Skip to main content
Log in

A Review on Application of DNA Barcoding Technology for Rapid Molecular Diagnostics of Adulterants in Herbal Medicine

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

This article has been updated

Abstract

The rapid molecular diagnostics of adulterants in herbal medicine using DNA barcoding forms the core of this meticulously detailed review, based on two decades of data. With 80% of the world’s population using some form of herbal medicine, authentication, quality control, and detection of adulterants warrant DNA barcoding. A combined group of keywords were used for literature review using the PubMed, the ISI Web of Knowledge, Web of Science (WoS), and Google Scholar databases. All the papers (N = 210) returned by the search engines were downloaded and systematically analyzed. Detailed analysis of conventional DNA barcodes were based on retrieved sequences for internal transcribed spacer (ITS) (412,189), rbcL (251,598), matK (210,835), and trnH-psbA (141,846). The utility of databases such as The Barcode of Life Data System (BOLD), NCBI, GenBank, and Medicinal Materials DNA Barcode Database (MMDBD) has been critically examined for the identification of unknown species from known databases. The current review gives an overview of the ratio of adulterated to authentic drugs for some countries along with the state of the art technology currently being used in the identification of adulterated medicines. In this review, efforts were made to systematically analyze and arrange the research and reviews on the basis of technical progress. The review concludes with the future of DNA-based herbal medicine adulteration detection, forecasting the reliance on the metabarcoding technology.

Graphical Abstract

DNA barcoding technology for differentiating adulterated herbal medicine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Source: PubMed Central)

Similar content being viewed by others

Change history

  • 11 February 2022

    The revised graphic abstract was updated in the online version

References

  1. World Health Organization. WHO Global report on traditional and complementary medicine 2019. 2019

  2. Shinde VM, Dhalwal K, Potdar M, Mahadik KR. Application of quality control principles to herbal drugs. Int J Phytomed. 2009;1:4–8. https://doi.org/10.5138/ijpm.2009.0975.0185.05786.

    Article  Google Scholar 

  3. World Health Organization. Policy perspectives on medicines—traditional medicine-growing needs and potential. Geneva: WHO; 2002. p. 1–6.

    Google Scholar 

  4. Ackerknecht EH. Therapeutics from the primitives to the 20th century (with an appendix: History of dietetics). New York: Hafner Press; 1973.

    Google Scholar 

  5. Ichim MC. The DNA-based authentication of commercial herbal products reveals their globally widespread adulteration. Front Pharmacol. 2019;10:1–9. https://doi.org/10.3389/fphar.2019.01227.

    Article  CAS  Google Scholar 

  6. Bodeker G, Organization WH, Ong CK. WHO global atlas of traditional, complementary and alternative medicine. WHO Centre for Health Dev; 2005.

    Google Scholar 

  7. Rajan S, Sethuraman M, Mukherjee PK. Ethnobiology of the Nilgiri Hills. India Phyther Res. 2002;16:98–116. https://doi.org/10.1002/ptr.1098.

    Article  CAS  Google Scholar 

  8. Kunle OF, Egharevba HO, Ahmadu PO. Standardization of herbal medicines—a review. Int J Biodivers Conserv. 2012;4:101–12.

    Article  Google Scholar 

  9. Bandaranayake WM. Quality control, screening, toxicity, and regulation of herbal drugs in modern phytomedicine. Wiley; 2006. p. 25–57.

    Google Scholar 

  10. Ichim MC, Booker A. Chemical authentication of botanical ingredients: a review of commercial herbal products. Front Pharmacol. 2021;12:632. https://doi.org/10.3389/fphar.2021.666850.

    Article  CAS  Google Scholar 

  11. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. 11th ed. Nirali Prakashan; 2008.

    Google Scholar 

  12. Newmaster SG, Grguric M, Shanmughanandhan D, Ramalingam S, Ragupathy S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 2013;11:222. https://doi.org/10.1186/1741-7015-11-222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu M, Huang B, Gao F, Zhai C, Yang Y, Li L, Wang W, Shi L. Assesment of adulterated traditional Chinese medicines in China: 2003–2017. Front Pharmacol. 2019;10:1446. https://doi.org/10.3389/fphar.2019.01446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Purthy RS, Chatterjee S. DNA barcoding: an effective technique in molecular taxonomy. Austin J Biotechnol Bioeng. 2016;3(1):1059.

    Google Scholar 

  15. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceed Biol Sci. 2003;270:313–21. https://doi.org/10.1098/rspb.2002.2218.

    Article  CAS  Google Scholar 

  16. Lafontaine DL, Tollervey D. The function and synthesis of ribosomes. Nat Rev Mol Cell Biol. 2001;2:514–20. https://doi.org/10.1038/35080045.

