Skip to main content
Log in

From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

In the last decade ‘big data’ has become a buzzword used in several industrial sectors, including but not limited to telephony, finance and healthcare. Despite its popularity, it is not always clear what big data refers to exactly. Big data has become a very popular topic in healthcare, where the term primarily refers to the vast and growing volumes of computerized medical information available in the form of electronic health records, administrative or health claims data, disease and drug monitoring registries and so on. This kind of data is generally collected routinely during administrative processes and clinical practice by different healthcare professionals: from doctors recording their patients’ medical history, drug prescriptions or medical claims to pharmacists registering dispensed prescriptions. For a long time, this data accumulated without its value being fully recognized and leveraged. Today big data has an important place in healthcare, including in pharmacovigilance. The expanding role of big data in pharmacovigilance includes signal detection, substantiation and validation of drug or vaccine safety signals, and increasingly new sources of information such as social media are also being considered. The aim of the present paper is to discuss the uses of big data for drug safety post-marketing assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Martin-Sanchez F, Verspoor K. Big data in medicine is driving big changes. Yearb Med Inform. 2014;9:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ross MK, Wei W, Ohno-Machado L. “Big data” and the ELECTRONIC HEALTH RECORD. Yearb Med Inform. 2014;9:97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Index for excerpts from the American Recovery and Reinvestment Act of 2009. Health Information Technology (HITECH) Act 2009. 112–64.

  4. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013;20:117–21.

    Article  PubMed  Google Scholar 

  5. Wagholikar KB, Sundararajan V, Deshpande AW. Modeling paradigms for medical diagnostic decision support: a survey and future directions. J Med Syst. 2012;36:3029–49.

    Article  PubMed  Google Scholar 

  6. Sullivan P, Goldmann D. The promise of comparative effectiveness research. JAMA. 2011;305:400–1.

    Article  CAS  PubMed  Google Scholar 

  7. Bate A, Juniper J, Lawton AM, Thwaites RM. Designing and incorporating a real world data approach to international drug development and use: what the UK offers. Drug Discov Today. 2016;21(3):400–5.

    Article  PubMed  Google Scholar 

  8. Trifirò G, Vaishali P, Schuemie MJ, Coloma P, Gini P, Herings R, Mazzaglia G, Picelli P, Nicotra F, Pedersen L, van der Lei J, Sturkenboom M, on behalf of the EU-ADR consortium. Can the EU-ADR database network detect timely drug safety signals? Pharmacoepidemiol Drug Saf. 2012;21(Supp. 3):173.

    Google Scholar 

  9. Bate A, Pariente A, Hauben M, Bégaud B. Quantitative signal detection and analysis in pharmacovigilance. Mann’s Pharmacovigil. 2014:331–54.

  10. Food and Drug Administration (FDA). Reports received and reports entered into FAERS by year. https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm070434.htm. Accessed 25 July 2017.

  11. Uppsala Monitoring Centre. Vigibase webpage. https://www.who-umc.org/vigibase/vigibase/. Accessed 25 July 2017.

  12. European Medicines Agency. 2016 Annual report on EudraVigilance for the European Parliament, the Council and the Commission. http://www.ema.europa.eu/docs/en_GB/document_library/Report/2017/03/WC500224056.pdf.

  13. Platt R, Wilson M, Chan KA, Benner JS, Marchibroda J, McClellan M. The new Sentinel Network—improving the evidence of medical-product safety. N Engl J Med. 2009;361:645–7.

    Article  CAS  PubMed  Google Scholar 

  14. Coloma PM, Schuemie MJ, Trifirò G, Gini R, Herings R, Hippisley-Cox J, Mazzaglia G, Giaquinto C, Corrao G, Pedersen L, van der Lei J, Sturkenboom M, EU-ADR Consortium. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20:1–11.

    Article  PubMed  Google Scholar 

  15. Food and Drug Administration. FDA’s Sentinel initiative–background. https://www.fda.gov/Safety/FDAsSentinelInitiative/ucm149340.htm. Accessed 25 July 2017.

  16. Trifiro G, Fourrier-Reglat A, Sturkenboom MC, DíazAcedo C, Van Der Lei J, EU-ADR Group. The EU-ADR project: preliminary results and perspective. Stud Health Technol Inform. 2009;148:43–9.

