Skip to main content
Log in

Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Given that adverse drug effects (ADEs) have led to post-market patient harm and subsequent drug withdrawal, failure of candidate agents in the drug development process, and other negative outcomes, it is essential to attempt to forecast ADEs and other relevant drug–target–effect relationships as early as possible. Current pharmacologic data sources, providing multiple complementary perspectives on the drug–target–effect paradigm, can be integrated to facilitate the inference of relationships between these entities.

Objective

This study aims to identify both existing and unknown relationships between chemicals (C), protein targets (T), and ADEs (E) based on evidence in the literature.

Materials and Methods

Cheminformatics and data mining approaches were employed to integrate and analyze publicly available clinical pharmacology data and literature assertions interrelating drugs, targets, and ADEs. Based on these assertions, a C–T–E relationship knowledge base was developed. Known pairwise relationships between chemicals, targets, and ADEs were collected from several pharmacological and biomedical data sources. These relationships were curated and integrated according to Swanson’s paradigm to form C–T–E triangles. Missing C–E edges were then inferred as C–E relationships.

Results

Unreported associations between drugs, targets, and ADEs were inferred, and inferences were prioritized as testable hypotheses. Several C–E inferences, including testosterone → myocardial infarction, were identified using inferences based on the literature sources published prior to confirmatory case reports. Timestamping approaches confirmed the predictive ability of this inference strategy on a larger scale.

Conclusions

The presented workflow, based on free-access databases and an association-based inference scheme, provided novel C–E relationships that have been validated post hoc in case reports. With refinement of prioritization schemes for the generated C–E inferences, this workflow may provide an effective computational method for the early detection of potential drug candidate ADEs that can be followed by targeted experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. MedDRA® the Medical Dictionary for Regulatory Activities terminology is the international medical terminology developed under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH).

References

  1. Aronson JK. Distinguishing hazards and harms, adverse drug effects and adverse drug reactions: implications for drug development, clinical trials, pharmacovigilance, biomarkers, and monitoring. Drug Saf. 2013;36:147–53.

    Article  CAS  PubMed  Google Scholar 

  2. Shepherd G, Mohorn P, Yacoub K, May DW. Adverse drug reaction deaths reported in United States vital statistics, 1999–2006. Ann Pharmacother. 2012;46:169–75.

    Article  PubMed  Google Scholar 

  3. Suh DC, Woodall BS, Shin SK, Hermes-De Santis ER. Clinical and economic impact of adverse drug reactions in hospitalized patients. Ann Pharmacother. 2000;34:1373–9.

    Article  CAS  PubMed  Google Scholar 

  4. Agency for Healthcare Research and Quality. Reducing and preventing adverse drug events to decrease hospital costs. AHRQ Archive. https://archive.ahrq.gov/research/findings/factsheets/errors-safety/aderia/ade.html. Accessed 2 Apr 2014.

  5. Ninan B, Wertheimer A. Withdrawing drugs in the U.S. versus other countries. Innov Pharm. 2012;3(3):Article 87. https://pubs.lib.umn.edu/index.php/innovations/article/view/269/263. Accessed 19 Apr 2018.

  6. Swanson DR. Migraine and magnesium: eleven neglected connections. Perspect Biol Med. 1988;31:526–57.

    Article  CAS  PubMed  Google Scholar 

  7. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;29:416–9.

    Article  CAS  PubMed  Google Scholar 

  8. US Food and Drug Administration. openFDA datasets: FAERS. https://open.fda.gov/data/faers/. Accessed 19 Apr 2018.

  9. Harpaz R, Haerian K, Chase HS, Friedman C. Statistical mining of potential drug interaction adverse effects in FDA’s spontaneous reporting system. AMIA Annu Symp Proc AMIA Symp. 2010;2010:281–5.

    PubMed  Google Scholar 

  10. Schuemie MJ, Coloma PM, Straatman H, Herings RMC, Trifirò G, Matthews JN, et al. Using electronic health care records for drug safety signal detection: a comparative evaluation of statistical methods. Med Care. 2012;50:890–7.

