Drug Safety

, Volume 38, Issue 11, pp 1059–1074 | Cite as

Comparative Safety of Vaccine Adjuvants: A Summary of Current Evidence and Future Needs

Review Article

Abstract

Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer’s disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects.

References

  1. 1.
    Poolman JT. Shortcomings of pertussis vaccines: why we need a third generation vaccine. Expert Rev Vaccines. 2014;13(10):1159–62.PubMedCrossRefGoogle Scholar
  2. 2.
    Li-Kim-Moy J, Booy R. The manufacturing process should remain the focus for severe febrile reactions in children administered an Australian inactivated influenza vaccine during 2010. Influenza Other Respir Viruses. 2015. doi:10.1111/irv.12337.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Aichinger G, Grohmann-Izay B, van der Velden MV, Fritsch S, Koska M, Portsmouth D, et al. Phase I/II randomized double-blind study of the safety and immunogenicity of a nonadjuvanted vero cell culture-derived whole-virus H9N2 influenza vaccine in healthy adults. Clin Vaccine Immunol. 2015;22(1):46–55.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rockman S, Dyson A, Koernig S, Becher D, Ng M, Morelli AB, et al. Evaluation of the bioactivity of influenza vaccine strains in vitro suggests that the introduction of new strains in the 2010 Southern Hemisphere trivalent influenza vaccine is associated with adverse events. Vaccine. 2014;32(30):3861–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Petrovsky N, Heinzel S, Honda Y, Lyons AB. New-age vaccine adjuvants: friend or foe? Biopharm Int. 2007;20(8):24–33.Google Scholar
  6. 6.
    Petrovsky N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev Vaccines. 2008;7(1):7–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Ahmed SS, Schur PH, MacDonald NE, Steinman L. Narcolepsy, 2009 A(H1N1) pandemic influenza, and pandemic influenza vaccinations: what is known and unknown about the neurological disorder, the role for autoimmunity, and vaccine adjuvants. J Autoimmun. 2014;50:1–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Vera-Lastra O, Medina G, Cruz-Dominguez Mdel P, Jara LJ, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert Rev Clin Immunol. 2013;9(4):361–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Gherardi RK, Authier FJ. Aluminum inclusion macrophagic myofasciitis: a recently identified condition. Immunol Allergy Clin N Am. 2003;23(4):699–712.CrossRefGoogle Scholar
  11. 11.
    Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol. 2014;44(Suppl 4):1–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Leventhal JS, Berger EM, Brauer JA, Cohen DE. Hypersensitivity reactions to vaccine constituents: a case series and review of the literature. Dermatitis. 2012;23(3):102–9.Google Scholar
  13. 13.
    Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Butler NR, Voyce MA, Burland WL, Hilton ML. Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants. Br Med J. 1969;1(645):663–6.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Cherin P, Gherardi RK. Emergence of a new entity, the macrophagic myofasciitis. GERMMAD Study Group of the French Association Against Myopathies. Study and Research Group on Acquired Dysimmunity-Related Muscle Disease. Rev Rhum Engl Ed. 1998;65(10):541–2.Google Scholar
  16. 16.
    World Health Organization Global Advisory Committee on Vaccine Safety. Questions and answers about macrophagic myofasciitis (MMF). World Health Organization. 2008. http://www.who.int/vaccine_safety/committee/topics/aluminium/questions/en/. Accessed 19 Aug 2015.
  17. 17.
    Aghazadeh-Habashi A, Kohan MH, Asghar W, Jamali F. Glucosamine dose/concentration–effect correlation in the rat with adjuvant arthritis. J Pharm Sci. 2014;103(2):760–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Marson A, Housley WJ, Hafler DA. Genetic basis of autoimmunity. J Clin Invest. 2015;125(6):2234–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Nohynek H, Jokinen J, Partinen M, Vaarala O, et al. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One. 2012;7(3):e33536.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Partinen M, Saarenpaa-Heikkila O, Ilveskloski I. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One. 2012;7(3):e33723.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Rigolet M, Aouizerate J, Couette M, Ragunathan-Thangarajah N, Aoun-Sebaiti M, Gherardi RK, et al. Clinical features in patients with long-lasting macrophagic myofasciitis. Front Neurol. 2014;5:230.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, et al. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle. 2013;12(12):1868–78.PubMedCrossRefGoogle Scholar
  23. 23.
    Gupta RK. Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev. 1998;32(3):155–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Goto N, Kato H, Maeyama J, Shibano M, Saito T, Yamaguchi J, et al. Local tissue irritating effects and adjuvant activities of calcium phosphate and aluminium hydroxide with different physical properties. Vaccine. 1997;15(12–13):1364–71.Google Scholar
  25. 25.
