Skip to main content

Advertisement

Log in

Modeling Paradigms for Medical Diagnostic Decision Support: A Survey and Future Directions

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Use of computer based decision tools to aid clinical decision making, has been a primary goal of research in biomedical informatics. Research in the last five decades has led to the development of Medical Decision Support (MDS) applications using a variety of modeling techniques, for a diverse range of medical decision problems. This paper surveys literature on modeling techniques for diagnostic decision support, with a focus on decision accuracy. Trends and shortcomings of research in this area are discussed and future directions are provided. The authors suggest that—(i) Improvement in the accuracy of MDS application may be possible by modeling of vague and temporal data, research on inference algorithms, integration of patient information from diverse sources and improvement in gene profiling algorithms; (ii) MDS research would be facilitated by public release of de-identified medical datasets, and development of opensource data-mining tool kits; (iii) Comparative evaluations of different modeling techniques are required to understand characteristics of the techniques, which can guide developers in choice of technique for a particular medical decision problem; and (iv) Evaluations of MDS applications in clinical setting are necessary to foster physicians’ utilization of these decision aids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. S. Berner, R. S. Maisiak, C. G. Cobbs, and O. D. Taunton. Effects of a decision support system on physicians’ diagnostic performance. Journal of the American Medical Informatics Association: JAMIA, 6(5):420–427, 1999.

    Article  Google Scholar 

  2. A. Hall and G. Walton. Information overload within the health care system: a literature review. Health Info Libr J, 21(2):102–108, 2004.

    Article  Google Scholar 

  3. J. Wyatt. Use and sources of medical knowledge. Lancet, 338(8779):1368–1373, 1991.

    Article  Google Scholar 

  4. G. A. Miller. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev, 63(2):81–97, 1956.

    Article  Google Scholar 

  5. R. Glassman, K. Leniek, and T. Haegerich. Human working memory capacity is 7 2 in a radial maze with distracting interruption: possible implication for neural mechanisms of declarative and implicit long-term memory. Brain Research Bulletin, 47(3):249–256, 1998.

    Article  Google Scholar 

  6. P. D. Clayton, R. S. Evans, T. Pryor, R. M. Gardner, P. J. Haug, O. B. Wigertz, and H. R. Warner. Bringing help to the clinical laboratory–use of an expert system to provide automatic interpretation of laboratory data. Annals of clinical biochemistry, 24 Suppl 1:5–11, 1987.

    Google Scholar 

  7. Richard Smith. What clinical information do doctors need? BMJ, 313(7064):1062–1068, 1996.

    Article  Google Scholar 

  8. Jon Brassey, Glyn Elwyn, Chris Price, and Paul Kinnersley. Just in time information for clinicians: a questionnaire evaluation of the attract project. BMJ, 322(7285):529–530, 2001.

    Article  Google Scholar 

  9. Gordon D. Schiff, Seijeoung Kim, Richard Abrams, Karen Cosby, Bruce Lambert, Arthur S. Elstein, Scott Hasler, Nela Krosnjar, Richard Odwazny, Mary F. Wisniewski, and Robert A. McNutt. Diagnosing Diagnosis Errors: Lessons from a Multi-institutional Collaborative Project. Advances in Patient Safety 2005;2:255-278., volume 2, pp. 255–278. 2005.

  10. Mark L. Graber, Nancy Franklin, and Ruthanna Gordon. Diagnostic error in internal medicine. Arch Intern Med, 165(13):1493–1499, 2005.

    Article  Google Scholar 

  11. David B. Aronow, Thomas H. Payne, and S. Pierre Pincetl. Postdoctoral training in medical informatics: A survey of national library of medicine-supported fellows. Med Decis Making, 11(1):29–32, 1991.

    Article  Google Scholar 

  12. Robert S. Ledley and Lee B. Lusted. Reasoning foundations of medical diagnosis; symbolic logic, probability, and value theory aid our understanding of how physicians reason. Science, 130(3366):9–21, 1959.

    Article  Google Scholar 

  13. Randolph A. Miller. Medical diagnostic decision support systems—past, present, and future. Journal of the American Medical Informatics Association, 1(1):8–27, 1994.

    Article  Google Scholar 

  14. C. A. Kulikowski. Artificial intelligence in medicine: a personal retrospective on its emergence and early function. In Proceedings of ACM conference on History of medical informatics, New York, NY, USA, 1987. ACM Press, New York.

    Google Scholar 

  15. F. T. De Dombal. Assigning value to clinical information–a major limiting factor in the implementation of decision-support systems. Methods of information in medicine, 35(1):1–4, 1996.

    Google Scholar 

  16. B. Puppe, C. Ohmann, K. Goos, F. Puppe, and O. Mootz. Evaluating four diagnostic methods with acute abdominal pain cases. Methods Inf Med, 34(4):361–368, 1995.

    Google Scholar 

  17. J. D. Myers. The computer as a diagnostic consultant, with emphasis on use of laboratory data. Clin Chem, 32(9):1714–1718, 1986.

    Google Scholar 

  18. E. H. Shortliffe. Medical thinking: What should we do?, 2006.

  19. Elaine F. Chouinard, Bernard L. Ryack, and Douglas M. Stetson. A comparison of the usability of three versions of a computerized medical diagnostic assistance program for abdominal pain. Technical report, Naval Submarine Medical Research Lab., Groton ,CT, 1991.

  20. D. W. Bates. Ten commandments for effective clinical decision support: Making the practice of evidence-based medicine a reality. Journal of the American Medical Informatics Association, 10(6):523–530, 2003.

    Article  Google Scholar 

  21. Carol Friedman, Lyudmila Shagina, Yves Lussier, and George Hripcsak. Automated encoding of clinical documents based on natural language processing. Journal of the American Medical Informatics Association: JAMIA, 11(5):392–402, 2004.

    Article  Google Scholar 

  22. Jonathan Clive, Lee B. Lusted, Casimir Kulikowski, T. Allan Pryor, and Bruce McCormick. Computer algorithms for analyzing patient data. In AFIPS ’74: Proceedings of the May 6–10, 1974, national computer conference and exposition, p. 1025, New York, NY, USA, 1974. ACM Press, New York.

  23. J. Ridderikhoff and B. van Herk. Who is afraid of the system? doctors’ attitude towards diagnostic systems. International journal of medical informatics, 53(1):91–100, 1999.

    Article  Google Scholar 

  24. H. R. Warner, A. F. Toronto, L. G. Veasey, and R. Stephenson. A mathematical approach to medical diagnosis. application to congenital heart disease. JAMA: The Journal of the America Medical Association, 177:177–183, 1961.

    Article  Google Scholar 

  25. R. S. Evans. The help system: a review of clinical applications in infectious diseases and antibiotic use. M.D. Computing: Computers in Medical Practice, 8(5), 1991.

  26. Robert M. Kolodner and J. V. Douglas, editors. Computerizing Large Integrated Health Networks: the Va Success. Springer, New York, 1st edition, 1997.

    Google Scholar 

  27. F. T. de Dombal. Computers, diagnoses and patients with acute abdominal pain. Archives of emergency medicine, 9(3):267–270, 1992.

    Google Scholar 

  28. G. O. Barnett, J. J. Cimino, J. A. Hupp, and E. P. Hoffer. Dxplain. an evolving diagnostic decision-support system. JAMA: The journal of the American Medical Association, 258(1):67–74, 1987.

    Article  Google Scholar 

  29. A. Gammerman and A. R. Thatcher. Bayesian diagnostic probabilities without assuming independence of symptoms. Methods of Information in Medicine, 30(1):15–22, 1991.

    Google Scholar 

  30. I. Zelic, I. Kononenko, N. Lavrac, and V. Vuga. Induction of decision trees and Bayesian classification applied to diagnosis of sport injuries. Journal of Medical Systems, 21(6):429–444, 1997.

    Article  Google Scholar 

  31. Tom Burr, Frederick Koster, Rick Picard, Dave Forslund, Doug Wokoun, Ed Joyce, Judith Brillman, Phil Froman, and Jack Lee. Computer-aided diagnosis with potential application to rapid detection of disease outbreaks. Statistics in Medicine, 26(8):1857–1874, 2007.

    Article  MathSciNet  Google Scholar 

  32. I. J. Check, G. T. Gowitt, and G. W. Staton. Bronchoalveolar lavage cell differential in the diagnosis of sarcoid interstitial lung disease. likelihood ratios based on computerized data base. American Journal of Clinical Pathology, 84(6):744–747, 1985.

    Google Scholar 

  33. D. F. Schorderet. Diagnosing human malformation patterns with a microcomputer: evaluation of two different algorithms. American Journal of Medical Genetics, 28(2):337–344, 1987.

    Article  Google Scholar 

  34. F. Wiener, M. Gabbai, and M. Jaffe. Computerized classification of congenital malformations using a modified Bayesian approach. Computers in Biology and Medicine, 17(4):259–267, 1987.