    Article  PubMed  Google Scholar 

  11. Bai JPF, Abernethy DR. Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol Toxicol. 2013;53:451–73.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLoS ONE. 2011;6:e28025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model. 2012;52:3284–92.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng F, Li W, Wang X, Zhou Y, Wu Z, Shen J, et al. Adverse drug events: database construction and in silico prediction. J Chem Inf Model. 2013;53:744–52.

    Article  CAS  PubMed  Google Scholar 

  15. Cami A, Arnold A, Manzi S, Reis B. Predicting adverse drug events using pharmacological network models. Sci Transl Med. 2011;3:114ra127.

    Article  CAS  PubMed  Google Scholar 

  16. Chen B, Ding Y, Wild DJ. Assessing drug target association using semantic linked data. PLoS Comput Biol. 2012;8:e1002574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P. Drug target identification using side-effect similarity. Science. 2008;321:263–6.

    Article  CAS  PubMed  Google Scholar 

  18. Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature. 2012;486:361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oprea TI, Nielsen SK, Ursu O, Yang JJ, Taboureau O, Mathias SL, et al. Associating drugs, targets and clinical outcomes into an integrated network affords a new platform for computer-aided drug repurposing. Mol Inform. 2011;30:100–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davis AP, Wiegers TC, Roberts PM, King BL, Lay JM, Lennon-Hopkins K, et al. A CTD-Pfizer collaboration: manual curation of 88,000 scientific articles text mined for drug-disease and drug-phenotype interactions. Database. 2013;2013:bat080.

    Article  PubMed  PubMed Central  Google Scholar 

  21. King BL, Davis AP, Rosenstein MC, Wiegers TC, Mattingly CJ. Ranking transitive chemical-disease inferences using local network topology in the comparative toxicogenomics database. PLoS One. 2012;7:e46524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simon Z, Peragovics A, Vigh-Smeller M, Csukly G, Tombor L, Yang Z, et al. Drug effect prediction by polypharmacology-based interaction profiling. J Chem Inf Model. 2012;52:134–45.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Chen S, Deng N, Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One. 2013;8:e78518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallach I, Jaitly N, Lilien R. A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One. 2010;5:e12063.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Mathur S, Dinakarpandian D. Drug repositioning using disease associated biological processes and network analysis of drug targets. AMIA Annu Symp Proc. 2011;2011:305–11.

    PubMed Central  PubMed  Google Scholar 

  26. Kim Kjærulff S, Wich L, Kringelum J, Jacobsen UP, Kouskoumvekaki I, Audouze K, et al. ChemProt-2.0: visual navigation in a disease chemical biology database. Nucleic Acids Res. 2013;41:D464–9.

    Article  CAS  PubMed  Google Scholar 

  27. Jacob L, Vert J-P. Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinforma Oxf Engl. 2008;24:2149–56.

    Article  CAS  Google Scholar 

  28. Lo HZ, Ding W, Nazeri Z. Mining adverse drug reactions from electronic health records. In: 2013 IEEE 13th Int Conf Data Min Workshop. 2013. p. 1137–40.

  29. Jensen K, Soguero-Ruiz C, Mikalsen KO, Lindsetmo R-O, Kouskoumvekaki I, Girolami M, et al. Analysis of free text in electronic health records for identification of cancer patient trajectories. Sci Rep. 2017;7:46226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yadav P, Steinbach M, Kumar V, Simon G. Mining electronic health records (EHRs): a survey. ACM Comput Surv. 2018;50:85:1–85:40.

    Article  CAS  Google Scholar 

  31. Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, et al. The NCGC Pharmaceutical Collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med. 2011;3:80ps16. https://tripod.nih.gov/npc/. Accessed 23 May 2018.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010;50:1189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat Chem Biol. 2015;11:535.

    Article  CAS  PubMed  Google Scholar 

  34. Fourches D, Muratov E, Tropsha A. Trust, but verify II: a practical guide to chemogenomics data curation. J Chem Inf Model. 2016;56:1243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuz’min VE, Artemenko AG, Muratov EN. Hierarchical QSAR technology based on the Simplex representation of molecular structure. J Comput Aided Mol Des. 2008;22:403–21.

    Article  PubMed  CAS  Google Scholar 

  36. Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016;44:D1069–74.

    Article  CAS  PubMed  Google Scholar 

  37. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.

    Article  CAS  Google Scholar 

  38. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol. 2010;6:343.

