Skip to main content
Log in

Fidaxomicin: A Review of Its Use in Patients with Clostridium difficile Infection

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Oral fidaxomicin (Dificid®; Dificlir®) is a first-in-class macrocyclic antibacterial that is approved in several countries for the treatment of adult patients with Clostridium difficile-associated diarrhoea. Fidaxomicin 200 mg twice daily for 10 days was an effective and generally well tolerated treatment in adult patients with a first episode or first recurrence of C. difficile infection. In two multinational phase III trials, fidaxomicin treatment was noninferior to vancomycin treatment with regard to clinical cure rates and was associated with statistically significantly lower C. difficile infection recurrence rates and statistically significantly higher global cure rates than vancomycin. The drug has a favourable pharmacological profile, including having a narrow spectrum of activity that targets relevant pathogens, minimal impact on normal faecal microflora, a convenient treatment regimen and attainment of very high faecal concentrations. Albeit further clinical experience is required to fully define the position of fidaxomicin, it is a valuable emerging option for the treatment of first episode and recurrent episodes of C. difficile-associated diarrhoea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson AP, Wilcox MH. Fidaxomicin: a new option for the treatment of Clostridium difficile infection. J Antimicrob Chemother. 2012;67(12):2788–92.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen SH, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol. 2010;31(5):431–55.

    Article  PubMed  Google Scholar 

  3. Cecil JA. Clostridium difficile: changing epidemiology, treatment and infection prevention measures. Curr Infect Dis Rep. 2012;14:612–9.

    Article  PubMed  Google Scholar 

  4. Drekonja DM, Butler M, MacDonald R, et al. Comparative effectiveness of Clostridium difficile treatments: a systematic review. Ann Intern Med. 2011;155(12):839–47.

    Article  PubMed  Google Scholar 

  5. O’Horo JC, Jindai K, Kunzer B, et al. Treatment of recurrent Clostridium difficile infection: a systematic review. Infection. 2013. doi:10.1007/s15010-013-0496-x.

    PubMed  Google Scholar 

  6. Khanna S, Pardi DS. Clostridium difficile infection: new insights into management. Mayo Clin Proc. 2012;87(11):1106–17.

    Article  PubMed  CAS  Google Scholar 

  7. Cornely OA. Current and emerging management options for Clostridium difficile infection: what is the role of fidaxomicin? Clin Microbiol Infect. 2012;18(Suppl 6):28–35.

    Article  PubMed  CAS  Google Scholar 

  8. Sears P, Ichikawa Y, Ruiz N, et al. Advances in the treatment of Clostridium difficile infection with fidaxomicin: a narrow spectrum antibiotic. Ann NY Acad Sci. 2013;1291(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  9. Debast SB, Bauer MP, Kuijper EJ. On behalf of the European Society of Clinical Microbiology and Infectious Diseases Committee. European Society of Clinical Microbiology and Infectious Diseases (ESCMID): update of the treatment guidance document for Clostridium difficile infection (CDI). Clin Microbiol Infect. 2013. doi:10.1111/1469-0691.12418.

  10. Duggan ST. Fidaxomicin: in Clostridium difficile infection. Drugs. 2011;71(18):2445–56.

    Article  PubMed  CAS  Google Scholar 

  11. Theriault RJ, Karwowski JP, Jackson M, et al. Tiacumicins, a novel complex of 18-membered macrolide antibiotics: I. Taxonomy, fermentation and antibacterial activity. J Antibiot (Tokyo). 1987;40(5):567–74.

    Article  CAS  Google Scholar 

  12. Finegold SM, Molitoris D, Vaisanen ML, et al. In vitro activities of OPT-80 and comparator drugs against intestinal bacteria. Antimicrob Agents Chemother. 2004;48(12):4898–902.

    Article  PubMed  CAS  Google Scholar 

  13. Citron DM, Tyrrell KL, Merriam CV, et al. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 2012;56(5):2493–503.

    Article  PubMed  CAS  Google Scholar 

  14. Hecht DW, Galang MA, Sambol SP, et al. In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob Agents Chemother. 2007;51(8):2716–9.

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein EJC, Citron DM, Sears P, et al. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob Agents Chemother. 2011;55(11):5194–9.

