Skip to main content
Log in

A Review of Phosphate Binders in Chronic Kidney Disease: Incremental Progress or Just Higher Costs?

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

An Erratum to this article was published on 07 August 2017

This article has been updated

Abstract

As kidney disease progresses, phosphorus retention also increases, and phosphate binders are used to treat hyperphosphatemia. Clinicians prescribe phosphate binders thinking that reducing total body burden of phosphorus may decrease risks of mineral and bone disorder, fractures, cardiovascular disease, progression of kidney disease, and mortality. Recent meta-analyses suggest that sevelamer use results in lower mortality than use of calcium-containing phosphate binders. However, studies included in meta-analyses show significant heterogeneity, and exclusion or inclusion of specific studies alters results. Since no long-term studies have been conducted to determine whether treatment with any phosphate binder is better than placebo on any hard clinical endpoint (including mortality), it is unclear whether possible benefit with sevelamer represents net benefit of sevelamer, net harm with calcium-containing phosphate binders, or both. Although one meta-analysis suggested that calcium acetate may be more efficacious gram for gram than calcium carbonate as a binder, calcium acetate did not reduce hypercalcemia, and gastrointestinal intolerance was higher. Data are insufficient to determine whether calcium acetate provides lower risk of vascular calcification than calcium carbonate. Fears of lanthanum accumulation in the central nervous system or bone with long-term treatment do not appear to be warranted. Newer iron-containing phosphate binders have potential benefits, such as lower pill burden (sucroferric oxyhydroxide) and improved iron parameters (ferric citrate). The biggest challenge to phosphate binder efficacy is non-adherence. This article reviews the current knowledge regarding safety, effectiveness, and adherence with currently marketed phosphate binders and those in development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reprinted with permission under the terms of the Creative Commons Attribution-Non-Commercial-No Derivatives License (CC By ND ND); http://creativecommons.org/licenses/by-nc-nd/4.0. Figure citation is Palmer et al. [37]

Similar content being viewed by others

Change history

  • 07 August 2017

    An erratum to this article has been published.

References

  1. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–18.

    Article  CAS  PubMed  Google Scholar 

  2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;76(113):S24.

    Google Scholar 

  3. United States Renal Data System. 2016 USRDS annual data report: epidemiology of kidney disease in the United States. 2016 ed. Bethesda: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2016.

  4. Dominguez JR, Kestenbaum B, Chonchol M, Block G, Laughlin GA, Lewis CE, et al. Relationships between serum and urine phosphorus with all-cause and cardiovascular mortality: the Osteoporotic Fractures in Men (MrOS) Study. Am J Kidney Dis. 2013;61:555–63.

    Article  CAS  PubMed  Google Scholar 

  5. Foley RN, Collins AJ, Herzog CA, Ishani A, Kalra PA. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009;20:397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tuttle KR, Short RA. Longitudinal relationships among coronary artery calcification, serum phosphorus, and kidney function. Clin J Am Soc Nephrol. 2009;4:1968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tonelli M, Sacks F, Pfeffer M, Gao Z, Curhan G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005;112:2627–33.

    Article  CAS  PubMed  Google Scholar 

  8. Dhingra R, Sullivan LM, Fox CS, Wang TJ, D’Agostino RB Sr, Gaziano JM, et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007;167:879–85.

    Article  CAS  PubMed  Google Scholar 

  9. Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12:2131–8.

    CAS  PubMed  Google Scholar 

  10. Eddington H, Hoefield R, Sinha S, Chrysochou C, Lane B, Foley RN, et al. Serum phosphate and mortality in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:2251–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McGovern AP, de LS, van VJ, Liyanage H, Tomson CR, Gallagher H, et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based cohort study. PLoS One. 2013;8(9):e74996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kestenbaum B, Sampson JN, Rudser KD, Patterson DJ, Seliger SL, Young B, et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol. 2005;16:520–8.

    Article  CAS  PubMed  Google Scholar 

  13. Martin M, Valls J, Betriu A, Fernandez E, Valdivielso JM. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease. Sex makes a difference. Atherosclerosis. 2015;241:264–70.

    Article  CAS  PubMed  Google Scholar 

  14. Saab G, Whooley MA, Schiller NB, Ix JH. Association of serum phosphorus with left ventricular mass in men and women with stable cardiovascular disease: data from the Heart and Soul Study. Am J Kidney Dis. 2010;56:496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Slinin Y, Blackwell T, Ishani A, Cummings SR, Ensrud KE. Serum calcium, phosphorus and cardiovascular events in post-menopausal women. Int J Cardiol. 2011;149:335–40.