    Article  PubMed  PubMed Central  Google Scholar 

  39. National Library of Medicine. Unified Medical Language System (UMLS). 2013. https://www.nlm.nih.gov/research/umls/. Accessed 2 Mar 2015.

  40. Kuhn M, Szklarczyk D, Franceschini A, von Mering C, Jensen LJ, Bork P. STITCH 3: zooming in on protein–chemical interactions. Nucleic Acids Res. 2012;40:D876–80.

    Article  CAS  PubMed  Google Scholar 

  41. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, et al. The comparative toxicogenomics database: update 2013. Nucleic Acids Res. 2013;41:D1104–14.

    Article  CAS  PubMed  Google Scholar 

  42. Baker NC, Hemminger BM. Mining connections between chemicals, proteins, and diseases extracted from Medline annotations. J Biomed Inform. 2010;43:510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. MedDRA. 2013. https://www.meddra.org/. Accessed 19 Apr 2018.

  44. Wohlgemuth G, Haldiya PK, Willighagen E, Kind T, Fiehn O. The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports. Bioinformatics. 2010;26:2647–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cover TM, Thomas JA. Relative entropy and mutual information. In: Elements of information theory. 2nd ed. New York: Wiley Interscience; 2006. p. 19–20.

    Google Scholar 

  46. Wysowski DK, Swartz L. Adverse drug event surveillance and drug withdrawals in the United States, 1969-2002: the importance of reporting suspected reactions. Arch Intern Med. 2005;165:1363–9.

    Article  PubMed  Google Scholar 

  47. Trifirò G, Pariente A, Coloma PM, Kors JA, Polimeni G, Miremont-Salamé G, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf. 2009;18:1176–84.

    Article  PubMed  Google Scholar 

  48. Houwerzijl EJ, Blom NR, van der Want JJL, Esselink MT, Koornstra JJ, Smit JW, et al. Ultrastructural study shows morphologic features of apoptosis and para-apoptosis in megakaryocytes from patients with idiopathic thrombocytopenic purpura. Blood. 2004;103:500–6.

    Article  CAS  PubMed  Google Scholar 

  49. Mitra D, Kim J, MacLow C, Karsan A, Laurence J. Role of caspases 1 and 3 and Bcl-2-related molecules in endothelial cell apoptosis associated with thrombotic microangiopathies. Am J Hematol. 1998;59:279–87.

    Article  CAS  PubMed  Google Scholar 

  50. Taler M, Gil-Ad I, Lomnitski L, Korov I, Baharav E, Bar M, et al. Immunomodulatory effect of selective serotonin reuptake inhibitors (SSRIs) on human T lymphocyte function and gene expression. Eur Neuropsychopharmacol. 2007;17:774–80.

    Article  CAS  PubMed  Google Scholar 

  51. Metjian A, Abrams CS. New advances in the treatment of adult chronic immune thrombocytopenic purpura: role of thrombopoietin receptor-stimulating agents. Biol Targets Ther. 2009;3:499–513.

    CAS  Google Scholar 

  52. Schipperus M, Fijnheer R. New therapeutic options for immune thrombocytopenia. Neth J Med. 2011;69:480–5.

    CAS  PubMed  Google Scholar 

  53. Metcalfe PD, Leslie JA, Campbell MT, Meldrum DR, Hile KL, Meldrum KK. Testosterone exacerbates obstructive renal injury by stimulating TNF-alpha production and increasing proapoptotic and profibrotic signaling. Am J Physiol Endocrinol Metab. 2008;294:E435–43.

    Article  CAS  PubMed  Google Scholar 

  54. Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation. 2000;101:2149–53.

    Article  CAS  PubMed  Google Scholar 

  55. Li D, Zhao L, Liu M, Du X, Ding W, Zhang J, et al. Kinetics of tumor necrosis factor alpha in plasma and the cardioprotective effect of a monoclonal antibody to tumor necrosis factor alpha in acute myocardial infarction. Am Heart J. 1999;137:1145–52.

    Article  CAS  PubMed  Google Scholar 

  56. Giannakopoulou M, Bozas E, Philippidis H, Stylianopoulou F. Protooncogene c-fos involvement in the molecular mechanism of rat brain sexual differentiation. Neuroendocrinology. 2001;73:387–96.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang S, Zhang M, Goldstein S, Li Y, Ge J, He B, et al. The effect of c-fos on acute myocardial infarction and the significance of metoprolol intervention in a rat model. Cell Biochem Biophys. 2013;65:249–55.

