Skip to main content
Log in

Using Multiple Pharmacovigilance Models Improves the Timeliness of Signal Detection in Simulated Prospective Surveillance

  • Original Research Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Introduction

Prospective pharmacovigilance aims to rapidly detect safety concerns related to medical products. The exposure model selected for pharmacovigilance impacts the timeliness of signal detection. However, in most real-life pharmacovigilance studies, little is known about which model correctly represents the association and there is no evidence to guide the selection of an exposure model. Different exposure models reflect different aspects of exposure history, and their relevance varies across studies. Therefore, one potential solution is to apply several alternative exposure models simultaneously, with each model assuming a different exposure–risk association, and then combine the model results.

Methods

We simulated alternative clinically plausible associations between time-varying drug exposure and the hazard of an adverse event. Prospective surveillance was conducted on the simulated data by estimating parametric and semi-parametric exposure–risk models at multiple times during follow-up. For each model separately, and using combined evidence from different subsets of models, we compared the time to signal detection.

Results

Timely detection across the simulated associations was obtained by fitting a set of pharmacovigilance models. This set included alternative parametric models that assumed different exposure–risk associations and flexible models that made no assumptions regarding the form/shape of the association. Times to detection generated using a simple combination of evidence from multiple models were comparable to those observed under the ideal, but unrealistic, scenario where pharmacovigilance relied on the single ‘true’ model used for data generation.

Conclusions

Simulation results indicate that, if the true model is not known, an association can be detected in a more timely manner by first fitting a carefully selected set of exposure–risk models and then generating a signal as soon as any of the models considered yields a test statistic value below a predetermined testing threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Harpaz R, DuMouchel W, LePendu P, Bauer-Mehren A, Ryan P, Shah NH. Performance of pharmacovigilance signal-detection algorithms for the FDA adverse event reporting system. Clin Pharmacol Ther. 2013;93:539–46.

    Article  CAS  PubMed  Google Scholar 

  2. Franklin JM, Schneeweiss S, Polinski JM, Rassen JA. Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases. Comput Stat Data Anal. 2014;72:219–26.

    Article  PubMed  Google Scholar 

  3. Kesselheim AS, Gagne JJ. Strategies for post marketing surveillance of drugs for rare diseases. Clin Pharmacol Ther. 2014;95:265–8.

    Article  CAS  PubMed  Google Scholar 

  4. Trifiro G, Coloma PM, Rijnbeek PR, Romio S, Mosseveld B, Weibel D, et al. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: why and how? J Intern Med. 2014;275:551–61.

    Article  CAS  PubMed  Google Scholar 

  5. Bartlett G, Abrahamowicz M, Grad R, Sylvestre M-P, Tamblyn R. Association between risk factors for injurious falls and new benzodiazepine prescribing in elderly persons. BMC Fam Pract. 2009;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Christensen L, Sasané R, Hodgkins P, Harley C, Tetali S. Pharmacological treatment patterns among patients with attention deficit/hyperactivity disorder: retrospective claims-based analysis of a managed care population. Curr Med Res Opin. 2010;26:977–89.

    Article  CAS  PubMed  Google Scholar 

  7. Abrahamowicz M, Beauchamp M-E, Sylvestre M-P. Comparison of alternative models for linking drug exposure with adverse effects. Stat Med. 2012;31:1014–30.

    Article  PubMed  Google Scholar 

  8. Nelson JC, Cook AJ, Onchee Y, Zhao S, Jackson LA, Psaty BM. Methods for observational post-licensure medical product safety surveillance. Stat Methods Med Res. 2015;24:177–93.

    Article  PubMed  Google Scholar 

  9. McMahon AD, Evans JMM, McGilchrist MM, McDevitt DG, MacDonald TM. Drug exposure risk windows and unexposed comparator groups for cohort studies in pharmacoepidemiology. Pharmacoepidemiol Drug Saf. 1998;7:275–80.

