Skip to main content
Log in

Adverse Effects of Immunosuppressant Drugs upon Airway Epithelial Cell and Mucociliary Clearance: Implications for Lung Transplant Recipients

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Optimal post-transplantation immunosuppression is critical to the survival of the graft and the patient after lung transplantation. Immunosuppressant agents target various aspects of the immune system to maximize graft tolerance while minimizing medication toxicities and side effects. The vast majority of patients receive maintenance immunosuppressive therapy consisting of a triple-drug regimen including a calcineurin inhibitor, a cell cycle inhibitor and a corticosteroid. Although these immunosuppressant drugs are frequently used after transplantation and to control inflammatory processes, limited data are available with regard to their effects on cells other than those from the immunological system. Notably, the airway epithelial cell is of interest because it may contribute to development of bronchiolitis obliterans through production of pro-inflammatory cytokines. This review focuses the current armamentarium of immunosuppressant drugs used after lung transplantation and their main side effects upon airway epithelial cells and mucociliary clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christie JD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report—2012. J Heart Lung Transpl. 2012;31(10):1073–86.

    Article  Google Scholar 

  2. Taylor JL, Palmer SM. Critical care perspective on immunotherapy in lung transplantation. J Intensive Care Med. 2006;21:327.

    Article  PubMed  Google Scholar 

  3. Speich R, van der Bij W. Epidemiology and management of infections after lung transplantation. Clin Infect Dis. 2001;33(Suppl. 1):S58–65.

    Article  PubMed  Google Scholar 

  4. Aguilar-Guisado M, Givald J, Ussetti P, et al. Pneumonia after lung transplantation in the Resitra cohort: a multicenter prospective study. Am J Transpl. 2007;7:1989–96.

    Article  CAS  Google Scholar 

  5. Randell SH, Boucher RC. Effective mucus clearance is essential for respiratory health. Am J Resp Cell Mol Biol. 2006;35:20–8.

    Article  CAS  Google Scholar 

  6. Qu N, Vos P, Schelfhorst M, et al. Integrity of airway epithelium is essential against obliterative airway disease in transplanted rat tracheas. J Heart Lung Transpl. 2005;24:882–90.

    Article  Google Scholar 

  7. Nakajima T, Palchevsky V, Perkins DL, Belperio JA, Finn PW. Lung transplantation: infection, inflammation, and the microbiome. Semin Immunopathol. 2011;33:135–56.

    Article  PubMed  Google Scholar 

  8. Borthwick LA, Parker SM, Brougham KA, et al. Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax. 2009;64:770–7.

    Article  PubMed  CAS  Google Scholar 

  9. Felton VM, Inge LJ, Willis BC, et al. Immunosuppression-induced bronchial epithelial–mesenchymal transition: a potential contributor to obliterative bronchiolitis. J Thorac Cardiovasc Surg. 2011;141:523–30.

    Article  PubMed  CAS  Google Scholar 

  10. Neuringer IP, Sloan J, Budd S, et al. Calcineurin inhibitor effects on growth and phenotype of human airway epithelial cells in vitro. Am J Transpl. 2005;5:2660–70.

    Article  CAS  Google Scholar 

  11. Azzola A, Havryk A, Chhajed P, et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation. 2004;77:275–80.

    Article  PubMed  CAS  Google Scholar 

  12. Pazetti R, Pêgo-Fernandes PM, Ranzani OT, et al. Cyclosporin A reduces airway mucus secretion and mucociliary clearance in rats. Clinics (São Paulo). 2007;62(3):345–52.

    Article  Google Scholar 

  13. Pazetti R, Pêgo-Fernandes PM, Lorenzi-Filho G, et al. Effects of cyclosporine A and bronchial transection on mucociliary transport in rats. Ann Thorac Surg. 2008;85(6):1925–9 (discussion 1929).

    Google Scholar 

  14. Pêgo-Fernandes PM, Said MM, Pazetti R, et al. Effects of azathioprine on mucociliary clearance after bronchial section and anastomosis in a rat experimental model. J Bras Pneumol. 2008;34(5):273–9.

    Article  Google Scholar 

  15. Silva VFP, Pazetti R, Soto SF, et al. Effects of mycophenolate sodium on mucociliary clearance using a bronchial section and anastomosis rodent model. Clinics. 2011;66(8):1451–5.