    Article  PubMed  Google Scholar 

  16. Onufrak SJ, Bellasi A, Cardarelli F, Vaccarino V, Muntner P, Shaw LJ, et al. Investigation of gender heterogeneity in the associations of serum phosphorus with incident coronary artery disease and all-cause mortality. Am J Epidemiol. 2009;169:67–77.

    Article  PubMed  Google Scholar 

  17. Chartsrisak K, Vipattawat K, Assanatham M, Nongnuch A, Ingsathit A, Domrongkitchaiporn S, et al. Mineral metabolism and outcomes in chronic kidney disease stage 2–4 patients. BMC Nephrol. 2013;14:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Connolly GM, Cunningham R, McNamee PT, Young IS, Maxwell AP. Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation. 2009;87:1040–4.

    Article  CAS  PubMed  Google Scholar 

  19. Fouque D, Roth H, Pelletier S, London GM, Hannedouche T, Jean G, et al. Control of mineral metabolism and bone disease in haemodialysis patients: which optimal targets? Nephrol Dial Transplant. 2013;28:360–7.

    Article  CAS  PubMed  Google Scholar 

  20. Fukagawa M, Kido R, Komaba H, Onishi Y, Yamaguchi T, Hasegawa T, et al. Abnormal mineral metabolism and mortality in hemodialysis patients with secondary hyperparathyroidism: evidence from marginal structural models used to adjust for time-dependent confounding. Am J Kidney Dis. 2014;63:979–87.

    Article  CAS  PubMed  Google Scholar 

  21. Moore J, Tomson CR, Tessa SM, Borrows R, Ferro CJ. Serum phosphate and calcium concentrations are associated with reduced patient survival following kidney transplantation. Clin Transplant. 2011;25:406–16.

    Article  CAS  PubMed  Google Scholar 

  22. Floege J, Kim J, Ireland E, Chazot C, Drueke T, de FA, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant. 2011;26:1948–55.

    Article  CAS  PubMed  Google Scholar 

  23. Block GA, Wheeler DC, Persky MS, Kestenbaum B, Ketteler M, Spiegel DM, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol. 2012;23:1407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hill KM, Martin BR, Wastney ME, McCabe GP, Moe SM, Weaver CM, et al. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease. Kidney Int. 2013;83:959–66.

    Article  CAS  PubMed  Google Scholar 

  25. Spiegel DM, Brady K. Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int. 2012;81:1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cupisti A, Moriconi D, D’Alessandro C, Verde F, Marchini M, Saba A, et al. The extra-phosphate intestinal load from medications: is it a real concern? J Nephrol. 2016;29:857–62.

    Article  PubMed  Google Scholar 

  27. Benini O, D’Alessandro C, Gianfaldoni D, Cupisti A. Extra-phosphate load from food additives in commonly eaten foods: a real and insidious danger for renal patients. J Ren Nutr. 2011;21:303–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sherman RA, Ravella S, Kapoian T. A dearth of data: the problem of phosphorus in prescription medications. Kidney Int. 2015;87:1097–9.

    Article  CAS  PubMed  Google Scholar 

  29. Leypoldt JK. Kinetics of beta2-microglobulin and phosphate during hemodialysis: effects of treatment frequency and duration. Semin Dial. 2005;18:401–8.

    Article  PubMed  Google Scholar 

  30. Sherman RA. Hyperphosphatemia in dialysis patients: beyond nonadherence to diet and binders. Am J Kidney Dis. 2016;67:182–6.

    Article  CAS  PubMed  Google Scholar 

  31. Courivaud C, Davenport A. Phosphate removal by peritoneal dialysis: the effect of transporter status and peritoneal dialysis prescription. Perit Dial Int. 2016;36:85–93.

    Article  CAS  PubMed  Google Scholar 

  32. Friedman EA. An introduction to phosphate binders for the treatment of hyperphosphatemia in patients with chronic kidney disease. Kidney Int Suppl. 2005;96:S2–6.

    Article  CAS  Google Scholar 

  33. US Food and Drug Administration. Guidance for industry: diabetes mellitus—evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf. Accessed 27 Jan 2017.

  34. Kidney Disease Improving Global Outcomes (KDIGO). KDIGO 2016 clinical practice guideline update on diagnosis, evaluation, prevention and treatment of CKD-MBD: public review draft. August 2016. http://www.kdigo.org/clinical_practice_guidelines/CKD-MBD%20Update/KDIGO%20CKD-MBD%20Update_Public%20Review_Final.pdf. Accessed 22 Jan 2017.

  35. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;76(Supplement 113):S50–99.