    Article  CAS  PubMed  Google Scholar 

  10. Csajka C, Verotta D. Pharmacokinetic–pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn. 2006;33:227–79.

    Article  CAS  PubMed  Google Scholar 

  11. Karimi G, Star K, Noren NG, Hagg S. The impact of duration of treatment of reported time-to-onset in spontaneous reporting systems for pharmacovigilance. PLOS One. 2013;8:e68938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kiri VA. A pathway to improved prospective observational post-authorization safety studies. Drug Saf. 2012;35:711–24.

    Article  PubMed  Google Scholar 

  13. Fireman B, Toh S, Butler MG, Go AS, Joffe HV, Graham DJ, et al. A protocol for active surveillance of acute myocardial infarction in association with the use of a new antidiabetic pharmaceutical agent. Pharmacoepidemiol Drug Saf. 2010;21:282–90.

    Article  Google Scholar 

  14. Harpaz R, DuMouchel W, Shah NH, Madigan D, Ryan P, Friedman C. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91:1010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motsko SP, Rascati KL, Busti AJ, Wilson JP, Barner JC, Lawson KA, et al. Temporal relationship between use of NSAIDs, including selective COX-2 inhibitors, and cardiovascular risk. Drug Saf. 2006;29:621–32.

    Article  CAS  PubMed  Google Scholar 

  16. Helin-Salmivaara A, Virtanen A, Vesalainen R, Grönroos JM, Klaukka T, Idänpään-Heikkilä JE, et al. NSAID use and the risk of hospitalization for first myocardial infarction in the general population: a nationwide case–control study from Finland. Eur Heart J. 2006;27:1657–63.

    Article  PubMed  Google Scholar 

  17. Ray WA, Stein CM, Hall K, Daugherty JR, Griffin MR. Non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease: an observational cohort study. Lancet. 2002;359:118–23.

    Article  CAS  PubMed  Google Scholar 

  18. Ray WA, Varas-Lorenzo C, Chung CP, Castellsague J, Murray KT, Stein CM, et al. Cardiovascular risks of nonsteroidal antiinflammatory drugs in patients after hospitalization for serious coronary heart disease. Circ Cardiovasc Qual Outcomes. 2009;2:155–63.

    Article  PubMed  Google Scholar 

  19. García Rodríguez LA, Varas-Lorenzo C, Maguire A, González-Pérez A. Nonsteroidal antiinflammatory drugs and the risk of myocardial infarction in the general population. Circulation. 2004;109:3000–6.

    Article  PubMed  Google Scholar 

  20. García Rodríguez LA, Tacconelli S, Patrignani P. Role of dose potency in the prediction of risk of myocardial infarction associated with nonsteroidal anti-inflammatory drugs in the general population. J Am Coll Cardiol. 2008;52:1628–36.

    Article  PubMed  Google Scholar 

  21. Tournier M, Bégaud B, Cougnard A, Auleley G-R, Deligne J, Blum-Boisgard C, et al. Influence of the drug exposure definition on the assessment of the antipsychotic metabolic impact in patients initially treated with mood-stabilizers. Br J Clin Pharmacol. 2012;74:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Østbye T, Curtis LH, Masselink LE, Hutchison S, Wright A, Dans PE, et al. Atypical antipsychotic drugs and diabetes mellitus in a large outpatient population: a retrospective cohort study. Pharmacoepidemiol Drug Saf. 2005;14:407–15.

    Article  PubMed  Google Scholar 

  23. Guo JJ, Keck PE, Corey-Lisle PK, Li H, Jiang D, Jang R, et al. Risk of diabetes mellitus associated with atypical antipsychotic use among Medicaid patients with bipolar disorder: a nested case–control study. Pharmacotherapy. 2007;27:27–35.

    Article  CAS  PubMed  Google Scholar 

  24. Cook AJ, Tiwari RC, D’Wellman R, Heckbert SR, Li L, Heagerty PJ, et al. Statistical approaches to group sequential monitoring of postmarket safety surveillance data: current state of the art for use in the mini-sentinel pilot. Pharmacoepidemiol Drug Saf. 2012;21:72–81.