    PubMed  Google Scholar 

  17. Avillach P, Coloma PM, Gini R, Schuemie M, Mougin F, Dufour JC, Mazzaglia G, Giaquinto C, Fornari C, Herings R, Molokhia M, Pedersen L, Fourrier-Réglat A, Fieschi M, Sturkenboom M, van der Lei J, Pariente A, Trifirò G, EU-ADR consortium. Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project. J Am Med Inform Assoc. 2013;20(1):184–92.

    Article  PubMed  Google Scholar 

  18. Trifirò G, Coloma PM, Rijnbeek PR, Romio S, Mosseveld B, Weibel D, Bonhoeffer J, Schuemie M, van der Lei J, Sturkenboom M. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how? J Intern Med. 2014;275(6):551–61.

    Article  PubMed  Google Scholar 

  19. de Bie S, Coloma PM, Ferrajolo C, Verhamme KM, Trifirò G, Schuemie MJ, Straus SM, Gini R, Herings R, Mazzaglia G, Picelli G, Ghirardi A, Pedersen L, Stricker BH, van der Lei J, Sturkenboom MC, EU-ADR consortium. The role of electronic healthcare record databases in paediatric drug safety surveillance: a retrospective cohort study. Br J Clin Pharmacol. 2015;80(2):304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Trifirò G, de Ridder M, Sultana J, Oteri A, Rijnbeek P, Pecchioli S, Mazzaglia G, Bezemer I, Garbe E, Schink T, Poluzzi E, Frøslev T, Molokhia M, Diemberger I, Sturkenboom MCJM. Use of azithromycin and risk of ventricular arrhythmia. CMAJ. 2017;189(15):E560–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blake KV, Devries CS, Arlett P, Kurz X, Fitt H. Increasing scientific standards, independence and transparency in post-authorisation studies: the role of the European Network of Centres for Pharmacoepidemiology and Pharmacovigilance. Pharmacoepidemiol Drug Saf. 2012;21(7):690–6.

    Article  PubMed  Google Scholar 

  22. Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bisgin H, Liu Z, Fang H, Xu X, Tong W. Mining FDA drug labels using an unsupervised learning technique-topic modeling. BMC Bioinform. 2011;12(Suppl 10):S11.

    Article  Google Scholar 

  24. Orre R, Bate A, Norén GN, Swahn E, Arnborg S, Edwards IR. A Bayesian recurrent neural network for unsupervised pattern recognition in large incomplete data sets. Int J Neural Syst. 2005;15(03):207–22.

    Article  PubMed  Google Scholar 

  25. Chandler RE, Juhlin K, Fransson J, Caster O, Edwards IR, Norén GN. Current safety concerns with human papillomavirus vaccine: a cluster analysis of reports in VigiBase®. Drug Saf. 2017;40(1):81–90.

    Article  CAS  PubMed  Google Scholar 

  26. Alvager T, Smith TJ, Vijai F. Neural-network applications for analysis of adverse drug reactions. Biomed Instrum Technol. 1993;27(5):408–11.

    CAS  PubMed  Google Scholar 

  27. Reps JM, Garibaldi JM, Aickelin U, Gibson JE, Hubbard RB. A supervised adverse drug reaction signalling framework imitating Bradford Hill’s causality considerations. J Biomed Inform. 2015;56:356–68.

    Article  PubMed  Google Scholar 

  28. Walker AM, Zhou X, Ananthakrishnan AN, Weiss LS, Shen R, Sobel RE, Bate A, Reynolds RF. Computer-assisted expert case definition in electronic health records. Int J Med Inform. 2016;86:62–70.

    Article  PubMed  Google Scholar 

  29. Luo Y, Thompson WK, Herr TM, Zeng Z, Berendsen MA, Jonnalagadda SR, Carson MB, Starren J. Natural language processing for EHR-based pharmacovigilance: a structured review. Drug Saf. 2017. (epub ahead of print).

  30. Abacha AB, Chowdhury MF, Karanasiou A, Mrabet Y, Lavelli A, Zweigenbaum P. Text mining for pharmacovigilance: using machine learning for drug name recognition and drug–drug interaction extraction and classification. J Biomed Inform. 2015;58:122–32.

    Article  PubMed  Google Scholar 

  31. Shang N, Xu H, Rindflesch TC, Cohen T. Identifying plausible adverse drug reactions using knowledge extracted from the literature. J Biomed Inform. 2014;52:293–310.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nikfarjam A, Sarker A, O’Connor K, Ginn R, Gonzalez G. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015;22(3):671–81.