    Article  CAS  PubMed  Google Scholar 

  58. US Food and Drug Administration, Center for Drug Evaluation and Research. FDA Drug Safety Communication: FDA cautions about using testosterone products for low testosterone due to aging; requires labeling change to inform of possible increased risk of heart attack and stroke with use. 2015. https://www.fda.gov/Drugs/DrugSafety/ucm436259.htm. Accessed 19 Apr 2018.

  59. Vigen R, O’Donnell CI, Barón AE, Grunwald GK, Maddox TM, Bradley SM, et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA. 2013;310:1829–36.

    Article  CAS  PubMed  Google Scholar 

  60. Finkle WD, Greenland S, Ridgeway GK, Adams JL, Frasco MA, Cook MB, et al. Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One. 2014;9:e85805.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Morgentaler A, Zitzmann M, Traish AM, Fox AW, Jones TH, Maggi M, et al. Fundamental concepts regarding testosterone deficiency and treatment: international expert consensus resolutions. Mayo Clin Proc. 2016;91:881–96.

    Article  PubMed  Google Scholar 

  62. Ali WHAB. Ciprofloxacin-associated posterior reversible encephalopathy. BMJ Case Rep. 2013;2013. https://doi.org/10.1136/bcr-2013-008636.

    Google Scholar 

  63. Patel AS, Supan EM, Ali SN. Toxic epidermal necrolysis associated with rifaximin. Am J Health Syst Pharm. 2013;70:874–6.

    Article  CAS  PubMed  Google Scholar 

  64. Sharma D, Ivanovski S, Slevin M, Hamlet S, Pop TS, Brinzaniuc K, et al. Bisphosphonate-related osteonecrosis of jaw (BRONJ): diagnostic criteria and possible pathogenic mechanisms of an unexpected anti-angiogenic side effect. Vasc Cell. 2013;5:1.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Smalheiser NR, Swanson DR. Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. Comput Methods Programs Biomed. 1998;57:149–53.

    Article  CAS  PubMed  Google Scholar 

  66. Shang N, Xu H, Rindflesch TC, Cohen T. Identifying plausible adverse drug reactions using knowledge extracted from the literature. J Biomed Inform. 2014;52:293–310.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hristovski D, Rindflesch T, Peterlin B. Using literature-based discovery to identify novel therapeutic approaches. Cardiovasc Hematol Agents Med Chem. 2013;11:14–24.

    Article  CAS  PubMed  Google Scholar 

  68. Yetisgen-Yildiz M, Pratt W. A new evaluation methodology for literature-based discovery systems. J Biomed Inform. 2009;42:633–43.

    Article  PubMed  Google Scholar 

  69. Preiss J, Stevenson M, Gaizauskas R. Exploring relation types for literature-based discovery. J Am Med Inform Assoc. 2015;22:987–92.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tari L, Vo N, Liang S, Patel J, Baral C, Cai J. Identifying novel drug indications through automated reasoning. PLoS One. 2012;7:e40946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A. Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform. 2011;12:357–68.

    Article  CAS  PubMed  Google Scholar 

  72. Doulaverakis C, Nikolaidis G, Kleontas A, Kompatsiaris I. Panacea, a semantic-enabled drug recommendations discovery framework. J Biomed Semant. 2014;5:13.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Alexander Gartland for fruitful discussions that helped to improve the quality of the manuscript.

The MedDRA® trademark is owned by the International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) on behalf of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tropsha.

Ethics declarations

Funding

This study was supported in part by the National Institutes of Health (Grant 1U01CA207160).

Conflict of interest

Mary La, Alexander Sedykh, Denis Fourches, Eugene Muratov, and Alexander Tropsha declare no conflict of interests that are directly relevant to the content of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 601 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La, M.K., Sedykh, A., Fourches, D. et al. Predicting Adverse Drug Effects from Literature- and Database-Mined Assertions. Drug Saf 41, 1059–1072 (2018). https://doi.org/10.1007/s40264-018-0688-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-018-0688-5

Navigation