    Article  CAS  PubMed  Google Scholar 

  17. Balasubramani SP, Murugan R, Ravikumar K, Venkatasubramanian P. Development of ITS sequence based molecular marker to distinguish, Tribulus terrestris L. (Zygophyllaceae) from its adulterants. Fitoterapia. 2010;81:503–8. https://doi.org/10.1016/j.fitote.2010.01.002.

    Article  CAS  PubMed  Google Scholar 

  18. Balasubramani SP, Venkatasubramanian P. Molecular identification and development of nuclear DNA ITS sequence based marker to distinguish Coscinium fenestratum Gaertn. (Menispermaceae) from its adulterants. Curr Trends Biotechnol Pharm. 2011;5:1163–72.

    Google Scholar 

  19. Chen R, Dong J, Cui X, Wang W, Yasmeen A, Deng Y, Zeng X, Tang Z. DNA based identification of medicinal materials in Chinese patent medicines. Sci Rep. 2012;2:1–5. https://doi.org/10.1038/srep00958.

    Article  CAS  Google Scholar 

  20. Chen JJ, Zhao QS, Liu YL, Zha SH, Zhao B. Identification of maca (Lepidium meyenii Walp.) and its adulterants by a DNA-barcoding approach based on the ITS sequence. Chin J Nat Med. 2015;13:653–9. https://doi.org/10.1016/S1875-5364(15)30062-5.

    Article  CAS  PubMed  Google Scholar 

  21. Chiang YC, Chang WT, Chen MD, Lai GH, Chen HJ, Chao J, Lin MK, Chang YS, Chou YM, Lee MS. Rapid identification of the medicinal plant Taraxacum formosanum and distinguishing of this plant from its adulterants by ribosomal DNA internal transcribed spacer (ITS) based DNA barcode. Afr J Biotechnol. 2011;10:4838–43. https://doi.org/10.5897/AJB10.2380.

    Article  CAS  Google Scholar 

  22. Moon BC, Kim WJ, Han KS, Yang S, Kang Y, Park I, Piao R. Differentiating authentic Adenophorae radix from its adulterants in commercially-processed samples using multiplexed ITS sequence-based SCAR markers. Appl Sci. 2017. https://doi.org/10.3390/app7070660.

    Article  Google Scholar 

  23. Seethapathy GS, Ganesh D, Santhosh Kumar JU, Senthilkumar U, Newmaster SG, Raghupathy S, Umashankar R, Ravikanth G. Assessing product adulteration in natural health products for laxative yielding plants, Cassia, Senna, and Chamaecrista, in Southern India using DNA barcoding. Int J Leg Med. 2015;129:693–700. https://doi.org/10.1007/s00414-014-1120-z.

    Article  Google Scholar 

  24. Selvaraj D, Shanmughanandhan D, Sarma RK, Joseph JC, Srinivasan RV, Ramalingam S. DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from its adulterants. Genon Proteol Bioinform. 2012;10:364–7. https://doi.org/10.1016/j.gpb.2012.03.002.

    Article  CAS  Google Scholar 

  25. Sgamma T, Masiero E, Mali P, Mahat M, Slater A. Sequence-specific detection of Aristolochia DNA- A simple test for contamination of herbal products. Front Plant Sci. 2018;871:1–13. https://doi.org/10.3389/fpls.2018.01828.

    Article  Google Scholar 

  26. Wong KL, But PPH, Shaw PC. Evaluation of seven DNA barcodes for differentiating closely related medicinal Gentiana sp. and their adulterants. Chin Med (United Kingdom). 2013;8:1–12. https://doi.org/10.1186/1749-8546-8-16.

    Article  CAS  Google Scholar 

  27. Zheng S, Liu D, Ren W, Fu J, Huang L, Chen S. Integrated analysis for identifying Radix astragali and its adulterants based on DNA barcoding. Evid-Based Complement Altern Med. 2014. https://doi.org/10.1155/2014/843923.

    Article  Google Scholar 

  28. Zhou J, Wang W, Liu M, Liu Z. Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA barcoding technique. Pharmacogn Mag. 2014;10:385–90. https://doi.org/10.4103/0973-1296.141754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tungmunnithum D, Renouard S, Drouet S, Blondeau JP, Hano CA. A critical cross-species comparison of pollen from Nelumbo nucifera Gaertn. Vs. Nymphaea lotus L. for authentication of Thai medicinal herbal tea. Plants. 2020;9:1–14. https://doi.org/10.3390/plants9070921.

    Article  CAS  Google Scholar 

  30. Lee SY, Lamasudin DU, Mohamed R. Rapid detection of several endangered agarwood-producing Aquilaria sp. and their potential adulterants using plant DNA barcodes coupled with high-resolution melting (Bar-HRM) analysis. Genet Mol Res. 2019;7:1–14. https://doi.org/10.1016/j.indcrop.2019.01.025.