    Article  PubMed  Google Scholar 

  25. Brown JS, Kulldorff M, Chan KA, Davis RL, Graham D, Pettus PT, et al. Early detection of adverse drug events within population-based health networks: application of sequential testing methods. Pharmacoepidemiol Drug Saf. 2007;16:1275–84.

    Article  PubMed  Google Scholar 

  26. Gagne JJ, Rassen JA, Walker AM, Glynn RJ, Schneeweiss S. Active safety monitoring of new medical products using electronic healthcare data: selecting alerting rules. Epidemiology. 2012;23:238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012;11:792–802.

    Article  CAS  PubMed  Google Scholar 

  28. Stricker BHC, Stijnen T. Analysis of individual drug use as a time-varying determinant of exposure in prospective population-based cohort studies. Eur J Epidemiol. 2010;25:245–51.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zaccara G, Franciotta D, Perucca E. Idiosyncratic adverse reactions to antiepileptic drugs. Epilepsia. 2007;48:1223–44.

    Article  CAS  PubMed  Google Scholar 

  30. Van Gaalen RD, Abrahamowicz M, Buckeridge D. The impact of exposure model misspecification on the timeliness of signal detection in prospective pharmacovigilance. Pharmacoepidemiol Drug Saf. 2015;24:456–67.

    Article  PubMed  Google Scholar 

  31. Volinsky CT, Madigan D, Raftery AE, Kronmal RA. Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. Appl Stat. 1997;46:433–48.

    Google Scholar 

  32. Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: a tutorial. Stat Sci. 1999;14:382–401.

    Article  Google Scholar 

  33. Claeskens G, Hjort NL. Model selection and model averaging. Cambridge: Cambridge University Press; 2008.

    Book  Google Scholar 

  34. Chen Z. Is the weighted z-test the best method for combining probabilities from independent tests? J Evol Biol. 2011;24:926–30.

    Article  CAS  PubMed  Google Scholar 

  35. Zaykin DV, Zhivotovsky LA, Westfall PH, Weir BS. Truncated product method for combining p-values. Genet Epidemiol. 2002;22:170–85.

    Article  CAS  PubMed  Google Scholar 

  36. Delongchamp R, Lee T, Velasco C. A method for computing the overall statistical significance of a treatment effect among a group of genes. BMC Bioinform. 2006;7(Suppl. 2):S11.

    Article  Google Scholar 

  37. Zaykin DV. Optimally weighted Z-test is a powerful method for combining probabilities in meta analysis. J Evol Biol. 2011;24:1836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sylvestre M-P, Evans T, MacKenzie T, Abrahamowicz M. PermAlgo: permutational algorithm to generate event times conditional on a covariate matrix including time-dependent covariates. 2010; R package version 1.1..http://cran-mirror.cs.uu.nl/. Accessed 15 June 2017.

  39. Sylvestre M-P, Abrahamowicz M. Comparison of algorithms to generate event times conditional on time-dependent covariates. Stat Med. 2008;27:2618–34.

    Article  PubMed  Google Scholar 

  40. Abrahamowicz M, Bartlett G, Tamblyn R, Du Berger R. Modeling cumulative dose and exposure duration provided insights regarding the associations between benzodiazepines and injuries. J Clin Epidemiol. 2006;59:393–403.

    Article  PubMed  Google Scholar 

  41. Sylvestre M-P, Abrahamowicz M. Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Stat Med. 2009;28:3437–53.

    Article  PubMed  Google Scholar 

  42. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.

    Article  Google Scholar 

  43. Mahmud M, Abrahamowicz M, Leffondré K, Chaubey YP. Selecting the optimal transformation of a continuous covariate in Cox’s regression: implications for hypothesis testing. Commun Stat Simul Comput. 2006;35:27–45.