    Article  PubMed  CAS  Google Scholar 

  16. Karlowsky JA, Laing NM, Zhanel GG. In vitro activity of OPT-80 tested against clinical isolates of toxin-producing Clostridium difficile. Antimicrob Agents Chemother. 2008;52(11):4163–5.

    Article  PubMed  CAS  Google Scholar 

  17. Liao C-H, Ko W-C, Lu J-J, et al. Characterizations of clinical isolates of Clostridium difficile by toxin genotypes and by susceptibility to 12 antimicrobial agents, including fidaxomicin (OPT-80) and rifaximin: a multicenter study in Taiwan. Antimicrob Agents Chemother. 2012;56(7):3943–9.

    Article  PubMed  CAS  Google Scholar 

  18. Ackermann G, Loffler B, Adler D, et al. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother. 2004;48(6):2280–2.

    Article  PubMed  CAS  Google Scholar 

  19. Credito KL, Appelbaum PC. Activity of OPT-80, a novel macrocycle, compared with those of eight other agents against selected anaerobic species. Antimicrob Agents Chemother. 2004;48(11):4430–4.

    Article  PubMed  CAS  Google Scholar 

  20. Artsimovitch I, Seddon J, Sears P. Fidaxomicin is an inhibitor of the initiation of bacterial RNA synthesis. Clin Infect Dis. 2012;55(Suppl 2):S127–31.

    Article  PubMed  CAS  Google Scholar 

  21. Seddon J, Babakhani F, Sears P. Mutant prevention concentration of fidaxomicin for Clostridium difficile [abstract no. A-1274 plus poster]. Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sep 2012; San Francisco (CA).

  22. Babakhani F, Seddon J, Artsimovitch I, et al. Comparative microbiology of transcription inhibitors fidaxomicin and the rifamycins in Clostridium difficile [abstract no. 824 plus poster]. Infectious Diseases Week: Meeting of the Infectious Diseases Society of America; 17–21 Oct 2012; San Diego (CA).

  23. Seddon J, Xie l, Xie L, et al. Fidaxomicin molecular modeling and consequences for reduced-susceptibility mutants [abstract no. 23 plus poster]. 11th Biannual Congress of the Anaerobe Society of America; 27 Jun–1 Jul 2012; San Francisco (CA).

  24. Seddon J, Xie L, Xie L, et al. Molecular modeling of OP-1118 metabolite in Clostridium difficile RNA polymerase and comparison with fidaxomicin [poster no. 1195]. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 10–13 Sep 2013; Denver (CO).

  25. Babakhani F, Bouillaut L, Gomez A, et al. Fidaxomicin inhibits spore production in Clostridium difficile. Clin Infect Dis. 2012;55(Suppl 2):S162–9.

    Article  PubMed  CAS  Google Scholar 

  26. Allen CA, Babakhani F, Sears P, et al. Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Antimicrob Agents Chemother. 2013;57(1):664–7.

    Article  PubMed  CAS  Google Scholar 

  27. Chilton CH, Crowther GS, Todhunter SL, et al. Fidaxomicin persistence in an in-vitro human gut model, and adherence to Clostridium difficile spores [abstract no. P1129]. 23rd European Congress of Clinical Microbiology and Infectious Diseases; 27–30 Apr 2013; Berlin.

  28. Heeg D, Kuehne SA, Dempster AW, et al. Analysis of spore formation, germination and outgrowth of six clinically-relevant Clostridium difficile polymerase chain reaction (PCR)-ribotypes challenged with fidaxomicin [abstract no. P1140]. 23rd European Congress of Clinical Microbiology and Infectious Diseases; 27–30 Apr 2013; Berlin.

  29. Babakhani F, Bouillaut L, Sears P, et al. Fidaxomicin inhibits toxin production in Clostridium difficile. J Antimicrob Chemother. 2013;68(3):515–22.

    Article  PubMed  CAS  Google Scholar 

  30. Cornely OA, Crook DW, Esposito R, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012;12(4):281–9.

    Article  PubMed  CAS  Google Scholar 

  31. Louie TJ, Miller MA, Mullane KM, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med. 2011;364(5):422–31.

    Article  PubMed  CAS  Google Scholar 

  32. Optimer Pharmaceuticals Inc. Dificid® (fidaxomicin) tablets: US prescribing information. 2013. http://www.vibativ.com/docs/VIBATIV_PI_Final.pdf. Accessed 27 Jul 2013.