    Article  PubMed  Google Scholar 

  16. King MB, Jessurun J, Savik SK, et al. Cyclosporine reduces development of obliterative bronchiolitis in a murine heterotopic airway model. Transplantation. 1997;63(4):528–32.

    Article  PubMed  CAS  Google Scholar 

  17. Ropponen JO, Syrjälä SO, Krebs R, et al. Innate and adaptive immune responses in obliterative airway disease in rat tracheal allografts. J Heart Lung Transpl. 2011;30:707–16.

    Article  Google Scholar 

  18. Yonan NA, Bishop P, El-Gamel A, et al. Tracheal allograft transplantation in rats: the role of immunosuppressive agents in development of obliterative airway disease. Transpl Proc. 1998;30:2207–9.

    Article  CAS  Google Scholar 

  19. Deuse T, Schrepfer S, Koch-Nolte F, et al. FK778 and tacrolimus prevent the development of obliterative airway disease after heterotopic rat tracheal transplantation. J Heart Lung Transpl. 2005;24:1844–54.

    Article  Google Scholar 

  20. Schrepfer S, Deuse T, Sydow K, et al. Tracheal allograft transplantation in rats: the role of different immunosuppressants on preservation of respiratory epithelium. Transpl Proc. 2006;38(3):741–4.

    Article  CAS  Google Scholar 

  21. Matsumura Y, Marchevsky A, Zuo XJ, et al. Assessment of pathological changes associated with chronic allograft rejection and tolerance in two experimental models of rat lung transplantation. Transplantation. 1995;59:1509.

    PubMed  CAS  Google Scholar 

  22. Uyama T, Winter JB, Groen G, et al. Late airway changes caused by chronic rejection in rat lung allografts. Transplantation. 1992;54:809.

    Article  PubMed  CAS  Google Scholar 

  23. Schmid RA, Kwong K, Boasquevisque CH, et al. A chronic large animal model of lung allograft rejection. Transpl Proc. 1997;29:1521.

    Article  CAS  Google Scholar 

  24. Xavier AM, Pêgo-Fernandes PM, Correia AT, et al. Influence of cyclosporine A on mucociliary system after lung transplantation in rats. Acta Cir Bras. 2007;22(6):465–9.

    Article  PubMed  Google Scholar 

  25. Bedi DS, Riella LV, Tullius SG, et al. Animal models of chronic allograft injury: contributions and limitations to understanding the mechanism of long-term graft dysfunction. Transplantation. 2010;90:935–44.

    Article  PubMed  Google Scholar 

  26. Deuse T, Schrepfer S, Reichenspurner H, et al. Techniques for experimental heterotopic and orthotopic tracheal transplantations—when to use which model? Transpl Immunol. 2007;17:255–61.

    Article  PubMed  CAS  Google Scholar 

  27. Borger P, Kauffman HF, Timmerman JAB, et al. Cyclosporine, FK506, mycophenolate mofetil, and prednisolone differentially modulate cytokine gene expression in human airway derived epithelial cells. Transplantation. 2000;69(7):1408–13.

    Article  PubMed  CAS  Google Scholar 

  28. Floreth T, Stern E, Tu Y, et al. Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine. Respir Res. 2011;12:44.

    Article  PubMed  CAS  Google Scholar 

  29. Kostakis A. Early experience with cyclosporine: a historic perspective. Transpl Proc. 2004;36(Suppl. 2S):22S–24S.

    Google Scholar 

  30. Bhorade SM, Stern E. Immunosuppression for lung transplantation. Proc Am Thorac Soc. 2009;6:47–53.

    Article  PubMed  CAS  Google Scholar 

  31. Parekh K, Trulock E, Patterson GA. Use of cyclosporine in lung transplantation. Transpl Proc. 2004;36(Suppl 2S):318S–322S.

    Google Scholar 

  32. Treede H, Glanville AR, Klepetko W, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transpl. 2012;31(8):797–804.

    Article  Google Scholar 

  33. Akhlaghi F, Gonzalez L, Trull AK. Association between cyclosporine concentrations at 2 h post-dose and clinical outcomes in de novo lung transplant recipients. J Heart Lung Transpl. 2005;24(12):2120–8.