    Article  CAS  Google Scholar 

  31. Howard C, Socratous E, Williams S, Graham E, Fowler MR, Scott NW, Bremner PD, Slater A. PlantID - DNA-based identification of multiple medicinal plants in complex mixtures. Chinese Med (UK). 2012;7:1–9. https://doi.org/10.1186/1749-8546-7-18.

    Article  Google Scholar 

  32. Gao Z, Liu Y, Wang X, Song J, Chen S, Ragupathy S, Han J, Newmaster SG. Derivative technology of DNA barcoding (nucleotide signature and SNP double peak methods) detects adulterants and substitution in Chinese patent medicines. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/s41598-017-05892-y.

    Article  CAS  Google Scholar 

  33. Vassou SL, Nithaniyal S, Raju B, Parani M. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine. BMC Complement Altern Med. 2016;16:186. https://doi.org/10.1186/s12906-016-1086-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang WJ, Li FF, Liu YJ, Long CL. Identification of Crocus sativus and its adulterants from Chinese markets by using DNA barcoding technique. Iran J Biotechnol. 2015;13:36–42. https://doi.org/10.15171/ijb.1034.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lv T, Teng R, Shao Q, Wang H, Zhang W, Li M, Zhang L. DNA barcodes for the identification of Anoectochilus roxburghii and its adulterants. Planta. 2015;242:1167–74. https://doi.org/10.1007/s00425-015-2353-x.

    Article  CAS  PubMed  Google Scholar 

  36. Rai PS, Bellampalli R, Dobriyal RM, Agarwal A, Satyamoorthy K, Anantha Narayana DB. DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region. J Ayurveda Integr Med. 2012;3:136–40. https://doi.org/10.4103/0975-9476.100177.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruhsam M, Hollingsworth PM. Authentication of Eleutherococcus and Rhodiola herbal supplement products in the United Kingdom. J Pharm Biomed Anal. 2018;149:403–9. https://doi.org/10.1016/j.jpba.2017.11.025.

    Article  CAS  PubMed  Google Scholar 

  38. Wu L, Sun W, Wang B, Zhao H, Li Y, Cai S, Xiang L, Zhu Y, Yao H, Song J, Cheng YC, Chen S. An integrated system for identifying the hidden assassins in traditional medicines containing aristolochic acids. Sci Rep. 2015;5:1–10. https://doi.org/10.1038/srep11318.

    Article  CAS  Google Scholar 

  39. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH, Graham SW, Barrett SCH, Dayanandan S, Albert VA. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard. 1993;80:528. https://doi.org/10.2307/2399846.

    Article  Google Scholar 

  40. Les DH, Garvin DK, Wimpee CF. Molecular history angiosperms. Evolution (N Y). 1991;88:10119–23.

    CAS  Google Scholar 

  41. Nurhasanah S, Papuangan N. Amplification and analysis of rbcL gene (ribulose-1,5-bisphosphate carboxylase) of Clove in Ternate Island. IOP Conf Ser Earth Environ Sci. 2019. https://doi.org/10.1088/1755-1315/276/1/012061.

    Article  Google Scholar 

  42. Kang Y, Deng Z, Zang R, Long W. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-13057-0.

    Article  CAS  Google Scholar 

  43. Basak S, Moolam RA, Parida A, Mitra S, Rangan L. Evaluation of rapid molecular diagnostics for differentiating medicinal Kaempferia sp. from its adulterants. Plant Divers. 2019;41:206–11. https://doi.org/10.1016/j.pld.2019.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Guo X, Wang X, Su W, Zhang G, Zhou R. DNA barcodes for discriminating the medicinal plant Scutellaria baicalensis (Lamiaceae) and its adulterants. Biol Pharm Bull. 2011;34:1198–203. https://doi.org/10.1248/bpb.34.1198.

    Article  CAS  PubMed  Google Scholar 

  45. Hegde S, Saini A, Hegde HV, Kholkute SD, Roy S. Molecular identification of Saraca asoca from its substituents and adulterants. 3 Biotech. 2018. https://doi.org/10.1007/s13205-018-1175-5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tnah LH, Lee SL, Tan AL, Lee CT, Ng KKS, Ng CH, Nurul FZ. DNA barcode database of common herbal plants in the tropics: a resource for herbal product authentication. Food Control. 2019;95:318–26. https://doi.org/10.1016/j.foodcont.2018.08.022.

    Article  CAS  Google Scholar 

  47. Ma HL, Zhu ZB, Zhang XM, Miao YY, Guo QS. Species identification of the medicinal plant Tulipa edulis (Liliaceae) by DNA barcode marker. Biochem Syst Ecol. 2014;55:362–8. https://doi.org/10.1016/j.bse.2014.03.038.

