Scholar 

  45. López Díaz MC, Ríos E, Rodríguez-Avial I, Simaluiza RJ, Picazo JJ, Culebras E. In-vitro activity of several antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) isolates expressing aminoglycoside-modifying enzymes: potency of plazomicin alone and in combination with other agents. Int J Antimicrob Agents. 2017;50(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  46. Livermore DM, Mushtaq S, Warner M, Zhang JC, Maharjan S, Doumith M, et al. Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother. 2011;66(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  47. Perez F, El Chakhtoura NG, Papp-Wallace KM, Wilson BM, Bonomo RA. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016;17(6):761–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Connolly LE, Riddle V, Cebrik D, Armstrong ES, Miller LG. A multicenter, randomized, double-blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob Agents Chemother. 2018;62(4):e01989-17.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cloutier DJ, Komirenko AS, Cebrik DS, Keepers TR, Krause KM, Connolly LE, et al. Plazomicin vs. meropenem for complicated urinary tract infection (cUTI) and acute pyelonephritis (AP): diagnosis-specific results from the phase 3 EPIC Study. Open Forum Infect Dis. 2017;4(Suppl 1):S532.

    Article  Google Scholar 

  50. Wright H, Bonomo RA, Paterson DL. New agents for the treatment of infections with Gram-negative bacteria: restoring the miracle or false dawn? Clin Microbiol Infect. 2017;23(10):704–12.

    Article  CAS  PubMed  Google Scholar 

  51. Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. Int J Antimicrob Agents. 2018;51(1):62–4.

    Article  CAS  PubMed  Google Scholar 

  52. Solomkin J, Evans D, Slepavicius A, Lee P, Marsh A, Tsai L, et al. Assessing the efficacy and safety of eravacycline vs ertapenem in complicated intra-abdominal infections in the investigating Gram-negative infections treated with eravacycline (IGNITE 1) trial: a randomized clinical trial. JAMA Surg. 2017;152(3):224–32.

    Article  PubMed  Google Scholar 

  53. Connors KP, Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, et al. Phase I, open-label, safety and pharmacokinetic study to assess bronchopulmonary disposition of intravenous eravacycline in healthy men and women. Antimicrob Agents Chemother. 2014;58(4):2113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Evaracycline vs. levofloxacin or ertapenem in treatment of complicated urinary tract infections [Internet]. https://ir.tphase.com/news-releases/news-release-details/tetraphase-pharmaceuticals-completes-enrollment-ignite3-phase-3. Accessed 15 Feb 2019.

  55. Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother. 2005;49(1):220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pfaller MA, Huband MD, Rhomberg PR, Flamm RK. Surveillance of omadacycline activity against clinical isolates from a global collection (North America, Europe, Latin America, Asia–Western Pacific), 2010–2011. Antimicrob Agents Chemother. 2017;61(5):e00018-17.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Omadacycline activity vs. CDC urgent antibiotic resistance threats [Internet]. https://paratekpharma.com/media/1332/omadacycline-coverage-for-cdc-pathogen-threats-dk-11-23-16.pdf. Accessed 24 Nov 2018.

  58. O’Riordan W, Green S, Overcash JS, Puljiz I, Metallidis S, Gardovskis J, et al. Omadacycline for acute bacterial skin and skin-structure infections. N Eng J Med. 2019;380(6):528–38.

    Article  Google Scholar 

  59. O’Riordan W, Cardenas C, Sirbu A, Garrity-Ryan L, Das A, Eckburg P, et al. A phase-3 randomized, double-blind, multicentre study to compare the safety and efficacy of oral omadacycline to oral linezolid for treating adult subjects with ABSSSI (OASIS-2 study). Poster abstract O0425. ECCMID April 2018. Madrid, Spain. https://paratekpharma.com/media/1542/eccmid-2018-o0425-oasis2-top-line-efficacy-safety.pdf. Accessed 25 Mar 2019.