    Article  Google Scholar 

  35. C. Y. Lee, L. Carmony, M. Evens, F. Naeymi-Rad, and D. Trace. A test selection module for medas. In Symposium on Computer Applications in Medical Care, pp. 706–710, 1991.

  36. R. L. Engle, B. J. Flehinger, S. Allen, R. Friedman, M. Lipkin, B. J. Davis, and L. L. Leveridge. Heme: a computer aid to diagnosis of hematologic disease. Bulletin of the New York Academy of Medicine, 52(5):584–600, 1976.

    Google Scholar 

  37. D. F. Graham. Computer-aided prediction of gangrenous and perforating appendicitis. British Medical Journal, 2(6099):1375–1377, 1977.

    Article  Google Scholar 

  38. I. D. Adams, M. Chan, P. C. Clifford, W. M. Cooke, V. Dallos, F. T. de Dombal, M. H. Edwards, D. M. Hancock, D. J. Hewett, and N. McIntyre. Computer aided diagnosis of acute abdominal pain: a multicentre study. Br Med J (Clin Res Ed), 293(6550):800–804, 1986.

    Article  Google Scholar 

  39. B. S. Todd and R. Stamper. The relative accuracy of a variety of medical diagnostic programs. Methods Inf Med, 33(4):402–416, 1994.

    Google Scholar 

  40. C. Ohmann, V. Moustakis, Q. Yang, and K. Lang. Evaluation of automatic knowledge acquisition techniques in the diagnosis of acute abdominal pain. acute abdominal pain study group. Artif Intell Med, 8(1):23–36, 1996.

    Article  Google Scholar 

  41. F. H. Edwards and R. S. Davies. Use of a Bayesian algorithm in the computer-assisted diagnosis of appendicitis. Surgery, Gynecology & Obstetrics, 158(3):219–222, 1984.

    Google Scholar 

  42. D. H. Wilson, P. D. Wilson, R. G. Walmsley, J. C. Horrocks, and F. T. De Dombal. Diagnosis of acute abdominal pain in the accident and emergency department. The British Journal of Surgery, 64(4):250–254, 1977.

    Article  Google Scholar 

  43. F. Wiener, D. Laufer, and A. Ribak. Computer-aided diagnosis of odontogenic lesions. International Journal of Oral and Maxillofacial Surgery, 15(5):592–596, 1986.

    Article  Google Scholar 

  44. J. R. Iglesias, J. Esparza, C. Aruffo, and K. Maier-Hauff. Differential diagnosis of intraspinal neurinomas and meningiomas by means of a Bayesian system. Archivos de Neurobiologiá, 51(6):333–341, 1988.

    Google Scholar 

  45. F. H. Edwards, P. S. Schaefer, S. Callahan, G. M. Graeber, and R. A. Albus. Bayesian statistical theory in the preoperative diagnosis of pulmonary lesions. Chest, 92(5):888–891, 1987.

    Article  Google Scholar 

  46. G. H. Du Boulay, D. Teather, D. Harling, and G. Clarke. Improvement in the computer-assisted diagnosis of cerebral tumours. The British Journal of Radiology, 50(600):849–854, 1977.

    Article  Google Scholar 

  47. G. Lindberg, A. Björkman, and R. P. Knill-Jones. Computer aided diagnosis of jaundice. a comparison of two data bases. Scandinavian Journal of Gastroenterology. Supplement, 128:180–189, 1987.

    Article  Google Scholar 

  48. Y. Reisman, G. M. van Dam, C. H. Gips, S. M. Lavelle, B. Kanagaratnam, P. Niermeijer, P. Spoelstra, and O. de Vries. Physician’s working diagnosis compared to the euricterus real life data diagnostic tool trial in three jaundice databases: Euricterus dutch, independent prospective and independent retrospective. Hepato-gastroenterology, 44(17):1367–1375, 1997.

    Google Scholar 

  49. Y. Reisman, C. H. Gips, and S. M. Lavelle. Primary biliary cirrhosis: an electronic diagnostic tool trial based on symptoms, (past) history and signs only, using the european database euricterus. the euricterus pmg. Hepato-gastroenterology, 44(16):1104–1109, 1997.

    Google Scholar 

  50. S. M. Lavelle and B. Kanagaratnam. The information value of clinical data. International Journal of Bio-Medical Computing, 26(3):203–209, 1990.

    Article  Google Scholar 

  51. A. Malchow-Møller, C. Thomsen, P. Matzen, L. Mindeholm, B. Bjerregaard, S. Bryant, J. Hilden, J. Holst-Christensen, T. S. Johansen, and E. Juhl. Computer diagnosis in jaundice. Bayes’ rule founded on 1002 consecutive cases. Journal of Hepatology, 3(2):154–163, 1986.

    Article  Google Scholar 

  52. F. Begon, A. M. Lockhart, J. M. Métreau, and D. Dhumeaux. A computer-aided system for the diagnosis of hepato-biliary diseases. a comparison with the performance of physicians. Medical Informatics = Médecine et Informatique, 4(1):35–42, 1979.

    Article  Google Scholar 

  53. M. de Bernardinis, V. Violi, L. Roncoroni, M. Montanari, and A. Peracchia. Automated selection of high-risk patients with acute pancreatitis. Critical Care Medicine, 17(4):318–322, 1989.

    Article  Google Scholar 

  54. J. Polák, J. Polák, and A. Kubík. [The Bayesian statistical theory in the diagnosis of malignant and non-malignant diseases of the lung, pleura and mediastinum]. Casopís Lékarů Ceských, 132(20):609–615, 1993.

    Google Scholar 

  55. J. Wójtowicz and W. Adamczyk. A failure to improve radiologists’ performances in diagnosing pulmonary lesions by a computer-aided approach. RöFo: Fortschritte auf dem Gebiete der Röntgenstrahlen und der Nuklearmedizin, 123(1):10–12, 1975.

    Article  Google Scholar 

  56. B. D. Monteith. Computerized expert system for the diagnosis of pulp-related pain. The International Journal of Prosthodontics, 4(1):30–36, 1991.

    Google Scholar 

  57. S. C. White. Computer-aided differential diagnosis of oral radiographic lesions. Dento Maxillo Facial Radiology, 18(2):53–59, 1989.

    Google Scholar 

  58. T. Chard. Qualitative probability versus quantitative probability in clinical diagnosis: a study using a computer simulation. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 11(1):38–41, 1991.

    Article  Google Scholar 

  59. T. Chard. Human versus machine: a comparison of a computer ‘expert system’ with human experts in the diagnosis of vaginal discharge. International Journal of Bio-Medical Computing, 20(1-2):71–78, 1987.

    Article  Google Scholar 

  60. N. I. Kaliadin, N. P. Kulikova, V. T. Lekomtseva, A. A. Suntsov, and A. N. Sheĭnin. [The diagnosis of epilepsy in the interactive mode using computer technology]. Meditsinskaia Tekhnika, (3):40–42, 1996.

  61. H. J. Bernelot Moens and J. K. van der Korst. Comparison of rheumatological diagnoses by a Bayesian program and by physicians. Methods of information in medicine, 30(3):187–193, 1991.

    Google Scholar 

  62. H. J. Moens and J. K. van der Korst. Development and validation of a computer program using Bayes’s theorem to support diagnosis of rheumatic disorders. Annals of the Rheumatic Diseases, 51(2):266–271, 1992.

    Article  Google Scholar 

  63. H. Kolles and K. Remberger. How to build a computer-assisted, diagnosis-finding system. An example in dermatopathology. Archives of Pathology & Laboratory Medicine, 115(10):1011–1015, 1991.

    Google Scholar 

  64. G. J. Brooks, R. E. Ashton, and R. J. Pethybridge. Dermis: a computer system for assisting primary-care physicians with dermatological diagnosis. The British Journal of Dermatology, 127(6):614–619, 1992.

    Article  Google Scholar 

  65. A. S. Leveille, K. J. Fritz, W. M. Jay, and S. J. Silverman. Bayes’ theorem in ophthalmologic computer diagnosis. Journal of Pediatric Ophthalmology and Strabismus, 19(2):94–96, 1982.

    Google Scholar 

  66. D. T. Nguyen, L. W. Diamond, G. Priolet, and C. Sultan. Expert system design in hematology diagnosis. Methods of Information in Medicine, 31(2):82–89, 1992.

    Google Scholar 

  67. F. Sigaux, M. Imbert, G. Priolet, J. J. Bucquen, C. Levy, and C. Sultan. [An aid in decision-making in hematology: characteristics and performances of the program. 200 cases of anemia]. Presse Médicale (Paris, France: 1983), 16(3):111–114, 1987.

    Google Scholar 

  68. A. Blinowska, G. Chatellier, A. Wojtasik, and J. Bernier. Diagnostica–a Bayesian decision-aid system–applied to hypertension diagnosis. IEEE Transactions on Bio-Medical Engineering, 40(3):230–236, 1993.