  33. European Medicines Agency. Dificlir 200 mg film-coated tablets: summary of product characteristics. 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002087/WC500119705.pdf. Accessed 27 Jul 2013.

  34. Goldstein EJC, Babakhani F, Citron DM. Antimicrobial activities of fidaxomicin. Clin Infect Dis. 2012;55(Suppl 2):S143–8.

    Article  PubMed  CAS  Google Scholar 

  35. DuPont HL. The search for effective treatment of Clostridium difficile infection. N Engl J Med. 2011;364(5):473–5.

    Article  PubMed  CAS  Google Scholar 

  36. Louie TJ, Emery J, Krulicki W, et al. OPT-80 eliminates Clostridium difficile and is sparing of Bacteroides species during treatment of C. difficile infection. Antimicrob Agents Chemother. 2009;53(1):261–3.

    Article  PubMed  CAS  Google Scholar 

  37. Babakhani F, Gomez A, Robert N, et al. Killing kinetics of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. J Med Microbiol. 2011;60(8):1213–7.

    Article  PubMed  CAS  Google Scholar 

  38. Babakhani F, Gomez A, Robert N, et al. Postantibiotic effect of fidaxomicin and its major metabolite, OP-1118, against Clostridium difficile. Antimicrob Agents Chemother. 2011;55(9):4427–9.

    Article  PubMed  CAS  Google Scholar 

  39. Babakhani F, Seddon J, Robert N, et al. Effects of inoculum, pH, and cations on the in vitro activity of fidaxomicin (OPT-80, PAR-101) against Clostridium difficile. Antimicrob Agents Chemother. 2010;54(6):2674–6.

    Article  PubMed  CAS  Google Scholar 

  40. Louie TJ, Cannon K, Byrne B, et al. Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis. 2012;55(Suppl 2):S132–42.

    Article  PubMed  CAS  Google Scholar 

  41. Nerandzic MM, Mullane K, Miller MA, et al. Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis. 2012;55(Suppl 2):S121–6.

    Article  PubMed  CAS  Google Scholar 

  42. Tannock GW, Munro K, Taylor C, et al. A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology. 2010;156(Pt 11):3354–9.

    Article  PubMed  CAS  Google Scholar 

  43. Babakhani F, Robert N, Seddon J, et al. Development of resistance in C. difficile with fidaxomicin, vancomycin, and rifaximin [abstract no. P2290]. Clin Microbiol Infect. 2012;18(Suppl 3):672.

    Google Scholar 

  44. Seddon J, Babakhani F, Gomez A, et al. RNA polymerase target modification in Clostridium difficile with reduced susceptibility to fidaxomicin [abstract no. C1-631]. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago (IL).

  45. Eyre D, Babakhani F, Griffiths D, et al. Whole genome sequencing demonstrates fidaxomicin prevents Clostridium difficile relapse and reinfection [poster no. 1409]. Infectious Diseases Week Meeting; 4–6 Oct 2013; San Francisco (CA).

  46. Syndman DR, McDermott LA, Jacobus NV, et al. Two years of surveillance for the susceptibility and epidemiology of Clostridium difficile associated diarrheal isolates [poster no. C1-051]. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 10–13 Sep 2013; Denver (CO).

  47. Sears P, Crook DW, Louie TJ, et al. Fidaxomicin attains high fecal concentrations with minimal plasma concentrations following oral administration in patients with Clostridium difficile infection. Clin Infect Dis. 2012;55(Suppl 2):S116–20.

    Article  PubMed  CAS  Google Scholar 

  48. Louie T, Miller M, Donskey C, et al. Clinical outcomes, safety, and pharmacokinetics of OPT-80 in a phase 2 trial with patients with Clostridium difficile infection. Antimicrob Agents Chemother. 2009;53(1):223–8.