  60. Stets R, Popescu M, Gonong JR, Mitha I, Nseir W, Madej A, et al. Omadacycline for community-acquired bacterial pneumonia. N Engl J Med. 2019;380(6):517–27.

    Article  CAS  PubMed  Google Scholar 

  61. Markham A, Keam SJ. Omadacycline: first global approval. Drugs. 2018;78(18):1931–7.

    Article  PubMed  Google Scholar 

  62. Wagenlehner F, Nowicki M, Bentley C, Lückermann M, Wohlert S, Fischer C, et al. Explorative randomized phase II clinical study of the efficacy and safety of finafloxacin versus ciprofloxacin for treatment of complicated urinary tract infections. Antimicrob Agents Chemother. 2018;62(4):e02317-17.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Remy JM, Tow-Keogh CA, McConnell TS, Dalton JM, Devito JA. Activity of delafloxacin against methicillin-resistant Staphylococcus aureus: resistance selection and characterization. J Antimicrob Chemother. 2012;67(12):2814–20.

    Article  CAS  PubMed  Google Scholar 

  64. Flamm RK, Rhomberg PR, Huband MD, Farrell DJ. In vitro activity of delafloxacin tested against isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Antimicrob Agents Chemother. 2016;60(10):6381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pullman J, Gardovskis J, Farley B, Sun E, Quintas M, Lawrence L, et al. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: a phase 3, double-blind, randomized study. J Antimicrob Chemother. 2017;72(12):3471–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sader HS, Flamm RK, Dale GE, Rhomberg PR, Castanheira M. Murepavadin activity tested against contemporary (2016–17) clinical isolates of XDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(9):2400–4.

    Article  CAS  PubMed  Google Scholar 

  67. Smith PA, Romesberg FE. Mechanism of action of the arylomycin antibiotics and effects of signal peptidase I inhibition. Antimicrob Agents Chemother. 2012;56(10):5054–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 2017;50(4):405–10.

    Article  CAS  PubMed  Google Scholar 

  69. Gorityala BK, Guchhait G, Fernando DM, Deo S, McKenna SA, Zhanel GG, et al. Adjuvants based on hybrid antibiotics overcome resistance in Pseudomonas aeruginosa and enhance fluoroquinolone efficacy. Angew Chem Int Ed Engl. 2016;55(2):555–9.

    Article  CAS  PubMed  Google Scholar 

  70. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wong D, Spellberg B. Leveraging antimicrobial stewardship into improving rates of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):383–90.

    Article  CAS  PubMed  Google Scholar 

  72. McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M, Scheetz MH. Correlations of antibiotic use and carbapenem resistance in Enterobacteriaceae. Antimicrob Agents Chemother. 2013;57(10):5131–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol. 2017;55(8):2321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty-eighth informational supplement M100-S28. Wayne: CLSI; 2018.

    Google Scholar 

Download references

Acknowledgements

The content of this manuscript is partly based on content presented at the European Congress of Clinical Microbiology and Infectious Diseases (ECCMID) in Madrid, Spain in April 2018 during the session ‘Therapy of MDR/XDR Gram-Negative Bacteria: Dealing with the Devil’ (SY026).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Po-Ren Hsueh.

Ethics declarations

Funding

No specific grant from any funding agency in the public, commercial, or not-for-profit sector was obtained for this article.

Conflict of interest

Authors SSJ, IMG, WSL, and PRH have no conflicts of interest to declare. Author IMG has served as a speaker on antibiotic resistance and stewardship for Merck, Bayer, Norma Hellas, Pfizer, Basilea, Xelia, and Sanofi and has received consulting honoraria from Merck, Bayer, Basilea, Pfizer, Achaogen, and AstraZeneca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jean, SS., Gould, I.M., Lee, WS. et al. New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs 79, 705–714 (2019). https://doi.org/10.1007/s40265-019-01112-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-019-01112-1

Navigation