    Article  Google Scholar 

  69. K. S. Bay, S. J. Lee, D. P. Flathman, J. W. Roll, and W. Piercy. Application of step-wise discriminant analysis and Bayesian classification procedure in determining prognosis of acute myocardial infarction. Canadian Medical Association Journal, 115(9):887–892, 1976.

    Google Scholar 

  70. K. L. Lanctôt and C. A. Naranjo. Computer-assisted evaluation of adverse events using a Bayesian approach. Journal of Clinical Pharmacology, 34(2):142–147, 1994.

    Google Scholar 

  71. W. D. Jeans and A. F. Morris. The accuracy of radiological and computer dianoses in small bowel examinations in children. The British Journal of Radiology, 49(584):665–669, 1976.

    Article  Google Scholar 

  72. A. Bogusevicius, J. Pundzius, A. Maleckas, and L. Vilkauskas. Computer-aided diagnosis of the character of bowel obstruction. International Surgery, 84(3):225–228, 1999.

    Google Scholar 

  73. C. Ohmann, M. Künneke, R. Zaczyk, K. Thon, and W. Lorenz. Selection of variables using ‘independence bayes’ in computer-aided diagnosis of upper gastrointestinal bleeding. Statistics in Medicine, 5(5):503–515, 1986.

    Article  Google Scholar 

  74. W. B. Schwartz, G. A. Gorry, J. P. Kassirer, and A. Essig. Decision analysis and clinical judgment. The American Journal of Medicine, 55(3):459–472, 1973.

    Article  Google Scholar 

  75. A. S. Ginsberg. Decision Analysis in Clinical Patient Management with an Application to the Pleural Effusion Problem. PhD thesis, Dept. of Engineering-Economic Systems, Stanford University, 1970.

  76. G. A. Gorry, J. P. Kassirer, A. Essig, and W. B. Schwartz. Decision analysis as the basis for computer-aided management of acute renal failure. The American Journal of Medicine, 55(3):473–484, 1973.

    Article  Google Scholar 

  77. P. Szolovits, R. S. Patil, and W. B. Schwartz. Artificial intelligence in medical diagnosis. Annals of Internal Medicine, 108(1):80–87, 1988.

    Google Scholar 

  78. D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani. Toward normative expert systems: Part I. The pathfinder project. Methods of Information in Medicine, 31(2):90–105, 1992.

    Google Scholar 

  79. Edward H. Shortliffe. Mycin: A knowledge-based computer program applied to infectious diseases. In Annu Symp Comput Appl Med Care, pp. 66–69, 1977.

  80. R. N. Goldberg and S. M. Weiss. An experimental transformation of a large expert knowledge base. Journal of Medical Systems, 6(1):41–52, 1982.

    Article  Google Scholar 

  81. G. A. Drastal and C. A. Kulikowski. Knowledge-based acquisition of rules for medical diagnosis. Journal of Medical Systems, 6(5):433–445, 1982.

    Article  Google Scholar 

  82. Peter G. Politakis. Using empirical analysis to refine expert system knowledge bases (seek). PhD thesis, New Brunswick, NJ, USA, 1983.

  83. A. D. Vanker and W. Van Stoecker. An expert diagnostic program for dermatology. Computers and Biomedical Research, an International Journal, 17(3):241–247, 1984.

    Article  Google Scholar 

  84. S. I. Danilenko, A. F. Chernousov, A. P. Pozdniakov, V. I. Fokin, and E. F. Stranadko. [Differential diagnosis of esophageal cancer by using mathematical decision rules]. Voprosy Onkologii, 25(7):22–25, 1979.

    Google Scholar 

  85. M. A. Overby. Psyxpert: an expert system prototype for aiding psychiatrists in the diagnosis of psychotic disorders. Computers in Biology and Medicine, 17(6):383–393, 1987.

    Article  Google Scholar 

  86. R. T. Plant, S. Murrell, and H. R. Moreno. Prototype decision support system for a differential diagnosis of psychotic, mood, and organic mental disorders: Part II. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 14(3):273–288, 1994.

    Article  Google Scholar 

  87. E. L. Kinney, D. Brafman, and R. J. Wright. An expert system on the diagnosis of ascites. Computers and Biomedical Research, an International Journal, 21(2):169–173, 1988.

    Article  Google Scholar 

  88. P. A. Riss and H. Koelbl. Development of an expert system for preoperative assessment of female urinary incontinence. International Journal of Bio-Medical Computing, 22(3-4):217–223, 1988.

    Article  Google Scholar 

  89. J. Ruszkowski. Early pregnancy disorders: expert knowledge based consultation. Journal of Perinatal Medicine, 16(4):289–297, 1988.

    Article  Google Scholar 

  90. M. Ivandic, Y. Ogurol, W. Hofmann, and W. G. Guder. From a urinalysis strategy to an evaluated urine protein expert system. Methods of Information in Medicine, 39(1):93–98, 2000.

    Google Scholar 

  91. R. Hofestadt. A rule based system for the detection of metabolic diseases. Medinfo. MEDINFO, 8 Pt 2:964–968, 1995.

    Google Scholar 

  92. J. Joch, T. Bürkle, and J. Dudeck. Decision support for infectious diseases–a working prototype. Studies in Health Technology and Informatics, 77:812–816, 2000.

    Google Scholar 

  93. P. J. Lucas, R. W. Segaar, and A. R. Janssens. Hepar: an expert system for the diagnosis of disorders of the liver and biliary tract. Liver, 9(5):266–275, 1989.

    Google Scholar 

  94. R. Cavestri, L. Radice, V. D’Angelo, and E. Longhini. Focus. An expert system for the clinical diagnosis of the location of acute neurologic events. Minerva Medica, 82(12):815–820, 1991.

    Google Scholar 

  95. G. Rom, G. Schwarz, R. Grims, E. Rumpl, G. Pfurtscheller, and V. Haase. Braindex: an interactive, knowledge-based system supporting brain death diagnosis. Methods of Information in Medicine, 29(3):193–199, 1990.

    Google Scholar 

  96. Y. Matsumura. Rhinos: a consultation system for diagnosis of headache and facial pain. Computer Methods and Programs in Biomedicine, 23(1):65–71, 1986.

    Article  MathSciNet  Google Scholar 

  97. R. N. Shiffman and R. A. Greenes. Use of augmented decision tables to convert probabilistic data into clinical algorithms for the diagnosis of appendicitis. In Annual Symposium on Computer Application in Medical Care, pp. 686–690, 1991.

  98. A. Kar, G. E. Miller, and S. V. Sheppard. Pulmonologist: a computer-based diagnosis system for pulmonary diseases. International Journal of Bio-Medical Computing, 21(3-4):223–235, 1987.

    Article  Google Scholar 

  99. P. E. File, P. I. Dugard, and A. S. Houston. Evaluation of the use of induction in the development of a medical expert system. Computers and Biomedical Research, an International Journal, 27(5):383–395, 1994.

    Article  Google Scholar 

  100. J. P. Baak and P. H. Kurver. Development and use of a rule-based pathology expert consultation system. Analytical and Quantitative Cytology and Histology/The International Academy of Cytology [and] American Society of Cytology, 10(3):214–218, 1988.

    Google Scholar 

  101. R. Varma and V. Chankong. Computer-aided decisions for prospective hysterectomy screening. Health Matrix, 7(3):30–32, 1989.

    Google Scholar 

  102. Carlos Ordonez. Association rule discovery with the train and test approach for heart disease prediction. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 10(2):334–343, 2006.

    Article  Google Scholar 

  103. Mila Kwiatkowska, Stella S. Atkins, Najib T. Ayas, and Frank F. Ryan. Knowledge-based data analysis: first step toward the creation of clinical prediction rules using a new typicality measure. IEEE Transactions on Information Technology in Biomedicine, 11(6):651–660, 2007.

    Article  Google Scholar 

  104. Markos G. Tsipouras, Costas Voglis, and Dimitrios I. Fotiadis. A framework for fuzzy expert system creation–application to cardiovascular diseases. IEEE Transactions on Bio-Medical Engineering, 54(11):2089–2105, 2007.

    Article  Google Scholar 

  105. Saul Amarel. Introduction to the comtex microfiche edition of the rutgers university artificial intelligence research reports: the history of artificial intelligence at rutgers university. AI Magazine, 6(3):192–202, 1985.

    Google Scholar 

  106. Alex S. C. Lee, James H. Cutts, Gordon C. Sharp, and Joyce A. Mitchell. Ai/learn network. Journal of Medical Systems, 11(5):349–358, 1987.

    Article  Google Scholar 

  107. James F. Porter, C. Lawrence, KingslandIii, Donald A. B. Lindberg, Indravadan Shah, James M. Benge, Susan E. Hazelwood, Donald R. Kay, Mitsuo Homma, Masashi Akizuki, Makoto Takano, and Gordon C. Sharp. The ai/rheum knowledge-based computer consultant system in rheumatology. Performance in the diagnosis of 59 connective tissue disease patients from Japan. Arthritis & Rheumatism, 31(2):219–226, 1988.