    Article  CAS  Google Scholar 

  48. Moon BC, Kim WJ, Ji Y, Lee YM, Kang YM, Choi G. Molecular identification of the traditional herbal medicines, Arisaematis rhizoma and Pinelliae tuber, and common adulterants via universal DNA barcode sequences. Genet Mol Res. 2016;15:1–14. https://doi.org/10.4238/gmr.15017064.

    Article  CAS  Google Scholar 

  49. Swetha VP, Parvathy VA, Sheeja TE, Sasikumar B. DNA barcoding for discriminating the economically important Cinnamomum verum from its adulterants. Food Biotechnol. 2014;28:183–94. https://doi.org/10.1080/08905436.2014.931239.

    Article  CAS  Google Scholar 

  50. Li M, Au KY, Lam H, Cheng L, But PPH, Shaw PC. Molecular identification and cytotoxicity study of herbal medicinal materials that are confused by Aristolochia herbs. Food Chem. 2014;147:332–9. https://doi.org/10.1016/j.foodchem.2013.09.146.

    Article  CAS  PubMed  Google Scholar 

  51. Shen Z, Lu T, Zhang Z, Cai C, Yang J, Tian B. Authentication of traditional Chinese medicinal herb “Gusuibu” by DNA-based molecular methods. Ind Crops Prod. 2019;141: 111756. https://doi.org/10.1016/j.indcrop.2019.111756.

    Article  CAS  Google Scholar 

  52. Umdale SD, Kshirsagar PR, Lekhak MM, Gaikwad NB. Molecular authentication of the traditional medicinal plant “Lakshman Booti” (Smithia conferta Sm.) and its adulterants through DNA barcoding. Pharmacogn Mag. 2017;13:S224–9. https://doi.org/10.4103/pm.pm_499_16.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sui XY, Huang Y, Tan Y, Guo Y, Long CL. Molecular authentication of the ethnomedicinal plant Sabia parviflora and its adulterants by DNA barcoding technique. Planta Med. 2011;77:492–6. https://doi.org/10.1055/s-0030-1250468.

    Article  CAS  PubMed  Google Scholar 

  54. Zoschke R, Nakamura M, Liere K, Sugiura M, Börner T, Schmitz-Linneweber C. An organellar maturase associates with multiple group II introns. Proc Natl Acad Sci USA. 2010;107:3245–50. https://doi.org/10.1073/pnas.0909400107.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mohr G, Lambowitz AM. Putative proteins related to group II intron reverse transcriptase/ maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res. 2003;31:647–52. https://doi.org/10.1093/nar/gkg153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Selvaraj D, Sarma RK, Sathishkumar R. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation. 2008;3:24–7. https://doi.org/10.6026/97320630003024.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen X, Liao B, Song J, Pang X, Han J, Chen S. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax sp. based on DNA barcoding. Gene. 2013;530:39–43. https://doi.org/10.1016/j.gene.2013.07.097.

    Article  CAS  PubMed  Google Scholar 

  58. Santhosh JUK, Ramakrishan M, Seethapathy GS, Krishna V, Uma Shaanker R, Ravikanth G. DNA barcoding of Momordica sp. and assessment of adulteration in Momordica herbal products, an anti-diabetic drug. Plant Gene. 2020. https://doi.org/10.1016/j.plgene.2020.100227.

    Article  Google Scholar 

  59. Li M, Cao H, But PPH, Shaw PC. Identification of herbal medicinal materials using DNA barcodes. J Syst Evol. 2011;49:271–83. https://doi.org/10.1111/j.1759-6831.2011.00132.x.

    Article  Google Scholar 

  60. Sheidai M, Tabaripour R, Talebi SM, Noormohammadi Z, Koohdar F. Adulteration in medicinally important plant species of Ziziphora in Iran market: DNA barcoding approach. Ind Crops Prod. 2019;130:627–33. https://doi.org/10.1016/j.indcrop.2019.01.025.

    Article  CAS  Google Scholar 

  61. Loera-Sánchez M, Studer B, Kölliker R. DNA barcode trnH-psbA is a promising candidate for efficient identification of forage legumes and grasses. BMC Res Notes. 2020;13:1–6. https://doi.org/10.1186/s13104-020-4897-5.

    Article  CAS  Google Scholar 

  62. Pang X, Shi L, Song J, Chen X, Chen S. Use of the potential DNA barcode ITS2 to identify herbal materials. J Nat Med. 2013;67:571–5. https://doi.org/10.1007/s11418-012-0715-2.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar A, Rodrigues V, Baskaran K, Shukla AK, Sundaresan V. DNA barcode based species-specific marker for Ocimum tenuiflorum and its applicability in quantification of adulteration in herbal formulations using qPCR. J Herb Med. 2020;23: 100376. https://doi.org/10.1016/j.hermed.2020.100376.