    Article  Google Scholar 

  34. Masuda S, Inui K. An up-date review on individualized dosage adjustment of calcineurin inhibitors in organ transplant patients. Pharmacol Ther. 2006;112:184–98.

    Article  PubMed  CAS  Google Scholar 

  35. Malinowski M, Martus P, Lock JF, Neuhaus P, Stockmann M. Systemic influence of immunosuppressive drugs on small and large bowel transport and barrier function. Transpl Inter. 2011;24:184–93.

    Article  CAS  Google Scholar 

  36. Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.

    PubMed  CAS  Google Scholar 

  37. Adams BF, Berry GJ, Huang X, et al. Immunosuppressive therapies for the prevention and treatment of obliterative airway disease in heterotopic rat trachea allografts. Transplantation. 2000;69(11):2260–6.

    Article  PubMed  CAS  Google Scholar 

  38. Koskinen PK, Kallio EA, Krebs R, et al. A dose-dependent inhibitory effect of cyclosporine A on obliterative bronchiolitis of rat tracheal allografts. Am J Respir Crit Care Med. 1997;155(1):303–12.

    Article  PubMed  CAS  Google Scholar 

  39. Takao M, Gu Y, Shimamoto A, Adachi K, Namikawa S, Yada I. Administration of exogenous interleukin-2 enhances obliterative airway disease in cyclosporine-treated rats following tracheal allografts. Transplant Proc. 1999;31:180–1.

    Article  PubMed  CAS  Google Scholar 

  40. Neuringer I, Walsh S, Mannon R, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation. 2000;69(3):399–405.

    Article  PubMed  CAS  Google Scholar 

  41. Fernández FG, Jaramillo A, Chen C, et al. Airway epithelium is the primary target of allograft rejection in murine obliterative airway disease. Am J Transpl. 2004;4(3):319–25.

    Article  Google Scholar 

  42. Delaere PR, Liu Z, Sciot R, Welvaart W. The role of immunosuppression in the long-term survival of tracheal allografts. Arch Otolaryngol Head Neck Surg. 1996;122(11):1201–8.

    Article  PubMed  CAS  Google Scholar 

  43. Genden EM, Boros P, Liu J, Bromberg JS, Mayer L. Orthotopic tracheal transplantation in the murine model. Transplantation. 2002;73(9):1420–5.

    Article  PubMed  Google Scholar 

  44. Padrid PA, Cozzi P, Leff AR. Cyclosporine A inhibits airway reactivity and remodeling after chronic antigen challenge in cats. Am J Respir Crit Care Med. 1996;154(6):1812–8.

    Article  PubMed  CAS  Google Scholar 

  45. Iacono AT, Corcoran TE, Griffith BP, et al. Aerosol cyclosporin therapy in lung transplant recipients with bronchiolitis obliterans. Eur Respir J. 2004;23:384–90.

    Article  PubMed  CAS  Google Scholar 

  46. Waters V, Sokol S, Reddy B, et al. The effect of cyclosporin A on airway cell proinflammatory signaling and pneumonia. Am J Respir Cell Mol Biol. 2005;33:138–44.

    Article  PubMed  CAS  Google Scholar 

  47. Aris RM, McNeillie P, Olusesi O, et al. Cyclosporine alters airway epithelial cell cytokine secretion: a potential mechanism to explain the efficacy of inhaled cyclosporine [abstract]. J Heart Lung Transpl. 2008;27:S206.

    Google Scholar 

  48. Hostettler KE, Roth M, Burgess JK, et al. Cyclosporine A mediates fibroproliferation through epithelial cells. Transplantation. 2004;77:1886–93.

    Article  PubMed  CAS  Google Scholar 

  49. Ha EY, Mun KC. Effect of cyclosporine on apoptosis in bronchial epithelial cells. Transpl Proc. 2012;44:985–7.

    Article  CAS  Google Scholar 

  50. Jeon DS, Ha EY, Mun KC. Effects of cyclosporine on oxidative stress in human bronchial epithelial cells. Transpl Proc. 2012;44:988–90.

    Article  CAS  Google Scholar 

  51. Reichenspurner H. Overview of tacrolimus-based immunosuppression after heart or lung transplantation. J Heart Lung Transpl. 2005;24:119–30.