    Article  PubMed  CAS  Google Scholar 

  49. Shue YK, Sears PS, Shangle S, et al. Safety, tolerance, and pharmacokinetic studies of OPT-80 in healthy volunteers following single and multiple oral doses. Antimicrob Agents Chemother. 2008;52(4):1391–5.

    Article  PubMed  CAS  Google Scholar 

  50. Lewis W, Sears SP. Minimal impact of food on the pharmacokinetics of oral fidaxomicin [abstract no. A2-042]. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago (IL).

  51. Sears P, O’Gorman MA, Otley A, et al. Fidaxomicin pharmacokinetics in children with Clostridium difficile infection: similar to adults [poster]. Infectious Diseases Week Meeting; 4–6 Oct 2013; San Francisco (CA).

  52. Lewis W, Tang M, Sears PS. Minimal effect of fidaxomicin on digoxin pharmacokinetics [abstract no. A2-043]. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago (IL).

  53. Lewis W, Sears PS. Coadministration of fidaxomicin does not impact the pharmacokinetics of CYP substrates omeprazole, warfarin, or midazolam [abstract no. A2-044]. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago (IL).

  54. Lewis W, Sears PS. Effect of cyclosporine on the pharmacokinetics of fidaxomicin [abstract no. A2-045]. 51st Interscience Conference on Antimicrobial Agents and Chemotherapy; 17–20 Sep 2011; Chicago (IL).

  55. Louie TJ, Miller MA, Crook DW, et al. Effect of age on treatment outcomes in Clostridium difficile infection. J Am Geriatr Soc. 2013;61(2):222–30.

    Article  PubMed  Google Scholar 

  56. Petrella LA, Sambol SP, Cheknis A, et al. Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C. difficile BI strain. Clin Infect Dis. 2012;55(3):351–7.

    Article  PubMed  CAS  Google Scholar 

  57. Crook DW, Walker AS, Kean Y, et al. Fidaxomicin versus vancomycin for Clostridium difficile infection: meta-analysis of pivotal randomized controlled trials. Clin Infect Dis. 2012;55(Suppl 2):S93–103.

    Article  PubMed  CAS  Google Scholar 

  58. Cornely OA, Miller MA, Louie TJ, et al. Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis. 2012;55(Suppl 2):S154–61.

    Article  PubMed  CAS  Google Scholar 

  59. Figueroa I, Johnson S, Sambol SP, et al. Relapse versus reinfection: recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin Infect Dis. 2012;55(Suppl 2):S104–9.

    Article  PubMed  CAS  Google Scholar 

  60. Mullane KM, Miller MA, Weiss K, et al. Efficacy of fidaxomicin versus vancomycin as therapy for Clostridium difficile infection in individuals taking concomitant antibiotics for other concurrent infections. [Erratum appears in Clin Infect Dis. 2011;53(12):1312]. Clin Infect Dis. 2011;53(5):440–7.

    Article  PubMed  CAS  Google Scholar 

  61. Mullane KM, Cornely OA, Crook DW, et al. Renal impairment and clinical outcomes of Clostridium difficile infection in two randomized trials. Am J Nephrol. 2013;38(1):1–11.

    Article  PubMed  Google Scholar 

  62. Golan Y, Louie T, Weiss K, et al. Clostridium difficile recurrence, alcohol consumption, and the effect of fidaxomicin vs vancomycin [abstract no. P1968]. Clin Microbiol Infect. 2011;17(Suppl 4):S577.

    Google Scholar 

  63. Weiss K, Louie T, Miller MA, et al. Effect of proton pump inhibitors (PPI) and H2 receptor antagonists (HR2A) on response to therapy with fidaxomicin or vancomycin in hospitalized patients with Clostridium difficile infection [poster]. Arizon Pharmacy Alliance Health-System Academy Conference; 14 Apr 2012; Mesa (AZ).

  64. Alraddadi B, Epstein L, Syndham DR, et al. Recurrence of C. difficile infection (CDI): a risk-stratified analysis of fidaxomicin vs vancomycin [poster no. 317]. Meeting of the Infectious Diseases Society of America; 17–21 Oct 2012; San Diego (CA).

  65. Babakhani F, Eyre D, Figueroa I, et al. Comparison of strain typing results of Clostridium difficile isolates from subjects with recurrence of infection during fidaxomicin (FDX) phase 3 trials [poster no. D-1674]. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy; 10–13 Sep 2013; Denver (CO).