    Article  Google Scholar 

  64. Xiong C, Sun W, Li J, Yao H, Shi Y, Wang P, Huang B, Shi L, Liu D, Hu Z, Chen S. Identifying the species of seeds in traditional Chinese medicine using DNA barcoding. Front Pharmacol. 2018;9:1–8. https://doi.org/10.3389/fphar.2018.00701.

    Article  CAS  Google Scholar 

  65. Olmstead RG, Reeves PA. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Missouri Bot Gard. 1995;82:176–93. https://doi.org/10.2307/2399876.

    Article  Google Scholar 

  66. Zhu S, Bai Y, Oya M, Tanaka K, Komatsu K, Maruyama T, Goda Y, Kawasaki T, Fujita M, Shibata T. Genetic and chemical diversity of Eleutherococcus senticosus and molecular identification of Siberian ginseng by PCR-RFLP analysis based on chloroplast trnK intron sequence. Food Chem. 2011;129:1844–50. https://doi.org/10.1016/j.foodchem.2011.05.128.

    Article  CAS  Google Scholar 

  67. Soffritti G, Busconi M, Sánchez RA, Thiercelin JM, Polissiou M, Roldán M, Fernández JA. Genetic and epigenetic approaches for the possible detection of adulteration and auto-adulteration in saffron (Crocus sativus L.) Spice. Molecules. 2016;21:1–16. https://doi.org/10.3390/molecules21030343.

    Article  CAS  Google Scholar 

  68. Al-Qurainy F, Khan S, Tarroum M, Al-Hemaid FM, Ali MA. Molecular authentication of the medicinal herb Ruta graveolens (Rutaceae) and an adulterant using nuclear and chloroplast DNA markers. Genet Mol Res. 2011;10:2806–16. https://doi.org/10.4238/2011.November.10.3.

    Article  CAS  PubMed  Google Scholar 

  69. Coordinators NR. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44:D7-D19. https://doi.org/10.1093/nar/gkv1290. https://www.ncbi.nlm.nih.gov/. Accessed 28 Dec 2020.

  70. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ahmad I, Ahmad KMS, Cameotra SS. Quality assessment of herbal drugs and medicinal plant products. Encycl Anal Chem. 2014. https://doi.org/10.1002/9780470027318.a9946.

    Article  Google Scholar 

  72. Chen S, Pang X, Song J, Shi L, Yao H, Han J, Leon C. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014;32:1237–44. https://doi.org/10.1016/j.biotechadv.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  73. Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, Callot C, Langlade N, Munos S. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. Bio Tech. 2016;61(4):203–5. https://doi.org/10.2144/000114460.

    Article  CAS  Google Scholar 

  74. Abdel-Latif A, Osman G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods. 2017;13:1. https://doi.org/10.1186/s13007-016-0152-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Boer HJ, Ichim MC, Newmaster SG. DNA barcoding and pharmacovigilance of herbal medicines. Drug Saf. 2015;38:611–20. https://doi.org/10.1007/s40264-015-0306-8.

    Article  CAS  PubMed  Google Scholar 

  76. Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349. https://doi.org/10.1093/nar/19.6.1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reynaud DH, Mishler BD, Neal-kababick J, Brown PN. The capabilities and limitations of DNA barcoding of botanical dietary supplements. Authentechnologies. 2015; p. 1–13. https://www.ahpa.org/Portals/0/PDFs/The-Capabilities-and-Limitations-of-DNA-Testing-FINAL_AHPA.pdf.

  78. Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system: barcoding. Mol Ecol Notes. 2007;7:355–64. https://doi.org/10.1111/j.1471-8286.2007.01678.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hennell JR, Agostino PMD, Lee S, Khoo CS, Sucher NJ. Plant DNA fingerprinting and barcoding. Methods Mol Biol. 2012;862:181–200. https://doi.org/10.1007/978-1-61779-609-8.

    Article  CAS  PubMed  Google Scholar 

  80. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. https://doi.org/10.1093/nar/25.17.3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wong TH, But GWC, Wu HY, Tsang SSK, Lau DTW, Shaw PC. Medicinal Materials DNA Barcode Database (MMDBD) version 1.5- One-stop solution for storage, BLAST, alignment and primer design. Database. 2018. https://doi.org/10.1093/database/bay112.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Choudhary N, Bhupinder S. An overview of advances in the standardization of herbal drugs. J Pharm Educ Res. 2011;2:55–70.

    Google Scholar 

  83. Santhosh JUK, Krishna V, Seethapathy GS, Ganesan R, Ravikanth G, Shaanker RU. Assessment of adulteration in raw herbal trade of important medicinal plants of India using DNA barcoding. 3 Biotech. 2018;8:1–8. https://doi.org/10.1007/s13205-018-1169-3.