    Google Scholar 

  36. Altmann P, Barnett ME, Finn WF. Cognitive function in Stage 5 chronic kidney disease patients on hemodialysis: no adverse effects of lanthanum carbonate compared with standard phosphate-binder therapy. Kidney Int. 2007;71:252–9.

    Article  CAS  PubMed  Google Scholar 

  37. Palmer SC, Gardner S, Tonelli M, Mavridis D, Johnson DW, Craig JC, et al. Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials. Am J Kidney Dis. 2016;68:691–702. doi:10.1053/j.ajkd.2016.05.015.

    Article  CAS  PubMed  Google Scholar 

  38. Patel L, Bernard LM, Elder GJ. Sevelamer versus calcium-based binders for treatment of hyperphosphatemia in ckd: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol. 2016;11:232–44.

    Article  CAS  PubMed  Google Scholar 

  39. Habbous S, Przech S, Acedillo R, Sarma S, Garg AX, Martin J. The efficacy and safety of sevelamer and lanthanum versus calcium-containing and iron-based binders in treating hyperphosphatemia in patients with chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant. 2017;32:111–25.

    PubMed  Google Scholar 

  40. Wang C, Liu X, Zhou Y, Li S, Chen Y, Wang Y, et al. New conclusions regarding comparison of sevelamer and calcium-based phosphate binders in coronary-artery calcification for dialysis patients: a meta-analysis of randomized controlled trials. PLoS One. 2015;10(7):e0133938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sekercioglu N, Thabane L, Diaz Martinez JP, Nesrallah G, Longo CJ, Busse JW, et al. Comparative effectiveness of phosphate binders in patients with chronic kidney disease: a systematic review and network meta-analysis. PLoS One. 2016;11(6):e0156891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li T, Puhan MA, Vedula SS, Singh S, Dickersin K, The Ad Hoc Network Meta-analysis Methods Meeting Working Group. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79. http://bmcmedicine.biomedcentral.com/articles/10.1186/1741-7015-9-79. Accessed 5 Jan 2017.

  43. Zhang C, Wen J, Li Z, Fan J. Efficacy and safety of lanthanum carbonate on chronic kidney disease-mineral and bone disorder in dialysis patients: a systematic review. BMC Nephrol. 2013;14:226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008;156:556–63.

    Article  CAS  PubMed  Google Scholar 

  45. Zoccali C, Ruggenenti P, Perna A, Leonardis D, Tripepi R, Tripepi G, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22:1923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Centers for Medicare and Medicaid Services. Medicare provider utilization and payment data: part D prescriber data CY 2014. Drug summary table: “Part D Prescriber National Summary table. CY2014. Microsoft Excel (.xlsx)”. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/PartD2014.html. Accessed 27 Jan 2017.

  47. Department of Health and Human Services OoIG. High-price drugs are increasing federal payments for Medicare Part D catastrophic coverage. OIG Report: OEI-02-16-00270. https://oig.hhs.gov/oei/reports/oei-02-16-00270.pdf. Accessed 6 Jan 2017.

  48. Navaneethan SD, Sakhuja A, Arrigain S, Sharp J, Schold JD, Nally JV Jr. Practice patterns of phosphate binder use and their associations with mortality in chronic kidney disease. Clin Nephrol. 2014;82:16–25.

    CAS  PubMed  Google Scholar 

  49. Winkelmayer WC, Liu J, Kestenbaum B. Comparative effectiveness of calcium-containing phosphate binders in incident US dialysis patients. Clin J Am Soc Nephrol. 2011;6:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Isakova T, Gutierrez OM, Chang Y, Shah A, Tamez H, Smith K, et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol. 2009;20:388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kovesdy CP, Kuchmak O, Lu JL, Kalantar-Zadeh K. Outcomes associated with phosphorus binders in men with non-dialysis-dependent CKD. Am J Kidney Dis. 2010;56:842–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng J, Pullenayegum E, Marshall JK, Iorio A, Thabane L. Impact of including or excluding both-armed zero-event studies on using standard meta-analysis methods for rare event outcome: a simulation study. BMJ Open. 2016;6(8):e010983.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–7.

    Article  CAS  PubMed  Google Scholar 

  54. Di Iorio B, Molony D, Bell C, Cucciniello E, Bellizzi V, Russo D, et al. Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial. Am J Kidney Dis. 2013;62:771–8.

    Article  PubMed  CAS  Google Scholar 

  55. Yusuf AA, Weinhandl ED, St Peter WL. Comparative effectiveness of calcium acetate and sevelamer on clinical outcomes in elderly hemodialysis patients enrolled in Medicare part D. Am J Kidney Dis. 2014;64:95–103.