  66. Cornely OA, Miller MA, Fantin B, et al. Resolution of Clostridium difficile-associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J Clin Oncol. 2013;31(19):2493–9.

    Article  PubMed  CAS  Google Scholar 

  67. Alowayesh MS, Holdford D, Harpe SE. Decision analysis model evaluating the cost-effectiveness of fidaxomicin and vancomycin in the treatment of Clostridium difficile infection (CDI) from a hospital perspective [abstract no. PIN35]. Value Health. 2012;15(4):A243.

    Article  Google Scholar 

  68. Bartsch SM, Umscheid CA, Fishman N. Is fidaxomicin worth the cost? An economic analysis. Clin Infect Dis. 2013;57(4):555–61.

    Article  PubMed  Google Scholar 

  69. Madkour N, Bounthavong M, Hsu DI. A comparison of the cost-effectiveness of fidaxomicin, metronidazole, and vancomycin, in the treatment of Clostridium difficile-associated disease [abstract no. PG121]. Value Health. 2012;15(4):A138–9.

    Article  Google Scholar 

  70. Stranges PM, Hutton DW, Collins CD. Cost-effectiveness analysis evaluating fidaxomicin versus oral vancomycin for the treatment of Clostridium difficile infection in the United States. Value Health. 2013;16(2):297–304.

    Article  PubMed  Google Scholar 

  71. Wagner M, Lavoie L, Goetghebeur M. Clinical and economic consequences of vancomycin and fidaxomicin for the treatment of Clostridium difficile infection in Canada [abstract no. K-473]. 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy; 9–12 Sep 2012; San Francisco (CA).

  72. Van Nispen tot Pannerden CMF, Verbon A, Kuipers EJ. Recurrent Clostridium difficile infection: what are the treatment options? Drugs. 2011;71(7):853–68.

    Article  PubMed  CAS  Google Scholar 

  73. Szabo SM, Levy AR, Lozano-Ortega G, et al. Incremental length of stay and costs associated with hospitalization for Clostridium difficile infection in Canada [poster]. Infectious Diseases Week Meeting; 2–6 Oct 2013; San Francisco (CA).

  74. Levy AR, Szabo SM, Lozano-Ortega G, et al. The economic burden of Clostridium difficile infection in Canada [poster]. Infectious Diseases Week Meeting; 2–6 Oct 2013; San Francisco (CA).

  75. Drozd EM, Braithwaite S, Shah H, et al. The impact of Clostridium difficile-associated diarrhea on the health care utilization of older and chronically ill patients [poster no. 1383]. Infectious Diseases Week Meeting; 2–6 Oct 2013; San Francisco (CA).

  76. Magee G, Brown H, Strauss ME, et al. The economic burden of Clostridium difficile-associated diarrhea: a retrospective study of acute care hospital inpatients, 2009–2011 [poster]. Infectious Diseases Week Meeting; 2–6 Oct 2013; San Francisco (CA).

Download references

Disclosure

The preparation of this review was not supported by any external funding. During the peer review process, the manufacturers of the agent under review were offered an opportunity to comment on the article. Changes resulting from comments received were made by the author based on their scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley J. Scott.

Additional information

The manuscript was reviewed by: E. M. Billaud, Paris Descartes University, School of Medicine, Paris, France; J. M. Blondeau, Royal University Hospital, Department of Clinical Microbiology Saskatoon Health Region and the University of Saskatchewan Saskatoon, Saskatoon, SK, Canada; T. Cai, Santa Chiara Regional Hospital, Department of Urology, Florence, Italy; D. M. Cappelletty, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA; V. Carboni, San Sebastiano Matire Hospital, Department of Dermatology, Frascati, Rome, Italy; K. M. Mullane, University of Chicago, Department of Medicine, Section of Infectious Diseases, Chicago, IL, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, L.J. Fidaxomicin: A Review of Its Use in Patients with Clostridium difficile Infection. Drugs 73, 1733–1747 (2013). https://doi.org/10.1007/s40265-013-0134-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0134-z

Keywords

Navigation