    Article  Google Scholar 

  44. Saag KG, Koehnke R, Caldwell JR, Brasington R, Burmeister LF, Zimmerman B, et al. Low dose long-term corticosteroid therapy in rheumatoid arthritis: an analysis of serious adverse events. Am J Med. 1994;96:115–23.

    Article  CAS  PubMed  Google Scholar 

  45. Franklin J, Lunt M, Symmons D, Silman A. Risk and predictors of infection leading to hospitalisation in a large primary-care-derived cohort of patients with inflammatory polyarthritis. Ann Rheum Dis. 2007;66:308–12.

    Article  PubMed  Google Scholar 

  46. Lacaille D, Guh DP, Abrahamowicz M, Anis AH, Esdaile JM. Use of nonbiologic disease-modifying antirheumatic drugs and risk of infection in patients with rheumatoid arthritis. Arthritis Rheum. 2008;59:1074–81.

    Article  PubMed  Google Scholar 

  47. Schneeweiss S, Setoguchi S, Weinblatt ME, Katz JN, Avorn J, Sax PE, et al. Anti-tumor necrosis factor alpha therapy and the risk of serious bacterial infections in elderly patients with rheumatoid arthritis. Arthritis Rheum. 2007;56:1754–64.

    Article  CAS  PubMed  Google Scholar 

  48. Smitten AL, Choi HK, Hochberg MC, Suissa S, Simon TA, Testa MA, et al. The risk of hospitalized infection in patients with rheumatoid arthritis. J Rheumatol. 2008;35:387–93.

    PubMed  Google Scholar 

  49. Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of serious infections in rheumatoid arthritis. Rheumatology. 2007;46:1157–60.

    Article  CAS  PubMed  Google Scholar 

  50. Benedetti A, Abrahamowicz M, Goldberg MS. Accounting for data-dependent degrees of freedom selection when testing the effect of a continuous covariate in generalized additive models. Commun Stat Simul Comput. 2009;38:1115–35.

    Article  Google Scholar 

  51. Dudbridge F, Koeleman BPC. Efficient computation of significance levels for multiple associations in large studies of correlated data, including genome-wide association studies. Am J Hum Genet. 2004;75:424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conneely KN, Boehnke M. So many correlated tests, so little time! Rapid adjustment of p values for multiple correlated tests. Am J Hum Genet. 2007;81:1158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dai H, Leeder JS, Cui Y. A modified generalized Fisher method for combining probabilities from dependent tests. Front Genet. 2014;5:32.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dixon WG, Abrahamowicz M, Beauchamp M-E, Ray DW, Bernatsky S, Suissa S, et al. Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: a nested case–control analysis. Ann Rheum Dis. 2012;71:1128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Young J, Xiao Y, Moodie EEM, Abrahamowicz M, Klein M, Bernasconi E, et al. Effect of cumulating exposure to abacavir on the risk of cardiovascular disease events in patients from the Swiss HIV Cohort Study. J Acquir Immune Defic Syndr. 2015;69:413–21.

    Article  CAS  PubMed  Google Scholar 

  56. Movahedi M, Beauchamp ME, Abrahamowicz M, Ray DW, Michaud K, Pedro S, et al. Risk of incident diabetes associated with dose and duration of oral glucocorticoid therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;68:1089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers whose thoughtful reviews improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolina D. van Gaalen.

Ethics declarations

Funding

This research was funded by the Canadian Institutes for Health Research (CIHR) Grant MOP-81275.

Conflict of interest

Prior to May 2014, Rolina van Gaalen worked as a part-time intern at Pfizer Canada. The work presented in this paper is neither related to her work at Pfizer nor funded by Pfizer. Michal Abrahamowicz and David Buckeridge have no conflicts of interest that are directly relevant to the content of this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 857 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Gaalen, R.D., Abrahamowicz, M. & Buckeridge, D.L. Using Multiple Pharmacovigilance Models Improves the Timeliness of Signal Detection in Simulated Prospective Surveillance. Drug Saf 40, 1119–1129 (2017). https://doi.org/10.1007/s40264-017-0555-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-017-0555-9

Navigation