    Article  CAS  PubMed  Google Scholar 

  56. Altman DG, Andersen PK. Calculating the number needed to treat for trials where the outcome is time to an event. BMJ. 1999;319(7223):1492–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogata H, Fukagawa M, Hirakata H, Kaneda H, Kagimura T, Akizawa T. Design and baseline characteristics of the LANDMARK study. Clin Exp Nephrol. 2016. doi:10.1007/s10157-016-1310-8.

  58. St Peter WL, Liu J, Weinhandl E, Fan Q. A comparison of sevelamer and calcium-based phosphate binders on mortality, hospitalization, and morbidity in hemodialysis: a secondary analysis of the Dialysis Clinical Outcomes Revisited (DCOR) randomized trial using claims data. Am J Kidney Dis. 2008;51:445–54.

    Article  PubMed  Google Scholar 

  59. St Peter WL, Liu J, Weinhandl ED, Fan Q. Linking Centers for Medicare and Medicaid Services data with prospective DCOR trial data: methods and data comparison results. Hemodial Int. 2008;12:480–91.

    Article  PubMed  Google Scholar 

  60. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355:2085–98.

    Article  CAS  PubMed  Google Scholar 

  61. Drueke TB, Locatelli F, Clyne N, Eckardt KU, Macdougall IC, Tsakiris D, et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006;355:2071–84.

    Article  CAS  PubMed  Google Scholar 

  62. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de ZD, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361:2019–32.

    Article  PubMed  Google Scholar 

  63. Floege J, Covic AC, Ketteler M, Rastogi A, Chong EM, Gaillard S, et al. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int. 2014;86:638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Covic AC, Floege J, Ketteler M, Sprague SM, Lisk L, Rakov V, et al. Iron-related parameters in dialysis patients treated with sucroferric oxyhydroxide. Nephrol Dial Transplant. 2016. doi:10.1093/ndt/gfw242. [Epub ahead of print].

  65. Floege J, Covic AC, Ketteler M, Mann JF, Rastogi A, Spinowitz B, et al. Long-term effects of the iron-based phosphate binder, sucroferric oxyhydroxide, in dialysis patients. Nephrol Dial Transplant. 2015;30:1037–46.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koiwa F, Terao A. Dose–response efficacy and safety of PA21 in Japanese hemodialysis patients with hyperphosphatemia: a randomized, placebo-controlled, double-blind, Phase II study. Clin Exp Nephrol. 2016. doi:10.1007/s10157-016-1299-z. [Epub ahead of print].

  67. Koiwa F, Yokoyama K, Fukagawa M, Terao A, Akizawa T. Efficacy and safety of sucroferric oxyhydroxide compared with sevelamer hydrochloride in Japanese haemodialysis patients with hyperphosphataemia: a randomised, open-label, multicentre, 12-week phase III study. Nephrology (Carlton). 2017;22:293–300.

    Article  CAS  Google Scholar 

  68. Dwyer JP, Sika M, Schulman G, Chang IJ, Anger M, Smith M, et al. Dose-response and efficacy of ferric citrate to treat hyperphosphatemia in hemodialysis patients: a short-term randomized trial. Am J Kidney Dis. 2013;61:759–66.

    Article  CAS  PubMed  Google Scholar 

  69. Lewis JB, Sika M, Koury MJ, Chuang P, Schulman G, Smith MT, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis. J Am Soc Nephrol. 2015;26:493–503.

    Article  PubMed  CAS  Google Scholar 

  70. Umanath K, Jalal DI, Greco BA, Umeukeje EM, Reisin E, Manley J, et al. Ferric citrate reduces intravenous iron and erythropoiesis-stimulating agent use in ESRD. J Am Soc Nephrol. 2015;26:2578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodby R, Umanath K, Niecestro R, Jackson JH, Sika M, Lewis JB, et al. Phosphorus binding with ferric citrate is associated with fewer hospitalizations and reduced hospitalization costs. Expert Rev Pharmacoecon Outcomes Res. 2015;15:545–50.

    Article  PubMed  Google Scholar 

  72. Yokoyama K, Akiba T, Fukagawa M, Nakayama M, Sawada K, Kumagai Y, et al. A randomized trial of JTT-751 versus sevelamer hydrochloride in patients on hemodialysis. Nephrol Dial Transplant. 2014;29:1053–60.

    Article  CAS  PubMed  Google Scholar 

  73. Iguchi A, Kazama JJ, Yamamoto S, Yoshita K, Watanabe Y, Iino N, et al. Administration of ferric citrate hydrate decreases circulating FGF23 levels independently of serum phosphate levels in hemodialysis patients with iron deficiency. Nephron. 2015;131:161–6.