    Article  CAS  Google Scholar 

  84. Malgaonkar M, Shirolkar A, Murthy SN, Mangal AK, Pawar SD. DNA based molecular markers: a tool for differentiation of Ayurvedic raw drugs and their adulterants. Pharmacogn Rev. 2020;14:72–81.

    Article  CAS  Google Scholar 

  85. Mishra P, Kumar A, Nagireddy A, Mani DN, Shukla AK, Tiwari R, Sundaresan V. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market. Plant Biotechnol J. 2016;14:8–21. https://doi.org/10.1111/pbi.12419.

    Article  CAS  PubMed  Google Scholar 

  86. Nithaniyal S, Vassou SL, Sundar P, Raju B, Madasamy P. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding. Genome. 2016. https://doi.org/10.1139/gen-2015-0225.

    Article  PubMed  Google Scholar 

  87. Shanmughanandhan D, Ragupathy S, Newmaster SG, Mohanasundaram S, Sathishkumar R. Estimating herbal product authentication and adulteration in India using a vouchered, DNA-based biological reference material library. Drug Saf. 2016;39:1211–27. https://doi.org/10.1007/s40264-016-0459-0.

    Article  PubMed  Google Scholar 

  88. Gong L, Qiu XH, Huang J, Xu W, Bai JQ, Zhang J, Su H, Xu CM, Huang ZH. Constructing a DNA barcode reference library for southern herbs in China: a resource for authentication of southern Chinese medicine. PLoS ONE. 2018;13:1–12. https://doi.org/10.1371/journal.pone.0201240.

    Article  CAS  Google Scholar 

  89. Han J, Pang X, Liao B, Yao H, Song J, Chen S. An authenticity survey of herbal medicines from markets in China using DNA barcoding. Sci Rep. 2016;6:1–9. https://doi.org/10.1038/srep18723.

    Article  CAS  Google Scholar 

  90. Sun W, Li JJ, Xiong C, Zhao B, Chen SL. The potential power of Bar-HRM technology in herbal medicine identification. Front Plant Sci. 2016;7:1–10. https://doi.org/10.3389/fpls.2016.00367.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wei X, Wang X, Gao Z, Cao P, Han J. Identification of flower herbs in Chinese pharmacopoeia based on DNA barcoding. Chinese Herb Med. 2019;11:275–80. https://doi.org/10.1016/j.chmed.2019.05.003.

    Article  Google Scholar 

  92. Heubl G. New aspects of DNA-based authentication of Chinese medicinal plants by molecular biological techniques. Planta Med. 2010;76:1963–74. https://doi.org/10.1055/s-0030-1250519.

    Article  CAS  PubMed  Google Scholar 

  93. Shaw D, Graeme L, Pierre D, Elizabeth W, Kelvin C. Pharmacovigilance of herbal medicine. J Ethnopharmacol. 2012;140:513–8. https://doi.org/10.1016/j.jep.2012.01.051.

    Article  PubMed  Google Scholar 

  94. Osathanunkul M, Madesis P, deBoer H. Bar-HRM for authentication of plant-based medicines: evaluation of three medicinal products derived from Acanthaceae species. PLoS ONE. 2015;10:1–11. https://doi.org/10.1371/journal.pone.0128476.

    Article  CAS  Google Scholar 

  95. Mezzasalma V, Ganopoulos I, Galimberti A, Cornara L, Ferri E, Labra M. Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. Int J Legal Med. 2017;131:1–19. https://doi.org/10.1007/s00414-016-1460-y.

    Article  PubMed  Google Scholar 

  96. Raclariu AC, Mocan A, Popa MO, Vlase L, Ichim MC, Crisan G, Brysting AK, deBoer H. Veronica officinalis product authentication using DNA metabarcoding and HPLC-MS reveals widespread adulteration with Veronica chamaedrys. Front Pharmacol. 2017;8:1–13. https://doi.org/10.3389/fphar.2017.00378.

    Article  CAS  Google Scholar 

  97. Raclariu AC, Heinrich M, Ichim MC, de Boer H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem Anal. 2018;29:123–8. https://doi.org/10.1002/pca.2732.

    Article  CAS  PubMed  Google Scholar 

  98. Coghlan ML, Maker G, Crighton E, Haile J, Murray DC, White NE, Byard RW, Bellgard MI, Mullaney I, Trengove R, Allcock RJN, Nash C, Hoban C, Jarrett K, Edwards R, Musgrave IF, Bunce M. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM). Sci Rep. 2015;5:1–9. https://doi.org/10.1038/srep17475.