    Article  Google Scholar 

  52. Snell GI, Westall GP. Immunosuppression for lung transplantation evidence to date. Drugs. 2007;67(11):1531–9.

    Article  PubMed  CAS  Google Scholar 

  53. Scott LJ, McKeage K, Keam SJ, Plosker GL. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–97.

    Article  PubMed  CAS  Google Scholar 

  54. Watkins KD, Boettger RF, Hanger KM, et al. Use of sublingual tacrolimus in lung transplant recipients. J Heart Lung Transpl. 2012;31(2):127–32.

    Article  Google Scholar 

  55. Schrepfer S, Deuse T, Reichenspurner H, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transpl. 2007;7:1733–42.

    Article  CAS  Google Scholar 

  56. Deuse T, Blankenberg F, Haddad M, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43:403–12.

    Article  PubMed  CAS  Google Scholar 

  57. Hollmén M, Tikkanen JM, Nykänen AI, et al. Tacrolimus treatment effectively inhibits progression of obliterative airway disease even at later stages of disease development. J Heart Lung Transpl. 2008;27:856–64.

    Article  Google Scholar 

  58. Hodge SJ, Hodge GL, Reynolds PN, et al. Differential rates of apoptosis in bronchoalveolar lavage and blood of lung transplant patients. J Heart Lung Transpl. 2005;24:1305–14.

    Article  Google Scholar 

  59. Hodge S, Hodge G, Ahern J, et al. Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens. Clin Exp Immunol. 2009;158:230–6.

    Article  PubMed  CAS  Google Scholar 

  60. Evans JH, Sanderson MJ. Intracellular calcium oscillations regulate ciliary beat frequency of airway epithelial cells. Cell Calcium. 1999;26(3–4):103–10.

    Article  PubMed  CAS  Google Scholar 

  61. Bultynck G, De Smet P, Weidema AF, et al. Effects of the immunosuppressant FK506 on intracellular Ca2+ release and Ca2+ accumulation mechanisms. J Physiol. 2000;525(3):681–93.

    Article  PubMed  CAS  Google Scholar 

  62. Kanoh S, Kondo M, Tamaoki J, et al. Effect of FK506 on ATP-induced intracellular calcium oscillations in cow tracheal epithelium. Am J Physiol. 1999;276:L891–9.

    PubMed  CAS  Google Scholar 

  63. Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111(8):1122–4.

    PubMed  CAS  Google Scholar 

  64. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive agents in solid organ transplantation: mechanisms of action and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1):23–46.

    Article  PubMed  Google Scholar 

  65. Hopkins PM, McNeil K. Evidence for immunosuppression in lung transplantation. Curr Opin Organ Transpl. 2008;13(5):477–83.

    Article  Google Scholar 

  66. Maasilta PK, Salminen US, Lautenschlager I, Taskinen E, Harjula A. Immune cells and immunosuppression in a porcine bronchial model of obliterative bronchiolitis. Transplantation. 2001;72(6):998–1005.

    Article  PubMed  CAS  Google Scholar 

  67. Snell GI, Levvey BJ, Zheng L, et al. Everolimus alters the bronchoalveolar lavage and endobronchial biopsy immunologic profile post-human lung transplantation. Am J Transpl. 2005;5:1446–51.

    Article  CAS  Google Scholar 

  68. Kim HK, Rao VP, Park YS, et al. Pulmonary arterial reactivity during induced infection of single lung allografts. Eur J Cardiothorac Surg. 2007;31:475–81.

    Article  PubMed  Google Scholar 

  69. Snell GI, Levvey BJ, Zheng L, et al. Interleukin-17 and airway inflammation: a longitudinal airway biopsy study after lung transplantation. J Heart Lung Transpl. 2007;26:669–74.

    Article  Google Scholar 

  70. Palmer SM, Baz MA, Sanders L, et al. Results of a randomized prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6.

    Article  PubMed  CAS  Google Scholar 

  71. McNeil K, Glanville AR, Wahlers T, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81:998–1003.

    Article  PubMed  CAS  Google Scholar 

  72. Bhorade S, Ahya VN, Baz MA, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183:379–87.

    Article  PubMed  CAS  Google Scholar 

  73. Snell GI, Valentine VG, Vitulo P, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transpl. 2006;6:169–77.

    Article  CAS  Google Scholar 

  74. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23:159–71.