    Article  CAS  PubMed  Google Scholar 

  74. Yokoyama K, Akiba T, Fukagawa M, Nakayama M, Hirakata H. JTT-751 for treatment of patients with hyperphosphatemia on peritoneal dialysis. Nephron Clin Pract. 2014;128:135–40.

    Article  CAS  PubMed  Google Scholar 

  75. Block GA, Fishbane S, Rodriguez M, Smits G, Shemesh S, Pergola PE, et al. A 12-week, double-blind, placebo-controlled trial of ferric citrate for the treatment of iron deficiency anemia and reduction of serum phosphate in patients with CKD Stages 3-5. Am J Kidney Dis. 2015;65:728–36.

    Article  CAS  PubMed  Google Scholar 

  76. Fishbane S, Block GA, Loram L, Neylan J, Pergola PE, Uhlig K, et al. Effects of ferric citrate in patients with nondialysis-dependent CKD and iron deficiency anemia. J Am Soc Nephrol. 201. doi:10.1681/ASN.2016101053. [Epub ahead of print].

  77. Yokoyama K, Hirakata H, Akiba T, Fukagawa M, Nakayama M, Sawada K, et al. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin J Am Soc Nephrol. 2014;9:543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  78. US Food and Drug Administration. Ferric citrate tablets. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205874Orig1s000TOC.cfm. Accessed 11 Apr 2017.

  79. Gupta A. Ferric citrate hydrate as a phosphate binder and risk of aluminum toxicity. Pharmaceuticals (Basel). 2014;7:990–8.

    Article  CAS  Google Scholar 

  80. Van Buren PN, Lewis JB, Dwyer JP, Greene T, Middleton J, Sika M, et al. The phosphate binder ferric citrate and mineral metabolism and inflammatory markers in maintenance dialysis patients: results from prespecified analyses of a randomized clinical trial. Am J Kidney Dis. 2015;66:479–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ghimire S, Castelino RL, Lioufas NM, Peterson GM, Zaidi ST. Nonadherence to medication therapy in haemodialysis patients: a systematic review. PLoS One. 2015;10(12):e0144119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang S, Anum EA, Ramakrishnan K, Alfieri T, Braunhofer P, Newsome B. Reasons for phosphate binder discontinuation vary by binder type. J Ren Nutr. 2014;24:105–9.

    Article  PubMed  CAS  Google Scholar 

  83. Arenas MD, Rebollo P, Malek T, Moledous A, Gil MT, Alvarez-Ude F, et al. A comparative study of 2 new phosphate binders (sevelamer and lanthanum carbonate) in routine clinical practice. J Nephrol. 2010;23:683–92.

    PubMed  Google Scholar 

  84. Yusuf AA, St Peter WL. Medication adherence in hemodialysis patients treated with phosphate binders. Value Health. 2012;15:A153 (abstract PUK6).

    Article  Google Scholar 

  85. Arenas MD, Malek T, Alvarez-Ude F, Gil MT, Moledous A, Reig-Ferrer A. Phosphorus binders: preferences of patients on haemodialysis and its impact on treatment compliance and phosphorus control. Nefrologia. 2010;30:522–30.

    CAS  PubMed  Google Scholar 

  86. Daugirdas JT, Finn WF, Emmett M, Chertow GM. The phosphate binder equivalent dose. Semin Dial. 2011;24:41–9.

    Article  PubMed  Google Scholar 

  87. Coyne DW, Larson DS, Delmez JA. Bone Disease. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 5th ed. Philadelphia: Wolters Kluwer Health; 2015. p. 665–92.

    Google Scholar 

  88. Sheikh MS, Maguire JA, Emmett M, Santa Ana CA, Nicar MJ, Schiller LR, et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest. 1989;83:66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Burke SK, Slatopolsky EA, Goldberg DI. RenaGel, a novel calcium- and aluminium-free phosphate binder, inhibits phosphate absorption in normal volunteers. Nephrol Dial Transplant. 1997;12:1640–4.

    Article  CAS  PubMed  Google Scholar 

  90. Kuhlmann MK. Management of hyperphosphatemia. Hemodial Int. 2006;10:338–45.

    Article  PubMed  Google Scholar 

  91. Ahlenstiel T, Pape L, Ehrich JH, Kuhlmann MK. Self-adjustment of phosphate binder dose to meal phosphorus content improves management of hyperphosphataemia in children with chronic kidney disease. Nephrol Dial Transplant. 2010;25:3241–9.

    Article  CAS  PubMed  Google Scholar 

  92. Stuart BC, Dai M, Xu J, Loh FH, Dougherty S. Does good medication adherence really save payers money? Med Care. 2015;53:517–23.