    Article  Google Scholar 

  108. S. Chokhani. Correspondences between biomathematical and causal models for clinical decision making. Journal of Medical Systems, 5(4):249–264, 1981.

    Article  Google Scholar 

  109. G. Banks. Artificial intelligence in medical diagnosis: the internist/caduceus approach. Critical Reviews in Medical Informatics, 1(1):23–54, 1986.

    Google Scholar 

  110. Randolph Miller. Computer-assisted diagnostic decision support: history, challenges, and possible paths forward. Advances in Health Sciences Education, 14(0):89–106, 2009.

    Article  Google Scholar 

  111. G. Werner. Methuselah–an expert system for diagnosis in geriatric psychiatry. Computers and Biomedical Research, an International Journal, 20(5):477–488, 1987.

    Article  Google Scholar 

  112. A. S. Rigby. Development of a scoring system to assist in the diagnosis of rheumatoid arthritis. Methods of Information in Medicine, 30(1):23–29, 1991.

    MathSciNet  Google Scholar 

  113. W. J. Long, S. Naimi, and M. G. Criscitiello. Development of a knowledge base for diagnostic reasoning in cardiology. Computers and Biomedical Research, an International Journal, 25(3):292–311, 1992.

    Article  Google Scholar 

  114. J. Pelz, V. Arendt, and J. Kunze. Computer assisted diagnosis of malformation syndromes: an evaluation of three databases (lddb, possum, and syndroc). American Journal of Medical Genetics, 63(1):257–267, 1996.

    Article  Google Scholar 

  115. L. A. Zadeh. Biological applications of the theory of fuzzy sets and systems. In International Symposium on Biocybernetics of Central Nervous System, pp. 199–206. Little, Brown and Company, Boston, 1969.

    Google Scholar 

  116. E. Sanchez. Medical Diagnosis and Composite Fuzzy Relations, pp. 437–444. Amsterdam: North-Holland, 1979.

  117. L. A. Zadeh. Toward a theory of fuzzy systems, pp. 209–245. Holt, Rinehart and Winston, New York, 1971.

    Google Scholar 

  118. H. Leitich, H. P. Kiener, G. Kolarz, C. Schuh, W. Graninger, and K. P. Adlassnig. A prospective evaluation of the medical consultation system cadiag-ii/rheuma in a rheumatological outpatient clinic. Methods Inf Med, 40(3):213–220, 2001.

    Google Scholar 

  119. K. P. Adlassnig, W. Scheithauer, and G. Grabner. Computer-assisted diagnosis and its application in pancreatic diseases. Acta Med Austriaca, 11(3-4):125–134, 1984.

    Google Scholar 

  120. Agata Ciabattoni, Thomas Vetterlein, and Klaus-Peter P. Adlassnig. A formal logical framework for cadiag-2. Studies in Health Technology and Informatics, 150:648–652, 2009.

    Google Scholar 

  121. C. A. Holzmann, C. A. Perez, and E. Rosselot. A fuzzy model for medical diagnosis. Medical Progress Through Technology, 13(4):171–178, 1988.

    Google Scholar 

  122. C. K. Lim, K. M. Yew, K. H. Ng, and B. J. Abdullah. A proposed hierarchical fuzzy inference system for the diagnosis of arthritic diseases. Australasian Physical & Engineering Sciences in Medicine, 25(3):144–150, 2002.

    Article  Google Scholar 

  123. Kavishwar Wagholikar, Sanjeev Mangrulkar, Ashok Deshpande, and Vijayraghavan Sundararajan. Evaluation of fuzzy relation method for medical decision support. Journal of Medical Systems, pp. 1–7, 2010. doi:10.1007/s10916-010-9472-5.

  124. Mohammad-R R. Akbarzadeh-T and Majid Moshtagh-Khorasani. A hierarchical fuzzy rule-based approach to aphasia diagnosis. Journal of Biomedical Informatics, 40(5):465–475, 2007.

  125. M. G. Tsipouras, T. P. Exarchos, D. I. Fotiadis, A. P. Kotsia, K. V. Vakalis, K. K. Naka, and L. K. Michalis. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Transactions on Information Technology in Biomedicine, 12(4):447–458, 2008.

    Article  Google Scholar 

  126. Satoru Sakaguchi, Katsunari Takifuji, Seizaburo Arita, and Hiroki Yamaue. Development of an early diagnostic system using fuzzy theory for postoperative infections in patients with gastric cancer. Digestive Surgery, 21(3):210–214, 2004.

    Article  Google Scholar 

  127. T. Ichimura, E. Tazaki, and K. Yoshida. Extraction of fuzzy rules using neural networks with structure level adaptation–verification to the diagnosis of hepatobiliary disorders. International Journal of Bio-Medical Computing, 40(2):139–146, 1995.

    Article  Google Scholar 

  128. Okure U. Obot and Faith-Michael M. Uzoka. Experimental study of fuzzy-rule based management of tropical diseases: case of malaria diagnosis. Studies in Health Technology and Informatics, 137:328–339, 2008.

    Google Scholar 

  129. L. Kuncheva. An aggregation of pro and con evidence for medical decision support systems. Computers in Biology and Medicine, 23(6):417–424, 1993.

    Article  Google Scholar 

  130. J. M. Barreto and F. M. de Azevedo. Connectionist expert systems as medical decision aid. Artificial Intelligence in Medicine, 5(6):515–523, 1993.

    Article  Google Scholar 

  131. Elif Derya D. Ubeyli and Inan Güler. Automatic detection of erthemato-squamous diseases using adaptive neuro-fuzzy inference systems. Computers in Biology and Medicine, 35(5):421–433, 2005.

    Article  Google Scholar 

  132. Charles O. Akinyokun, Okure U. Obot, Faith-Michael M. Uzoka, and John J. Andy. A neuro-fuzzy decision support system for the diagnosis of heart failure. Studies in Health Technology and Informatics, 156:231–244, 2010.

    Google Scholar 

  133. Mesut Tez and Selda Tez. Neurofuzzy systems for the prediction of outcome in acute lower gastrointestinal hemorrhage. European Journal of Gastroenterology & Hepatology, 20(8):183, 2008.

    Google Scholar 

  134. L. Godo, R. L. de Mántaras, J. Puyol-Gruart, and C. Sierra. Renoir, pneumon-ia and terap-ia: three medical applications based on fuzzy logic. Artificial Intelligence in Medicine, 21(1–3):153–162, 2001.

    Article  Google Scholar 

  135. E. Binaghi, O. De Giorgi, G. Maggi, T. Motta, and A. Rampini. Computer-assisted diagnosis of postmenopausal osteoporosis using a fuzzy expert system shell. Computers and Biomedical Research, an International Journal, 26(6):498–516, 1993.

    Article  Google Scholar 

  136. S. Zahan. A fuzzy approach to computer-assisted myocardial ischemia diagnosis. Artificial Intelligence in Medicine, 21(1–3):271–275, 2001.

    Article  Google Scholar 

  137. M. D. Innis. Clinical problem solving–the role of expert laboratory systems. Medical Informatics = Médecine et Informatique, 22(3):251–261, 1997.

    Article  Google Scholar 

  138. M. B. Causer, G. A. Findlay, C. R. Hawes, and D. R. Boswell. Assessment of a computerized system for the diagnosis of iron deficiency. Pathology, 26(1):37–39, 1994.

    Article  Google Scholar 

  139. Doraid Dalalah and Sami Magableh. A remote fuzzy multicriteria diagnosis of sore throat. Telemedicine Journal and e-Health: the Official Journal of the American Telemedicine Association, 14(7):656–665, 2008.

    Article  Google Scholar 

  140. C. A. Pena-Reyes and M. Sipper. A fuzzy-genetic approach to breast cancer diagnosis. Artificial Intelligence in Medicine, 17(2):131–155, 1999.

    Article  Google Scholar 

  141. N. Belacel, P. Vincke, J. M. Scheiff, and M. R. Boulassel. Acute leukemia diagnosis aid using multicriteria fuzzy assignment methodology. Computer Methods and Programs in Biomedicine, 64(2):145–151, 2001.

    Article  Google Scholar 

  142. R. Jain and A. Abraham. A comparative study of fuzzy classification methods on breast cancer data. Australasian Physical & Engineering Sciences in Medicine/Supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine, 27(4):213–218, 2004.

    Google Scholar 

  143. L. I. Kuncheva. Evaluation of computerized medical diagnostic decisions via fuzzy sets. International Journal of Bio-Medical Computing, 28(1–2):91–100, 1991.

    Article  Google Scholar 

  144. Voula C. Georgopoulos and Chrysotomos D. Stylios. Diagnosis support using fuzzy cognitive maps combined with genetic algorithms. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6226–6229, 2009.

  145. R. I. John and P. R. Innocent. Modeling uncertainty in clinical diagnosis using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(6):1340–1350, 2005.