    Article  CAS  Google Scholar 

  99. Coutinho Moraes DF, Still DW, Lum MR, Hirsch AM. DNA-based authentication of botanicals and plant-derived dietary supplements: where have we been and where are we going? Planta Med. 2015;81:687–95. https://doi.org/10.1055/s-0035-1545843.

    Article  CAS  PubMed  Google Scholar 

  100. Crighton E, Coghlan ML, Farrington R, Hoban CL, Power MWP, Nash C, Mullaney I, Byard RW, Trengove R, Musgrave IF, Bunce M, Maker G. Toxicological screening and DNA sequencing detects contamination and adulteration in regulated herbal medicines and supplements for diet, weight loss and cardiovascular health. J Pharm Biomed Anal. 2019;176: 112834. https://doi.org/10.1016/j.jpba.2019.112834.

    Article  CAS  PubMed  Google Scholar 

  101. Hoban CL, Musgrave IF, Byard RW, Nash C, Farrington R, Maker G, Crighton E, Bunce M, Coghlan M. Combined liquid chromatography-mass spectrometry and next-generation DNA sequencing detection of adulterants and contaminants in analgesic and anti-inflammatory herbal medicines. Pharm Med. 2020;34:49–61. https://doi.org/10.1007/s40290-019-00314-y.

    Article  CAS  Google Scholar 

  102. Wallace LJ, Boilard SMAL, Eagle SHC, Spall JL, Shokralla S, Hajibabaei M. DNA barcodes for everyday life: routine authentication of natural health products. Food Res Int. 2012;49:446–52. https://doi.org/10.1016/j.foodres.2012.07.048.

    Article  CAS  Google Scholar 

  103. Head MG, Brown RJ, Newell ML, Scott JAG, Batchelor J, Atun R. The allocation of US $105 billion in global funding from G20 countries for infectious disease research between 2000 and 2017: A content analysis of investments. Lancet Glob Health. 2020;8:1295–304. https://doi.org/10.1016/S2214-109X(20)30357-0.

    Article  Google Scholar 

  104. Zhang CY, Wang FY, Yan HF, Hao G, Hu CM, Ge XJ. Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae). Mol Ecol Resour. 2012;12:98–108. https://doi.org/10.1111/j.1755-0998.2011.03076.x.

    Article  PubMed  Google Scholar 

  105. Särkinen T, Staats M, Richardson JE, Cowan RS, Bakker FT. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PLoS ONE. 2012;7:43808.

    Article  Google Scholar 

  106. Nehal N, Choudhary B, Nagpure A, Gupta RK. DNA barcoding: a modern age tool for detection of adulteration in food. Crit Rev Biotechnol. 2021;41(5):767–91. https://doi.org/10.1080/07388551.2021.1874279.

    Article  CAS  PubMed  Google Scholar 

  107. Grazina L, Amaral JS, Mafra I. Botanical origin authentication of dietary supplements by DNA-based approaches. Compr Rev Food Sci Food Saf. 2020;19:1080–109. https://doi.org/10.1111/1541-4337.12551.

    Article  CAS  PubMed  Google Scholar 

  108. Meusnier I, Singer GAC, Landry JF, Hickey DA, Hebert PDN, Hajibabaei M. A universal DNA mini-barcode for biodiversity analysis. BMC Genom. 2008;9:4–7. https://doi.org/10.1186/1471-2164-9-214.

    Article  CAS  Google Scholar 

  109. Hajibabaei M, McKenna C. DNA mini-barcodes. Springer Science Business Media; 2012. p. 339–53.

    Book  Google Scholar 

  110. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35(3): e14. https://doi.org/10.1093/nar/gkl938.

    Article  CAS  PubMed  Google Scholar 

  111. Little DP. Authentication of Ginkgo biloba herbal dietary supplements using DNA barcoding. Genome. 2014;57:513–6. https://doi.org/10.1139/gen-2014-0130.

    Article  CAS  PubMed  Google Scholar 

  112. Dong W, Liu H, Xu C, Zuo Y, Chen Z, Zhou S. A chloroplast genomic strategy for designing taxon specific DNA mini-barcodes: a case study on ginsengs. BMC Genet. 2014;15:138. https://doi.org/10.1186/s12863-014-0138-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gao Z, Liu Y, Wang X, Wei X, Han J. DNA mini-barcoding: a derived barcoding method for herbal molecular identification. Front Plant Sci. 2019;10:987. https://doi.org/10.3389/fpls.2019.00987.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T, Prins TW, Kok E. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem. 2016;408:4615–30. https://doi.org/10.1007/s00216-016-9595-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50. https://doi.org/10.1111/j.1365-294X.2012.05470.x.

    Article  CAS  PubMed  Google Scholar 

  116. Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med. 2016;82(14):1225–35. https://doi.org/10.1055/s-0042-111208 (Epub 2016 Jul 8 PMID: 27392246).