    Article  PubMed  Google Scholar 

  93. Murali K, Mullan J, Roodenrys S, Chen J, Lonergan M. Treatment adherence in clinical trials evaluating cardiovascular or mortality outcomes in dialysis patients: a systematic review. Nephrology. 2015;20(Supp. S3):32 (Abstract 053).

    Google Scholar 

  94. Rizk R, Hiligsmann M, Karavetian M, Evers SM. Economic evaluations of interventions to manage hyperphosphataemia in adult haemodialysis patients: a systematic review. Nephrology (Carlton). 2016;21:178–87.

    Article  Google Scholar 

  95. Goto S, Komaba H, Fukagawa M, Nishi S. Optimizing the cost-effectiveness of treatment for chronic kidney disease-mineral and bone disorder. Kidney Int Suppl. 2013;3:457–61.

    Article  Google Scholar 

  96. National Institute for Health and Care Excellence (NICE). Appendix F: full health economic report. NICE clinical guideline 157-hyperphosphataemia in chronic kidney disease. 2013. https://www.nice.org.uk/guidance/cg157/evidence/appendix-f-full-health-economic-report-189805647. Accessed 26 Oct 2016.

  97. National Institute for Health and Care Excellence (NICE). Chronic kidney disease (stage 4 or 5): management of hyperphosphataemia: clinical guideline [CG157]. https://www.nice.org.uk/guidance/cg157. Accessed 26 Oct 2016.

  98. Gutzwiller FS, Pfeil AM, Ademi Z, Blank PR, Braunhofer PG, Szucs TD, et al. Cost effectiveness of sucroferric oxyhydroxide compared with sevelamer carbonate in the treatment of hyperphosphataemia in patients receiving dialysis, from the perspective of the National Health Service in Scotland. Pharmacoeconomics. 2015;33:1311–24.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Thomas A, Peterson LE. Reduction of costs for anemia-management drugs associated with the use of ferric citrate. Int J Nephrol Renovasc Dis. 2014;7:191–201.

    PubMed  PubMed Central  Google Scholar 

  100. Rodby RA, Umanath K, Niecestro R, Bond TC, Sika M, Lewis J, et al. Ferric citrate, an iron-based phosphate binder, reduces health care costs in patients on dialysis based on randomized clinical trial data. Drugs R D. 2015;15:271–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mutell R, Rubin JL, Bond TC, Mayne T. Reduced use of erythropoiesis-stimulating agents and intravenous iron with ferric citrate: a managed care cost-offset model. Int J Nephrol Renovasc Dis. 2013;6:79–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Vegter S, Tolley K, Keith MS, Postma MJ. Cost-effectiveness of lanthanum carbonate in the treatment of hyperphosphatemia in chronic kidney disease before and during dialysis. Value Health. 2011;14:852–8.

    Article  PubMed  Google Scholar 

  103. Thompson M, Bartko-Winters S, Bernard L, Fenton A, Hutchison C, Di IB. Economic evaluation of sevelamer for the treatment of hyperphosphatemia in chronic kidney disease patients not on dialysis in the United Kingdom. J Med Econ. 2013;16:744–55.

    Article  PubMed  Google Scholar 

  104. Gros B, Galan A, Gonzalez-Parra E, Herrero JA, Echave M, Vegter S, et al. Cost effectiveness of lanthanum carbonate in chronic kidney disease patients in Spain before and during dialysis. Health Econ Rev. 2015;5:49.

    Article  PubMed  Google Scholar 

  105. Nguyen HV, Bose S, Finkelstein E. Incremental cost-utility of sevelamer relative to calcium carbonate for treatment of hyperphosphatemia among pre-dialysis chronic kidney disease patients. BMC Nephrol. 2016;17:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. National Institute for Health and Care Excellence (NICE). Hyperphosphataemia in chronic kidney disease: evidence update December 2014. https://www.nice.org.uk/guidance/cg157/evidence/evidence-update-18980175. Accessed 27 Oct 2016.

  107. Rizk R. Cost-effectiveness of phosphate binders among patients with chronic kidney disease not yet on dialysis: a long way to go. BMC Nephrol. 2016;17:75.

    Article  PubMed  PubMed Central  Google Scholar 

  108. John-Baptiste A, Bell C. Industry sponsored bias in cost effectiveness analyses. BMJ. 2010;341:c5350.

    Article  PubMed  Google Scholar 

  109. Lexchin J, Bero LA, Djulbegovic B, Clark O. Pharmaceutical industry sponsorship and research outcome and quality: systematic review. BMJ. 2003;326(7400):1167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Evers SM, Hiligsmann M, Adarkwah CC. Risk of bias in trial-based economic evaluations: identification of sources and bias-reducing strategies. Psychol Health. 2015;30:52–71.