    PubMed  PubMed Central  Google Scholar 

  33. Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015;53:196–207.

    Article  PubMed  Google Scholar 

  34. Smart Insights. Global social media research summary 2017. http://www.smartinsights.com/social-media-marketing/social-media-strategy/new-global-social-media-research/. Accessed 25 July 2017.

  35. Pierce CE, Bouri K, Pamer C, Proestel S, Rodriguez HW, Van Le H, Freifeld CC, Brownstein JS, Walderhaug M, Edwards IR, Dasgupta N. Evaluation of Facebook and Twitter monitoring to detect safety signals for medical products: an analysis of recent FDA safety alerts. Drug Saf. 2017;40(4):317–31.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sarker A, Ginn R, Nikfarjam A, O’Connor K, Smith K, Jayaraman S, Upadhaya T, Gonzalez GJ. Utilizing social media data for pharmacovigilance: a review. Biomed Inform. 2015;54:202–12.

    Article  Google Scholar 

  37. Yom-Tov E, Gabrilovich E. Postmarket drug surveillance without trial costs: discovery of adverse drug reactions through large-scale analysis of web search queries. J Med Internet Res. 2013;15(6):e124.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ventola LC. Mobile devices and apps for health care professionals: uses and benefits. Pharm Ther. 2014;39(5):356–64.

    Google Scholar 

  39. Kukula VA, Dodoo AA, Akpakli J, Narh-Bana SA, Clerk C, Adjei A, Awini E, Manye S, Nagai RA, Odonkor G, Nikoi C. Feasibility and cost of using mobile phones for capturing drug safety information in peri-urban settlement in Ghana: a prospective cohort study of patients with uncomplicated malaria. Malar J. 2015;14(1):411.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: promises and barriers. PLoS Med. 2016;13(2):e1001953.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xia F, Yang LT, Wang L, Vinel A. Internet of things. Int J Commun Syst. 2012;25(9):1101.

    Article  Google Scholar 

  42. Ko J, Lu C, Srivastava MB, Stankovic JA, Terzis A, Welsh M. Wireless sensor networks for healthcare. Proc IEEE. 2010;98(11):1947–60.

    Article  Google Scholar 

  43. Pratt N, Andersen M, Bergman U, Choi NK, Gerhard T, Huang C, Kimura M, Kimura T, Kubota K, Lai EC, Ooba N, Osby U, Park BJ, Sato T, Shin JY, Sundström A, Yang YH, Roughead EE. Multi-country rapid adverse drug event assessment: the Asian Pharmacoepidemiology Network (AsPEN) antipsychotic and acute hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22(9):915–24.

    CAS  PubMed  Google Scholar 

  44. Coloma PM, Trifirò G, Patadia V, Sturkenboom M. Postmarketing safety surveillance: where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36(3):183–97.

    Article  PubMed  Google Scholar 

  45. Patadia VK, Coloma P, Schuemie MJ, Herings R, Gini R, Mazzaglia G, Picelli G, Fornari C, Pedersen L, van der Lei J, Sturkenboom M, Trifirò G. Using real-world healthcare data for pharmacovigilance signal detection—the experience of the EU-ADR project. Expert Rev Clin Pharmacol. 2015;8(1):95–102.

    Article  PubMed  Google Scholar 

  46. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017. doi:10.1001/jama.2017.7797 (epub ahead of print).

    Google Scholar 

  47. Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Trifirò.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this study.

Conflict of interest

Janet Sultana has no conflicts of interest that are directly related to the contents of this study. Andrew Bate has no conflicts of interest that are directly related to the contents of this study. He is a full-time employee of Pfizer and holds stock and stock-options with Pfizer. Gianluca Trifirò has no conflicts of interest that are directly related to the contents of this study. He is the scientific coordinator of a Master’s degree course which has received unconditional funding from Celgene, Amgen, ABC International Pharma, Shire Pharmaceuticals, Mediolanum Pharmaceuticals, Hospira, Allergan, MSD, Astrazeneca, Roche, Alfa Wassermann, Otsuka, Teva Pharmaceuticals, Bristol-Myers Squibb, and Daiichi Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trifirò, G., Sultana, J. & Bate, A. From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources. Drug Saf 41, 143–149 (2018). https://doi.org/10.1007/s40264-017-0592-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-017-0592-4

Navigation