    Article  CAS  PubMed  Google Scholar 

  117. Shokralla S, Gibson JF, Nikbakht H, Janzen DH, Hallwachs W, Hajibabaei M. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol Ecol Resour. 2014;14:892–901. https://doi.org/10.1111/1755-0998.12236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sarwat M, Yamdagni MM. DNA barcoding, microarrays and next generation sequencing: recent tools for genetic diversity estimation and authentication of medicinal plants. Crit Rev Biotechnol. 2016;36(2):191–203. https://doi.org/10.3109/07388551.2014.947563 (Epub 2014 Sep 29 PMID: 25264574).

    Article  CAS  PubMed  Google Scholar 

  119. Cheng X, Su X, Chen X, et al. Biological ingredient analysis of traditional Chinese medicine preparation based on high-throughput sequencing: the story for Liuwei Dihuang Wan. Sci Rep. 2014;4:5147. https://doi.org/10.1038/srep05147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ivanova NV, Clare EL, Borisenko AV. DNA barcodes: methods and protocols. In: Kress WJ, Erickson DL, editors. Methods in molecular biology, vol. 858. Springer Sci Bus Med; 2016. p. 153–82. https://doi.org/10.1007/978-1-61779-591-6_8.

    Chapter  Google Scholar 

  121. Rhoads A, Au KF. PacBio sequencing and its applications. Geno Prot Bioinform. 2015;13:278–89. https://doi.org/10.1016/j.gpb.2015.08.002.

    Article  Google Scholar 

  122. Xiang B, Li X, Qian J, Wang L, Ma L, Tian X, Wang Y. The complete chloroplast genome sequence of the medicinal plant Swertia mussotii using the PacBio RS II platform. Molecules. 2016;21:1029. https://doi.org/10.3390/molecules21081029.

    Article  CAS  PubMed Central  Google Scholar 

  123. Madesis P, Ganopoulos I, Anagnostis A, Tsaftaris A. The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control. 2012;25:576–82. https://doi.org/10.1016/j.foodcont.2011.11.034.

    Article  CAS  Google Scholar 

  124. Soares S, Grazina L, Costa J, Amaral JS, Oliveira MBPP, Mafra I. Botanical authentication of lavender (Lavandula sp.) honey by a novel DNA-barcoding approach coupled to high resolution melting analysis. Food Control. 2018;86:367–73. https://doi.org/10.1016/j.foodcont.2017.11.046.

    Article  CAS  Google Scholar 

  125. Gostel MR, Zúñiga JD, Kress WJ, Funk VA, Puente-Lelievre C. Microfluidic enrichment barcoding (MEBarcoding): a new method for high throughput plant DNA barcoding. Sci Rep. 2020;10:1–13. https://doi.org/10.1038/s41598-020-64919-z.

    Article  CAS  Google Scholar 

  126. Techen N, Parveen I, Pan Z, Khan IA. DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol. 2014;25:103–10. https://doi.org/10.1016/j.copbio.2013.09.01.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Prof. Jeff Bennetzen, Prof. Jim Leebens-Mack and Dr Srinivasa R. Chaluvedi at UGA, Georgia, USA for useful initial discussions about the phylogeny of the gingers and for their very constructive comments. Sincere thanks to Department of Bioscience and Bioengineering, IIT Guwahati for all technical and infrastructure support and to the Ministry of Human Resource Development (MHRD), Govt. of India for providing student fellowships to AS and SB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Rangan.

Ethics declarations

Funding

LR thanks the Department of Biotechnology, Government of India for the NE-DBT fellowship. This research was funded by Department of Information Technology, Ministry of Information Technology, Government of India (GoI) (DIT Grant No: 0526/T/IITG/014/0809/38).

Conflicts of interest

All authors of the current manuscript declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The data that support the findings of this study are available in NCBI GeneBank at (https://www.ncbi.nlm.nih.gov/nucleotide/). These data were derived from the following resources available in the public domain in Clarivate Web of Science (https://clarivate.com/webofsciencegroup/solutions/web-of-science/), PubMed Central (https://www.ncbi.nlm.nih.gov/pmc/), ISI Web of Knowledge (www.webofknowledge.com), and Google Scholar (https://scholar.google.com/).

Code availability

Not applicable.

Authors contributions

AS and SB contributed by carrying out investigation, data curation, formal analysis and writing original draft. LR contributed to conceptualization, methodology, overall supervision, fund acquisition and writing original draft and revising it. All authors read and approved the final version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, A., Basak, S. & Rangan, L. A Review on Application of DNA Barcoding Technology for Rapid Molecular Diagnostics of Adulterants in Herbal Medicine. Drug Saf 45, 193–213 (2022). https://doi.org/10.1007/s40264-021-01133-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-021-01133-4

Navigation