    Article  PubMed  Google Scholar 

  111. Goeree R, Burke N, O’Reilly D, Manca A, Blackhouse G, Tarride JE. Transferability of economic evaluations: approaches and factors to consider when using results from one geographic area for another. Curr Med Res Opin. 2007;23:671–82.

    Article  PubMed  Google Scholar 

  112. Perry CM, Plosker GL. Sevelamer carbonate: a review in hyperphosphataemia in adults with chronic kidney disease. Drugs. 2014;74:771–92.

    Article  CAS  PubMed  Google Scholar 

  113. Cheng SC, Young DO, Huang Y, Delmez JA, Coyne DW. A randomized, double-blind, placebo-controlled trial of niacinamide for reduction of phosphorus in hemodialysis patients. Clin J Am Soc Nephrol. 2008;3:1131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Young DO, Cheng SC, Delmez JA, Coyne DW. The effect of oral niacinamide on plasma phosphorus levels in peritoneal dialysis patients. Perit Dial Int. 2009;29:562–7.

    CAS  PubMed  Google Scholar 

  115. El Borolossy R, El Wakeel LM, El Hakim I, Sabri N. Efficacy and safety of nicotinamide in the management of hyperphosphatemia in pediatric patients on regular hemodialysis. Pediatr Nephrol. 2016;31(2):289–96.

    Article  PubMed  Google Scholar 

  116. Lenglet A, Liabeuf S, El EN, Brisset S, Mansour J, Lemaire-Hurtel AS, et al. Efficacy and safety of nicotinamide in haemodialysis patients: the NICOREN study. Nephrol Dial Transplant. 2016. doi:10.1093/ndt/gfw042.

  117. Lenglet A, Liabeuf S, Bodeau S, Louvet L, Mary A, Boullier A, et al. N-methyl-2-pyridone-5-carboxamide (2PY)-major metabolite of nicotinamide: an update on an old uremic toxin. toxins (Basel). 2016;8. doi:10.3390/toxins8110339.

  118. Ginsberg C, Ix JH. Nicotinamide and phosphate homeostasis in chronic kidney disease. Curr Opin Nephrol Hypertens. 2016;25:285–91.

    Article  CAS  PubMed  Google Scholar 

  119. Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Astrand M, Johansson S, Knutsson M, et al. Effect of tenapanor on serum phosphate in patients receiving hemodialysis. J Am Soc Nephrol. 2017. doi:10.1681/ASN.2016080855. [Epub ahead of print].

  120. Chey WD, Lembo AJ, Rosenbaum DP. Tenapanor treatment of patients with constipation-predominant irritable bowel syndrome: a phase 2, randomized, placebo-controlled efficacy and safety trial. Am J Gastroenterol. 2017. doi:10.1038/ajg.2017.41. [Epub ahead of print].

  121. Johansson SA, Knutsson M, Leonsson-Zachrisson M, Rosenbaum DP. Effect of food intake on the pharmacodynamics of tenapanor: a phase 1 study. Clin Pharmacol Drug Dev. 2017. doi:10.1002/cpdd.341. [Epub ahead of print].

  122. Locatelli F, Dimkovic N, Spasovski G. Efficacy of colestilan in the treatment of hyperphosphataemia in renal disease patients. Expert Opin Pharmacother. 2014;15:1475–88.

    Article  CAS  PubMed  Google Scholar 

  123. Locatelli F, Spasovski G, Dimkovic N, Wanner C. Long-term evaluation of colestilan in chronic kidney disease stage 5 dialysis patients with hyperphosphataemia. Blood Purif. 2016;41:247–53.

    Article  CAS  PubMed  Google Scholar 

  124. Ito K, Takeshima A, Shishido K, Wakasa M, Kumata C, Matsuzaka K, et al. Treatment of hyperphosphatemia with bixalomer in Japanese patients on long-term hemodialysis with gastrointestinal symptoms. Ther Apher Dial. 2014;18(Suppl 2):19–23.

    Article  CAS  PubMed  Google Scholar 

  125. Gen S, Sasaki T, Saito K, Nobe K, Nodaira Y, Ikeda N. Clinical effects of the new phosphorus binder, bixalomer in hemodialysis patients switched from sevelamer hydrochloride. Ther Apher Dial. 2014;18(Suppl 2):8–12.