    Article  PubMed  CAS  Google Scholar 

  75. Korom S, Boehler A, Weder W. Immunosuppressive therapy in lung transplantation: state of the art. Eur J Cardiothorac Surg. 2009;35(6):1045–55.

    Article  PubMed  Google Scholar 

  76. Sollinger HW. Mycophenolates in transplantation. Clin Transplant. 2004;18:485–92.

    Article  PubMed  Google Scholar 

  77. He H, Ding H, Liao A, et al. Effects of mycophenolate mofetil on proliferation and mucin-5AC expression in human conjunctival goblet cells in vitro. Mol Vis. 2010;16:1913–9.

    PubMed  CAS  Google Scholar 

  78. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2–3):85–118.

    Article  PubMed  CAS  Google Scholar 

  79. Liu C, Schreiter T, Frilling A, et al. Cyclosporine A, FK-506, 40-0-[2-hydroxyethyl]rapamycin and mycophenolate mofetil inhibit proliferation of human intrahepatic biliary epithelial cells in vitro. World J Gastroenterol. 2005;11(48):7602–5.

    PubMed  CAS  Google Scholar 

  80. Chen G, Korfhagen TR, Xu Y, et al. SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 2009;119(10):2914–24.

    PubMed  CAS  Google Scholar 

  81. Miljkovic DJ, Cvetkovic I, Stosic-Grujicic S, Trajkovic V. Mycophenolic acid inhibits activation of inducible nitric oxide synthase in rodent fibroblasts. Clin Exp Immunol. 2003;132:239–46.

    Article  PubMed  CAS  Google Scholar 

  82. Thompson ML, Flynn JD, Clifford TM. Pharmacotherapy of lung transplantation: an overview. J Pharm Pract. 2013;26(1):5–13.

    Article  PubMed  Google Scholar 

  83. Whitford H, Walters EH, Levvey B, et al. Addition of inhaled corticosteroids to systemic immunosuppression after lung transplantation: a double-blind, placebo-controlled trial. Transplantation. 2002;73(11):1793–9.

    Article  PubMed  CAS  Google Scholar 

  84. Shah RV, Amin M, Sangwan S, et al. Steroid effects on mucociliary clearance in outpatient asthma. J Aerosol Med. 2006;19(2):208–20.

    Article  PubMed  CAS  Google Scholar 

  85. Pujols L, Mullol J, Picado C. Glucocorticoid receptor in human respiratory epithelial cells. NeuroImmunomodulation. 2009;16(5):290–9.

    Article  Google Scholar 

  86. Agnew JE, Bateman JR, Pavia D, Clarke SW. Peripheral airways mucus clearance in stable asthma is improved by oral corticosteroid therapy. Bull Eur Physiopathol Respir. 1984;20(3):295–301.

    PubMed  CAS  Google Scholar 

  87. Hanania NA, Chapman KR, Kesten S. Adverse effects of inhaled corticosteroids. Am J Med. 1995;98(2):196–208.

    Article  PubMed  CAS  Google Scholar 

  88. Oliveira-Braga KA, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. Effects of prednisone on mucociliary clearance in a murine model. Transpl Proc. 2012;44:2486–9.

    Article  CAS  Google Scholar 

  89. Braga KAO, Nepomuceno NA, Correia AT, Jatene FB, Pêgo-Fernandes PM. The effects on mucociliary clearance of prednisone associated with bronchial section. Clinics. 2012;67(6):647–51.

    Article  PubMed  Google Scholar 

  90. Doerner AM, Zuraw BL. TGF-β1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res. 2009;10:100.

    Article  PubMed  Google Scholar 

  91. Li CW, Shi L, Zhang KK, et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011;127:765–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No funding was used in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogerio Pazetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazetti, R., Pêgo-Fernandes, P.M. & Jatene, F.B. Adverse Effects of Immunosuppressant Drugs upon Airway Epithelial Cell and Mucociliary Clearance: Implications for Lung Transplant Recipients. Drugs 73, 1157–1169 (2013). https://doi.org/10.1007/s40265-013-0089-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-013-0089-0

Keywords

Navigation