    Article  Google Scholar 

  146. Pasi Luukka and Tapio Leppälampi. Similarity classifier with generalized mean applied to medical data. Computers in Biology and Medicine, 36(9):1026–1040, 2006.

    Article  Google Scholar 

  147. Vahid Khatibi and Gholam L. I. Montazer. Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition. Artificial Intelligence in Medicine, 47(1):43–52, 2009.

    Article  Google Scholar 

  148. Han-Ying Y. Kao. Diagnostic reasoning and medical decision-making with fuzzy influence diagrams. Computer Methods and Programs in Biomedicine, 90(1):9–16, 2008.

    Article  Google Scholar 

  149. Metin Akay, Maurice Cohen, and Donna Hudson. Fuzzy sets in life sciences. Fuzzy Sets Syst., 90(2):219–224, 1997.

    Article  Google Scholar 

  150. W. G. Baxt. Use of an artificial neural network for the diagnosis of myocardial infarction. Annals of Internal Medicine, 115(11):843–848, 1991.

    Google Scholar 

  151. P. J. Lisboa. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks: the Official Journal of the International Neural Network Society, 15(1):11–39, 2002.

    Article  Google Scholar 

  152. R. L. Kennedy, R. F. Harrison, A. M. Burton, H. S. Fraser, W. G. Hamer, D. MacArthur, R. McAllum, and D. J. Steedman. An artificial neural network system for diagnosis of acute myocardial infarction (ami) in the accident and emergency department: evaluation and comparison with serum myoglobin measurements. Computer Methods and Programs in Biomedicine, 52(2):93–103, 1997.

    Article  Google Scholar 

  153. M. L. Astion, M. H. Wener, R. G. Thomas, G. G. Hunder, and D. A. Bloch. Application of neural networks to the classification of giant cell arteritis. Arthritis and Rheumatism, 37(5):760–770, 1994.

    Article  Google Scholar 

  154. J. Li, Y. Mu, and L. Zhang. [Study of the pulmonary heart disease computer-aided diagnosis system based on combining neural network]. Sheng wu yi xue gong cheng xue za zhi = Journal of Biomedical Engineering = Shengwu Yixue Gongchengxue Zazhi, 18(4):573–576, 2001.

    Google Scholar 

  155. Resul Das, Ibrahim Turkoglu, and Abdulkadir Sengur. Diagnosis of valvular heart disease through neural networks ensembles. Computer Methods and Programs in Biomedicine, 93(2):185–191, 2009.

    Article  Google Scholar 

  156. Lutz Leistritz, Miroslaw Galicki, Eberhard Kochs, Ernst Bernhard B. Zwick, Clemens Fitzek, Jürgen R. Reichenbach, and Herbert Witte. Application of generalized dynamic neural networks to biomedical data. IEEE Transactions on Bio-Medical Engineering, 53(11):2289–2299, 2006.

    Article  Google Scholar 

  157. I. G. Vlachonikolis, D. A. Karras, M. J. Hatzakis, and N. Paritsis. Improved statistical classification methods in computerized psychiatric diagnosis. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 20(1):95–103, 2000.

    Article  Google Scholar 

  158. N. H. Mann and M. D. Brown. Artificial intelligence in the diagnosis of low back pain. The Orthopedic Clinics of North America, 22(2):303–314, 1991.

    Google Scholar 

  159. Malek Adjouadi, Melvin Ayala, Mercedes Cabrerizo, Nuannuan Zong, Gabriel Lizarraga, and Mark Rossman. Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering, 38(4):1473–1482, 2010.

    Article  Google Scholar 

  160. Nuannuan Zong, Malek Adjouadi, and Melvin Ayala. Optimizing the classification of acute lymphoblastic leukemia and acute myeloid leukemia samples using artificial neural networks. Biomedical Sciences Instrumentation, 42:261–266, 2006.

    Google Scholar 

  161. Jonathan L. Jesneck, Loren W. Nolte, Jay A. Baker, Carey E. Floyd, and Joseph Y. Lo. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis. Medical Physics, 33(8):2945–2954, 2006.

    Article  Google Scholar 

  162. Rohit Dua, Daryl G. Beetner, William V. Stoecker, and Donald C. Wunsch. Detection of basal cell carcinoma using electrical impedance and neural networks. IEEE Transactions on Bio-Medical Engineering, 51(1):66–71, 2004.

    Article  Google Scholar 

  163. Angelo Andriulli, Enzo Grossi, Massimo Buscema, Alberto Pilotto, Virginia Festa, and Francesco Perri. Artificial neural networks can classify uninvestigated patients with dyspepsia. European Journal of Gastroenterology & Hepatology, 19(12):1055–1058, 2007.

    Article  Google Scholar 

  164. Bruno Annibale and Edith Lahner. Assessing the severity of atrophic gastritis. European Journal of Gastroenterology & Hepatology, 19(12):1059–1063, 2007.

    Article  Google Scholar 

  165. J. S. Shang, Y. S. Lin, and A. M. Goetz. Diagnosis of mrsa with neural networks and logistic regression approach. Health Care Management Science, 3(4):287–297, 2000.

    Article  Google Scholar 

  166. E. Pesonen. Is neural network better than statistical methods in diagnosis of acute appendicitis? Studies in Health Technology and Informatics, 43 Pt A:377–381, 1997.

    Google Scholar 

  167. G. Rovetta, G. Bianchi, P. Monteforte, L. Buffrini, and G. Ghirardo. Automated diagnosis and characterization of lyme disease using neural network analysis. The Journal of Rheumatology, 22(3):571–572, 1995.

    Google Scholar 

  168. Enzo Grossi, Massimo P. Buscema, David Snowdon, and Piero Antuono. Neuropathological findings processed by artificial neural networks (anns) can perfectly distinguish alzheimer’s patients from controls in the nun study. BMC Neurology, 7:15+, 2007.

  169. Orhan Er, Cengiz Sertkaya, Feyzullah Temurtas, and A. Cetin Tanrikulu. A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system. Journal of Medical Systems, 33(6):485–492, 2009.

    Article  Google Scholar 

  170. C. Lagor, D. Aronsky, M. Fiszman, and P. J. Haug. Automatic identification of patients eligible for a pneumonia guideline: comparing the diagnostic accuracy of two decision support models. Studies in Health Technology and Informatics, 84(Pt 1):493–497, 2001.

    Google Scholar 

  171. Yogender Aggarwal, Bhuwan Mohan M. Karan, Barda Nand N. Das, and Rakesh Kumar K. Sinha. An unsupervised neural network to predict the level of heat stress. Journal of Clinical Monitoring and Computing, 22(6):425–430, 2008.

    Article  Google Scholar 

  172. D. J. Sargent. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer, 91(8 Suppl):1636–1642, 2001.

    Article  Google Scholar 

  173. Theodore Anagnostou, Mesut Remzi, Michael Lykourinas, and Bob Djavan. Artificial neural networks for decision-making in urologic oncology. European Urology, 43(6):596–603, 2003.

    Article  Google Scholar 

  174. G. Schwarzer, W. Vach, and M. Schumacher. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Statistics in Medicine, 19(4):541–561, 2000.

    Article  Google Scholar 

  175. Rudy Setiono, Wee K. Leow, and James Y. L. Thong. Opening the neural network black box: an algorithm for extracting rules from function approximating artificial neural networks. In ICIS ’00: Proceedings of the twenty first international conference on Information systems, pp. 176–186, Atlanta, GA, USA, 2000. Association for Information Systems.

  176. Elizabeth S. Burnside. Bayesian networks: computer-assisted diagnosis support in radiology. Academic Radiology, 12(4):422–430, 2005.

    Article  Google Scholar 

  177. W. W. Chapman and P. J. Haug. Bayesian modeling for linking causally related observations in chest x-ray reports. In AMIA Symposium, pp. 587–591, 1998.

  178. G. J. Price, W. G. McCluggage, M. L. Morrison M, G. McClean, L. Venkatraman, J. Diamond, H. Bharucha, R. Montironi, P. H. Bartels, D. Thompson, and P. W. Hamilton. Computerized diagnostic decision support system for the classification of preinvasive cervical squamous lesions. Human Pathology, 34(11):1193–1203, 2003.

    Article  Google Scholar 

  179. Susan M. Maskery, Hai Hu, Jeffrey Hooke, Craig D. Shriver, and Michael N. Liebman. A Bayesian derived network of breast pathology co-occurrence. Journal of Biomedical Informatics, 41(2):242–250, 2008.

    Article  Google Scholar 

  180. S. Raza, Yachna Sharma, Qaiser Chaudry, Andrew N. Young, and May D. Wang. Automated classification of renal cell carcinoma subtypes using scale invariant feature transform. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:6687–6690, 2009.

  181. Vibha Anand and Stephen M. Downs. Probabilistic asthma case finding: a noisy or reformulation. In Annual AMIA Symposium, pp. 6–10, 2008.