    Article  CAS  PubMed  Google Scholar 

  126. Savica V, Calo LA, Monardo P, Davis PA, Granata A, Santoro D, et al. Salivary phosphate-binding chewing gum reduces hyperphosphatemia in dialysis patients. J Am Soc Nephrol. 2009;20:639–44.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Block GA, Persky MS, Shamblin BM, Baltazar MF, Singh B, Sharma A, et al. Effect of salivary phosphate-binding chewing gum on serum phosphate in chronic kidney disease. Nephron Clin Pract. 2013;123:93–101.

    Article  CAS  PubMed  Google Scholar 

  128. Akizawa T, Tsuruta Y, Okada Y, Miyauchi Y, Suda A, Kasahara H, et al. Effect of chitosan chewing gum on reducing serum phosphorus in hemodialysis patients: a multi-center, randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2014;15:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Oh MS, Uribarri J. What can we learn from the saga of chitosan gums in hyperphosphatemia therapy? Clin J Am Soc Nephrol. 2014;9:967–70.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nakaki J, Yamaguchi S, Torii Y, Inoue A, Minakami S, Kanno T, et al. Effect of fatty acids on the phosphate binding of TRK-390, a novel, highly selective phosphate-binding polymer. Eur J Pharmacol. 2013;714:312–7.

    Article  CAS  PubMed  Google Scholar 

  131. Moustafa M, Lehrner L, Al-Saghir F, Smith M, Goyal S, Dillon M, et al. A randomized, double-blind, placebo-controlled, dose-ranging study using Genz-644470 and sevelamer carbonate in hyperphosphatemic chronic kidney disease patients on hemodialysis. Int J Nephrol Renovasc Dis. 2014;7:141–52.

    PubMed  PubMed Central  Google Scholar 

  132. Block GA, Brillhart SL, Persky MS, Amer A, Slade AJ. Efficacy and safety of SBR759, a new iron-based phosphate binder. Kidney Int. 2010;77:897–903.

    Article  CAS  PubMed  Google Scholar 

  133. Chen JB, Chiang SS, Chen HC, Obayashi S, Nagasawa M, Hexham JM, et al. Efficacy and safety of SBR759, a novel calcium-free, iron(III)-based phosphate binder, in Asian patients undergoing hemodialysis: A 12-week, randomized, open-label, dose-titration study versus sevelamer hydrochloride. Nephrology (Carlton). 2011;16:743–50.

    Article  CAS  Google Scholar 

  134. Takei T, Otsubo S, Uchida K, Matsugami K, Mimuro T, Kabaya T, et al. Effects of sevelamer on the progression of vascular calcification in patients on chronic haemodialysis. Nephron Clin Pract. 2008;108:c278–83.

    Article  CAS  PubMed  Google Scholar 

  135. Navaneethan SD, Palmer SC, Vecchio M, Craig JC, Elder GJ, Strippoli GF. Phosphate binders for preventing and treating bone disease in chronic kidney disease patients. Cochrane Database Syst Rev. 2011;2:CD006023.

    Google Scholar 

  136. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, et al. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382:1268–77.

    Article  CAS  PubMed  Google Scholar 

  137. Jamal SA, Fitchett D, Lok CE, Mendelssohn DC, Tsuyuki RT. The effects of calcium-based versus non-calcium-based phosphate binders on mortality among patients with chronic kidney disease: a meta-analysis. Nephrol Dial Transplant. 2009;24:3168–74.

    Article  CAS  PubMed  Google Scholar 

  138. Navaneethan SD, Palmer SC, Craig JC, Elder GJ, Strippoli GF. Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am J Kidney Dis. 2009;54:619–37.

    Article  CAS  PubMed  Google Scholar 

  139. Coyne DW, Larson DS, Delmez JA. Bone disease. In: Daugirdas JT, Blake PG, Ing TS, editors. Handbook of dialysis. 5th ed. Philadelphia: Wolters Kluwer Health; 2015. p. 673 (Table 36.3).

    Google Scholar 

Download references

Acknowledgements

The authors thank Anne Shaw for manuscript preparation and Nan Booth, MSW, MPH, ELS, for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy L. St. Peter.

Ethics declarations

Funding

There were no sources of funding for this manuscript.

Conflict of interest

Katie E. Cardone declares she has served on an advisory panel for AstraZeneca and her spouse is employed by Fresenius Medical Care. Eric Weinhandl is also employed by NxStage Medical, but there are no conflicts of interest with the content of this article. Wendy L. St. Peter, Joanna Q. Hudson and Lori D. Wazny declare that they have no conflict of interest.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s40265-017-0798-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, W.L.S., Wazny, L.D., Weinhandl, E. et al. A Review of Phosphate Binders in Chronic Kidney Disease: Incremental Progress or Just Higher Costs?. Drugs 77, 1155–1186 (2017). https://doi.org/10.1007/s40265-017-0758-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0758-5

Navigation