  182. Bilal A. Ahmed, Michael E. Matheny, Phillip L. Rice, John R. Clarke, and Omolola I. Ogunyemi. A comparison of methods for assessing penetrating trauma on retrospective multi-center data. Journal of Biomedical Informatics, 42(2):308–316, 2009.

    Article  Google Scholar 

  183. D. Aronsky, M. Fiszman, W. W. Chapman, and P. J. Haug. Combining decision support methodologies to diagnose pneumonia. In AMIA Symposium, pp. 12–16, 2001.

  184. In Sook S. Cho and Peter J. Haug. The contribution of nursing data to the development of a predictive model for the detection of acute pancreatitis. Studies in Health Technology and Informatics, 122:139–142, 2006.

    Google Scholar 

  185. W. J. Long, H. Fraser, and S. Naimi. Reasoning requirements for diagnosis of heart disease. Artificial Intelligence in Medicine, 10(1):5–24, 1997.

    Article  Google Scholar 

  186. M. Korver and P. J. Lucas. Converting a rule-based expert system into a belief network. Medical Informatics = Médecine et Informatique, 18(3):219–241, 1993.

    Article  Google Scholar 

  187. M. Suojanen, S. Andreassen, and K. G. Olesen. A method for diagnosing multiple diseases in munin. IEEE Transactions on Bio-Medical Engineering, 48(5):522–532, 2001.

    Article  Google Scholar 

  188. David Foreman, Stephanie Morton, and Tamsin Ford. Exploring the clinical utility of the development and well-being assessment (dawba) in the detection of hyperkinetic disorders and associated diagnoses in Clinical practice. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(4):460–470, 2009.

    Google Scholar 

  189. M. A. Shwe, B. Middleton, D. E. Heckerman, M. Henrion, E. J. Horvitz, H. P. Lehmann, and G. F. Cooper. Probabilistic diagnosis using a reformulation of the internist-1/qmr knowledge base. I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30(4):241–255, 1991.

    Google Scholar 

  190. Bastian Wemmenhove, Joris Mooij, Wim Wiegerinck, Martijn Leisink, Hilbert Kappen, and Jan Neijt. Inference in the promedas medical expert system. In Artificial Intelligence in Medicine, Lecture Notes in Computer Science, chapter 61, pp. 456–460. 2007.

  191. M. Cléret, F. Le Duff, A. Fresnel, and P. Le Beux. Diamed: a probabilistic diagnostic aid system on the web. Studies in Health Technology and Informatics, 84(Pt 1):429–433, 2001.

    Google Scholar 

  192. Zuoshuang Xiang, Rebecca M. Minter, Xiaoming Bi, Peter J. Woolf, and Yongqun He. minituba: medical inference by network integration of temporal data using Bayesian analysis. Bioinformatics (Oxford, England), 23(18):2423–2432, 2007.

  193. S. Wong, D. Wu, and Y. Yao. Critical remarks on the computational complexity in probabilistic inference. In Guoyin Wang, Qing Liu, Yiyu Yao, and Andrzej Skowron, editors, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, volume 2639 of Lecture Notes in Computer Science, chapter 114, pp. 587–588–588. Springer, Berlin, 2003.

  194. Kwokleung Chan, Te-Won W. Lee, Pamela A. Sample, Michael H. Goldbaum, Robert N. Weinreb, and Terrence J. Sejnowski. Comparison of machine learning and traditional classifiers in glaucoma diagnosis. IEEE Transactions on Bio-Medical Engineering, 49(9):963–974, 2002.

  195. Joarder Kamruzzaman and Rezaul K. Begg. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Transactions on Bio-Medical Engineering, 53(12 Pt 1):2479–2490, 2006.

    Article  Google Scholar 

  196. B. R. Brewer, S. Pradhan, G. Carvell, and A. Delitto. Feature selection for classification based on fine motor signs of parkinson’s disease. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:214–217, 2009.

  197. C. Lu, T. Van Gestel, J. A. Suykens, S. Van Huffel, I. Vergote, and D. Timmerman. Preoperative prediction of malignancy of ovarian tumors using least squares support vector machines. Artificial Intelligence in Medicine, 28(3):281–306, 2003.

    Article  Google Scholar 

  198. Francesco Camastra and Alessandro Verri. A novel kernel method for clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):801–805, 2005.

    Article  Google Scholar 

  199. Elisabetta La Torre, Tatiana Tommasi, Barbara Caputo, and Giovanni E. Gigante. Kernel methods for melanoma recognition. Studies in Health Technology and Informatics, 124:983–988, 2006.

    Google Scholar 

  200. Qianfei Yuan, Congzhong Cai, Hanguang Xiao, Xinghua Liu, and Yufeng Wen. Svm-aided cancer diagnosis based on the concentration of the macroelement and microelement in human blood. Sheng wu yi xue gong cheng xue za zhi = Journal of Biomedical Engineering = Shengwu Yixue Gongchengxue Zazhi, 24(3):513–518, 2007.

    Google Scholar 

  201. Jennifer Listgarten, Sambasivarao Damaraju, Brett Poulin, Lillian Cook, Jennifer Dufour, Adrian Driga, John Mackey, David Wishart, Russ Greiner, and Brent Zanke. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 10(8):2725–2737, 2004.

  202. Baek Hwan H. Cho, Hwanjo Yu, Kwang-Won W. Kim, Tae Hyun H. Kim, In Young Y. Kim, and Sun I. Kim. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods. Artificial Intelligence in Medicine, 42(1):37–53, 2008.

    Article  Google Scholar 

  203. K. Kabasawa and S. Kaihara. A sequential diagnostic model for medical questioning. Medical Informatics = Médecine et Informatique, 6(3):175–185, 1981.

    Article  Google Scholar 

  204. B. S. Duran and T. O. Lewis. An application of cluster analysis to the construction of a diagnostic classification. Computers in Biology and Medicine, 4(2):183–188, 1974.

    Article  Google Scholar 

  205. R. Thurmayr, M. Otte, and R. Thurmayr. [Computer-aided diagnosis for pancreatic function test (author’s transl)]. Langenbecks Archiv für Chirurgie, 339:253–257, 1975.

    Article  Google Scholar 

  206. D. P. McKenzie, P. D. McGorry, C. S. Wallace, L. H. Low, D. L. Copolov, and B. S. Singh. Constructing a minimal diagnostic decision tree. Methods of Information in Medicine, 32(2):161–166, 1993.

    Google Scholar 

  207. B. Sahiner, H. P. Chan, N. Petrick, R. F. Wagner, and L. Hadjiiski. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Medical Physics, 27(7):1509–1522, 2000.

    Article  Google Scholar 

  208. W. J. Long, J. L. Griffith, H. P. Selker, and R. B. D’Agostino. A comparison of logistic regression to decision-tree induction in a medical domain. Computers and Biomedical Research, an International Journal, 26(1):74–97, 1993.

    Article  Google Scholar 

  209. M. Drent, M. A. van Nierop, F. A. Gerritsen, E. F. Wouters, and P. G. Mulder. A computer program using balf-analysis results as a diagnostic tool in interstitial lung diseases. American Journal of Respiratory and Critical Care Medicine, 153(2):736–741, 1996.

    Google Scholar 

  210. C. L. Tsien, H. S. Fraser, W. J. Long, and R. L. Kennedy. Using classification tree and logistic regression methods to diagnose myocardial infarction. Studies in Health Technology and Informatics, 52 Pt 1:493–497, 1998.

    Google Scholar 

  211. S. M. Rudolfer, G. Paliouras, and I. S. Peers. A comparison of logistic regression to decision tree induction in the diagnosis of carpal tunnel syndrome. Computers and Biomedical Research, an International Journal, 32(5):391–414, 1999.

    Article  Google Scholar 

  212. S. Kable, R. Henry, R. Sanson-Fisher, M. Ireland, R. Corkrey, and J. Cockburn. Childhood asthma: can computers aid detection in general practice? The British Journal of General Practice: the Journal of the Royal College of General Practitioners, 51(463):112–116, 2001.

    Google Scholar 

  213. E. Wayne Holden, Elizabeth Grossman, Hoang Thanh T. Nguyen, Margaret J. Gunter, Becky Grebosky, Ann Von Worley, Leila Nelson, Scott Robinson, and David J. Thurman. Developing a computer algorithm to identify epilepsy cases in managed care organizations. Disease Management: DM, 8(1):1–14, 2005.

    Article  Google Scholar 

  214. R. J. Marshall. Partitioning methods for classification and decision making in medicine. Statistics in Medicine, 5(5):517–526, 1986.

    Article  Google Scholar 

  215. K. J. Cios, R. E. Freasier, L. S. Goodenday, and L. T. Andrews. An expert system for diagnosis of coronary artery stenosis based on 201tl scintigrams using the dempster-shafer theory of evidence. Computer Applications in the Biosciences: CABIOS, 6(4):333–342, 1990.

    Google Scholar 

  216. N. Matsuda. Computer-assisted laboratory diagnosis. Rinsho Byori. The Japanese Journal of Clinical Pathology, 39(3):243–251, 1991.

    MathSciNet  Google Scholar 

  217. T. Sekiya, A. Watanabe, and M. Saito. The use of modified constellation graph method for computer-aided classification of congenital heart diseases. IEEE Transactions on Bio-Medical Engineering, 38(8):814–820, 1991.

    Article  Google Scholar 

  218. J. C. Tohá, S. Vásquez, P. Fuentes, and M. A. Soto. Algorithm for assisting medical diagnosis. Computer Methods and Programs in Biomedicine, 39(3-4):303–309, 1993.

    Article  Google Scholar 

  219. R. Stamper, B. S. Todd, and P. Macpherson. Case-based explanation for medical diagnostic programs, with an example from gynaecology. Methods of Information in Medicine, 33(2):205–213, 1994.

    Google Scholar 

  220. C. D. Evans and R. M. Winter. A case-based learning approach to grouping cases with multiple malformations. M.D. Computing: Computers in Medical Practice, 12(2):127–136, 1995.

    Google Scholar 

  221. S. Dzeroski and N. Lavrac. Rule induction and instance-based learning applied in medical diagnosis. Technology and Health Care, 4(2):203–221, 1996.

    Google Scholar 

  222. M. C. Jaulent, C. Le Bozec, E. Zapletal, and P. Degoulet. Case based diagnosis in histopathology of breast tumours. Studies in Health Technology and Informatics, 52 Pt 1:544–548, 1998.

    Google Scholar 

  223. A. S. Ochi-Okorie. Disease diagnosis validation in tropix using CBR. Artificial Intelligence in Medicine, 12(1):43–60, 1998.

    Article  Google Scholar 

  224. E. Armengol, A. Palaudàries, and E. Plaza. Individual prognosis of diabetes long-term risks: a CBR approach. Methods of information in medicine, 40(1):46–51, 2001.

    Google Scholar 

  225. G. I. Paterson. A rough sets approach to patient classification in medical records. Medinfo. MEDINFO, 8 Pt 2:910, 1995.

    Google Scholar 

  226. W. Z. Liu, A. P. White, M. T. Hallissey, and J. W. Fielding. Machine learning techniques in early screening for gastric and oesophageal cancer. Artificial Intelligence in Medicine, 8(4):327–341, 1996.

    Article  Google Scholar 

  227. K. Viikki, E. Kentala, M. Juhola, and I. Pyykkö. Decision tree induction in the diagnosis of otoneurological diseases. Medical Informatics and the Internet in Medicine, 24(4):277–289, 1999.

    Article  Google Scholar 

  228. M. Zorman, H. P. Eich, P. Kokol, and C. Ohmann. Comparison of three databases with a decision tree approach in the medical field of acute appendicitis. Studies in Health Technology and Informatics, 84(Pt 2):1414–1418, 2001.

    Google Scholar 

  229. M. R. Ortíz-Posadas, J. F. Martínez-Trinidad, and J. Ruíz-Shulcloper. A new approach to differential diagnosis of diseases. International Journal of Bio-Medical Computing, 40(3):179–185, 1996.

    Article  Google Scholar 

  230. P. Ramnarayan, N. Cronje, R. Brown, R. Negus, B. Coode, P. Moss, T. Hassan, W. Hamer, and J. Britto. Validation of a diagnostic reminder system in emergency medicine: a multi-centre study. Emerg Med J, 24(9):619–624, 2007.

    Article  Google Scholar 

  231. Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R. Lyu. Maximizing sensitivity in medical diagnosis using biased minimax probability machine. IEEE Transactions on Bio-Medical Engineering, 53(5):821–831, 2006.

    Article  Google Scholar 

  232. Albert M. Lai, Simon Parsons, and George Hripcsak. Fuzzy temporal constraint networks for clinical information. In AMIA Symposium, pp. 374–378, 2008.

  233. Guenter Tusch, Chris Bretl, Martin O’Connor, Martin Connor, and Amar Das. SPOT–towards temporal data mining in medicine and bioinformatics. In AMIA Symposium, 2008.

  234. P. Ruch and Section Editor for the IMIA Yearbook Section on Decision Support. A Medical Informatics Perspective on Decision Support. Toward a Unified Research Paradigm Combining Biological vs. Clinical, Empirical vs. Legacy, and Structured vs. Unstructured Data. In Yearbook of Medical Informatics, pp. 96–98, 2009.

  235. R. A. Miller, M. A. McNeil, S. M. Challinor, F. E. Masarie, and J. D. Myers. The internist-1/quick medical reference project–status report. The Western Journal of Medicine, 145(6):816–822, 1986.

    Google Scholar 

  236. D. Aronsky and P. J. Haug. Diagnosing community-acquired pneumonia with a Bayesian network. In AMIA Symposium, pp. 632–636, Dept. of Medical Informatics, LDS Hospital/University of Utah, Salt Lake City, USA, 1998.

  237. Kavishwar B. Wagholikar and Ashok W. Deshpande. Fuzzy relation based modeling for medical diagnostic decision support: Case studies. International Journal of Knowledge-based and Intelligent Engineering Systems, 12(5,6):319–326, 2008.

    Google Scholar 

  238. Kavishwar B. Wagholikar, Sundararajan Vijayraghavan, and Ashok W. Deshpande. Fuzzy naive Bayesian model for medical diagnostic decision support. In 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 1, pp. 3409–3412, 2009.

  239. G. H. Guyatt, R. B. Haynes, R. Z. Jaeschke, D. J. Cook, L. Green, C. D. Naylor, M. C. Wilson, and W. S. Richardson. Users’ guides to the medical literature: Xxv. evidence-based medicine: principles for applying the users’ guides to patient care. evidence-based medicine working group. JAMA: the Journal of the American Medical Association, 284(10):1290–1296, 2000.

    Article  Google Scholar 

  240. J. E. Wennberg. Dealing with medical practice variations: a proposal for action. Health Affairs (Project Hope), 3(2):6–32, 1984.

    Article  MathSciNet  Google Scholar 

  241. J. C. Horrocks, G. Devroede, and F. T. de Dombal. Computer-aided diagnosis of gastroenterologic diseases in sherbrooke: preliminary report. Canadian Journal of Surgery. Journal Canadien de Chirurgie, 19(2):160–164, 1976.

    Google Scholar 

  242. P. Haug, P. D. Clayton, P. Shelton, T. Rich, I. Tocino, P. R. Frederick, R. O. Crapo, W. J. Morrison, and H. R. Warner. Revision of diagnostic logic using a clinical database. Medical Decision Making: an International Journal of the Society for Medical Decision Making, 9(2):84–90, 1989.

    Article  Google Scholar 

  243. Eric J. Horvitz, John S. Breese, and Max Henrion. Decision theory in expert systems and artificial intelligence. Int. J. Approx. Reasoning, 2(3):247–302, 1988.

    Article  Google Scholar 

  244. E. H. Shortliffe, S. G. Axline, B. G. Buchanan, T. C. Merigan, and S. N. Cohen. An artificial intelligence program to advise physicians regarding antimicrobial therapy. Comput Biomed Res, 6(6):544–560, 1973.

    Article  Google Scholar 

  245. David Heckerman. Probabilistic interpretations for mycin’s certainty factors. In Proceedings of the 1st Annual Conference on Uncertainty in Artificial Intelligence (UAI-85), New York, NY, 1985. Elsevier, New York.

  246. Jeffrey A. Barnett. Computational methods for a mathematical theory of evidence. In IJCAI, pp. 868–875. William Kaufmann, 1981.

  247. Benjamin N. Grosof. Evidential confirmation as transformed probability. In John F. Lemmer and Laveen Kanal, editors, First International Workshop on Uncertainty in Artificial Intelligence, volume 1, Amsterdam, Netherlands, 1986. North Holland (Elsevier Science), Asmterdam.

  248. D. E. Heckerman and R. A. Miller. Towards a better understanding of the internist-1 knowledge base. In Medinfo86, pp. 27–31, New York, 1986. North Holland, Asmterdam.

  249. Amos Tversky and Daniel Kahneman. Judgement under uncertainty: heuristics and biases. Science, 185(4157):1124–1131, 1974.

    Article  Google Scholar 

  250. David Heckerman. An empirical comparison of three inference methods. In Proceedings of the 4th Annual Conference on Uncertainty in Artificial Intelligence (UAI-88), New York, NY, 1988. Elsevier, New York.

  251. J. L. Liu, J. C. Wyatt, J. J. Deeks, S. Clamp, J. Keen, P. Verde, C. Ohmann, J. Wellwood, M. Dawes, and D. G. Altman. Systematic reviews of clinical decision tools for acute abdominal pain. Health Technol Assess, 10(47):1–167, 2006.

    Google Scholar 

  252. E. S. Berner, G. D. Webster, A. A. Shugerman, J. R. Jackson, J. Algina, A. L. Baker, E. V. Ball, C. G. Cobbs, V. W. Dennis, and E. P. Frenkel. Performance of four computer-based diagnostic systems. N Engl J Med, 330(25):1792–1796, 1994.

    Google Scholar 

  253. D. Aronsky, K. J. Chan, and P. J. Haug. Evaluation of a computerized diagnostic decision support system for patients with pneumonia: study design considerations. Journal of the American Medical Informatics Association: JAMIA, 8(5):473–485, 2001.

    Google Scholar 

  254. Laura J. van ’t Veer, Hongyue Dai, Marc J. van de Vijver, Yudong D. He, inus A. Hart, Mao Mao, Hans L. Peterse, Karin van der Kooy, Matthew J. Marton, Anke T. Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris Roberts, Peter S. Linsley, René Bernards, and Stephen H. Friend. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871):530–536, 2002.

  255. Jose Palma, Jose M. Juarez, Manuel Campos, and Roque Marin. Fuzzy theory approach for temporal model-based diagnosis: an application to medical domains. Artificial Intelligence in Medicine, 38(2):197–218, 2006.

    Article  Google Scholar 

  256. D. Kopecky, M. Hayde, A. R. Prusa, and K. P. Adlassnig. Knowledge-based interpretation of toxoplasmosis serology test results including fuzzy temporal concepts–the toxonet system. Medinfo, 10(Pt 1):484–488, 2001.

    Google Scholar 

  257. O. Bouhaddou, G. E. Morgan, J. G. Lambert, and D. Sorenson. Qualitative analysis of temporal information in iliad: implications for linking iliad to an electronic medical record as a knowledge server. In American Medical Informatics Association Symposium, pp. 199–203, 1996.

  258. Carlo Combi, Elpida K. Papailiou, and Yuval Shahar. Temporal Information Systems in Medicine. Springer, New York, 2010.

    Book  Google Scholar 

  259. Juan C. o. Temporal reasoning for decision support in medicine. Artif. Intell. Med., 33(1):1–24, 2005.

    Article  Google Scholar 

  260. K. P. Adlassnig, C. Combi, A. K. Das, E. T. Keravnou, and G. Pozzi. Temporal representation and reasoning in medicine: research directions and challenges. Artif Intell Med, 38(2):101–113, 2006.

    Article  Google Scholar 

  261. George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, Englewood Cliffs, 1st edition, 1995.

  262. T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

    Article  MathSciNet  Google Scholar 

  263. David J. Hand and Robert J. Till. A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn., 45(2):171–186, 2001.

    Article  Google Scholar 

  264. F. T. De Dombal. The diagnosis of acute abdominal pain with computer assistance: worldwide perspective. Annales de Chirurgie, 45(4):273–277, 1991.

    Google Scholar 

  265. F. T. De Dombal, Susan E. Clamp, Angela Softley, Biba J. Unwin, and John R. Staniland. Prediction of individual patient prognosis: value of computer-aided systems. Med Decis Making, 6(1):18–22, 1986.

    Article  Google Scholar 

  266. Davide Luciani, Silvio Cavuto, Luca Antiga, Massimo Miniati, Simona Monti, Massimo Pistolesi, and Guido Bertolini. Bayes pulmonary embolism assisted diagnosis: a new expert system for clinical use. Emergency Medicine Journal: EMJ, 24(3):157–164, 2007.

    Article  Google Scholar 

  267. Rosa Blanco, I naki Inza, Marisa Merino, Jorge Quiroga, and Pedro Larra naga. Feature selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients treated with tips. Journal of Biomedical Informatics, 38(5):376–388, 2005.

  268. Sholom M. Weiss and Casimir A. Kulikowski. Expert: a system for developing consultation models. In IJCAI’79: Proceedings of the 6th international joint conference on Artificial intelligence, pp. 942–947, San Francisco, CA, USA, 1979. Morgan Kaufmann, San Francisco.

  269. Tang-Kai K. Yin and Nan-Tsing T. Chiu. A computer-aided diagnosis for distinguishing tourette’s syndrome from chronic tic disorder in children by a fuzzy system with a two-step minimization approach. IEEE Transactions on Bio-Medical Engineering, 51(7):1286–1295, 2004.

  270. P. H. Bartels, D. Thompson, and J. E. Weber. Diagnostic decision support by inference networks. In Vivo (Athens, Greece), 7(4):379–385, 1993.

    Google Scholar 

  271. C. E. Kahn, L. M. Roberts, K. Wang, D. Jenks, and P. Haddawy. Preliminary investigation of a Bayesian network for mammographic diagnosis of breast cancer. In Annual Symposium on Computer Application in Medical Care, pp. 208–212, 1995.

  272. R. E. Bolinger, K. J. Hopfensperger, and D. F. Preston. Application of a virtual neurode in a model thyroid diagnostic network. In Annual Symposium on Computer Application in Medical Care, pp. 310–314, 1991.

  273. E. L. Kinney, R. J. Wright, and J. W. Caldwell. A classifier system for the diagnosis of disease from routine laboratory values. Journal of Medical Systems, 12(5):319–326, 1988.

    Article  Google Scholar 

  274. Moshe Ben-Bassat, Richard W. Carlson, Venod K. Puri, Mark D. Davenport, John A. Schriver, Mohamed Latif, Ronald Smith, Larry D. Portigal, Edward H. Lipnick, and Max H. Weil. Pattern-based interactive diagnosis of multiple disorders: The medas system. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2(2):148–160, 1980.

  275. K. Smith, A. Clark, K. Dyson, E. Kruger, L. Lejmanoski, A. Russell, and M. Tennant. Guided self diagnosis: an innovative approach to triage for emergency dental care. Australian Dental Journal, 51(1):11–15, 2006.

    Article  Google Scholar 

  276. Norman E. Betaque and G. Anthony Gorry. Automating judgmental decision making for a serious medical problem. Management Science, 17(8):B–421–434, 1971.

    Google Scholar 

  277. P. W. Hamilton, R. Montironi, W. Abmayr, M. Bibbo, N. Anderson, D. Thompson, and P. H. Bartels. Clinical applications of Bayesian belief networks in pathology. Pathologica, 87(3):237–245, 1995.

    Google Scholar 

  278. C. E. Kahn. Artificial intelligence in radiology: decision support systems. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 14(4):849–861, 1994.

    Google Scholar 

  279. Guillaume Marrelec, Philippe Ciuciu, Mélanie Pélégrini-Issac, and Habib Benali. Estimation of the hemodynamic response in event-related functional mri: Bayesian networks as a framework for efficient Bayesian modeling and inference. IEEE Transactions on Medical Imaging, 23(8):959–967, 2004.

    Article  Google Scholar 

  280. F. T. De Dombal, J. C. Horrocks, J. R. Staniland, and P. J. Guillou. Production of artificial “case histories” by using a small computer. British Medical Journal, 2(5761):578–581, 1971.

    Article  Google Scholar 

  281. Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karpis. Introduction to Parallel Computing: Design and Analysis of Parallel Algorithms. Benjamin-Cummings, Menlo Park, 1994.

  282. Karen Sandler, Lysandra Ohrstrom, Laura Moy, and Robert McVay. Killed by code: Software transparency in implantable medical devices | opinion | communications of the ACM, 2010.

  283. Michael Swash and Michael Glynn. Hutchison’s Clinical Methods: An Integrated Approach to Clinical Practice With STUDENT CONSULT Online Access. Saunders, Philadelphia, 2007.

  284. D. Hunscher, A. Boyd, L. A. Green, and D. J. Clauw. Representing natural-language case report form terminology using health level 7 common document architecture, loinc, and snomed-ct: lessons learned. In AMIA Annu Symp Proc, 2006.

  285. C. Friedman. A broad-coverage natural language processing system. In AMIA Annual Symposium, pp. 270–274, 2000.

  286. Elizabeth S. Chen, George Hripcsak, and Carol Friedman. Disseminating natural language processed clinical narratives. In AMIA Symposium, pp. 126–130, 2006.

  287. S. Goryachev, M. Sordo, and Q. T. Zeng. A suite of natural language processing tools developed for the i2b2 project. In AMIA Annu Symp Proc, 2006.

  288. Olivier Bodenreider. The unified medical language system (UMLS): integrating biomedical terminology. Nucl. Acids Res., 32(suppl_1):D267–270, 2004.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the excellent suggestions and comments of the reviewers that helped improve the manuscript. The first author was supported by a fellowship from Indian Council of Medical Research (ICMR), when part of this research was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavishwar B. Wagholikar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagholikar, K.B., Sundararajan, V. & Deshpande, A.W. Modeling Paradigms for Medical Diagnostic Decision Support: A Survey and Future Directions. J Med Syst 36, 3029–3049 (2012). https://doi.org/10.1007/s10916-011-9780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9780-4

Keywords

Navigation