    Pusic K, Aguilar Z, McLoughlin J, Kobuch S, Xu H, Tsang M, et al. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine. FASEB J. 2013;27(3):1153–66.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Lee JY, Atochina O, King B, Taylor L, Elloso M, Scott P, et al. Beryllium, an adjuvant that promotes gamma interferon production. Infect Immun. 2000;68(7):4032–9.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Lin Y, Epstein DL, Liton PB. Intralysosomal iron induces lysosomal membrane permeabilization and cathepsin D-mediated cell death in trabecular meshwork cells exposed to oxidative stress. Invest Ophthalmol Vis Sci. 2010;51(12):6483–95.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dinsdale D. Lysosomal involvement in beryllium phosphate toxicity. Br J Exp Pathol. 1982;63(1):103–8.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Hall JG. Studies on the adjuvant action of beryllium: IV. The preparation of beryllium containing macromolecules that induce immunoblast responses in vivo. Immunology. 1988;64(2):345–51.Google Scholar
  30. 30.
    Doherty PC, Turner SJ, Webby RG, Thomas PG. Influenza and the challenge for immunology. Nat Immunol. 2006;7(5):449–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Jensen-Jarolim E. Aluminium in allergies and allergen immunotherapy. World Allergy Organ J. 2015;8(1):7.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J. Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009;30(6):287–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Netterlid E, Hindsen M, Siemund I, Bjork J, Werner S, Jacobsson H, et al. Does allergen-specific immunotherapy induce contact allergy to aluminium? Acta Derm Venereol. 2013;93(1):50–6.PubMedGoogle Scholar
  34. 34.
    Dinarello CA, van der Meer JW. Treating inflammation by blocking interleukin-1 in humans. Semin Immunol. 2013;25(6):469–84.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Immunol Today. 1993;14(6):281–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Bomford R. Aluminium salts: perspectives in their use as adjuvants. In: Gregoriadis GA, Allison AC, Poste G, editors. Immunological adjuvants and vaccines. New York Plenum Press; 1989. p. 35–41.Google Scholar
  37. 37.
    Goto N, Kato H, Maeyama J, Eto K, Yoshihara S. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine. 1993;11(9):914–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Nieuwenhuizen N, Herbert DR, Lopata AL, Brombacher F. CD4+ T cell–specific deletion of IL-4 receptor alpha prevents ovalbumin-induced anaphylaxis by an IFN-gamma-dependent mechanism. J Immunol. 2007;179(5):2758–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Xu W, Tamura T, Takatsu K. CpG ODN mediated prevention from ovalbumin-induced anaphylaxis in mouse through B cell pathway. Int Immunopharmacol. 2008;8(2):351–61.PubMedCrossRefGoogle Scholar
  40. 40.
    White OJ, McKenna KL, Bosco A, HJvdB A, Richmond P, Holt PG. A genomics-based approach to assessment of vaccine safety and immunogenicity in children. Vaccine. 2012;30(10):1865–74.PubMedCrossRefGoogle Scholar
  41. 41.
    De Swart RL, Kuiken T, Timmerman HH, van Amerongen G, Van Den Hoogen BG, Vos HW, et al. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol. 2002;76(22):11561–9.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. Severe acute respiratory syndrome–associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Openshaw PJ, Culley FJ, Olszewska W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine. 2001;15(20 Suppl 1):S27–31.CrossRefGoogle Scholar
  44. 44.
    Vascellari M, Melchiotti E, Bozza MA, Mutinelli F. Fibrosarcomas at presumed sites of injection in dogs: characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J Vet Med A Physiol Pathol Clin Med. 2003;50(6):286–91.PubMedCrossRefGoogle Scholar
  45. 45.
    Cherin P, Gherardi RK. Macrophagic myofasciitis. Curr Rheumatol Rep. 2000;2(3):196–200.PubMedCrossRefGoogle Scholar
  46. 46.
    Gherardi RK, Coquet M, Cherin P, Belec L, Moretto P, Dreyfus PA, et al. Macrophagic myofasciitis lesions assess long-term persistence of vaccine-derived aluminium hydroxide in muscle. Brain. 2001;124(Pt 9):1821–31.PubMedCrossRefGoogle Scholar
  47. 47.
    Authier FJ, Cherin P, Creange A, Bonnotte B, Ferrer X, Abdelmoumni A, et al. Central nervous system disease in patients with macrophagic myofasciitis. Brain. 2001;124(Pt 5):974–83.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Bingley PJ, Hoffbrand BI. Antiphospholipid antibody syndrome: a review. J R Soc Med. 1987;80(7):445–8.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Zivkovic I, Petrusic V, Stojanovic M, Inic-Kanada A, Stojicevic I, Dimitrijevic L. Induction of decreased fecundity by tetanus toxoid hyper-immunization in C57BL/6 mice depends on the applied adjuvant. Innate immunity. 2012;18(2):333–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Reusche E, Seydel U. Dialysis-associated encephalopathy: light and electron microscopic morphology and topography with evidence of aluminum by laser microprobe mass analysis. Acta Neuropathol. 1993;86(3):249–58.PubMedCrossRefGoogle Scholar
  52. 52.
    Miu AC, Benga O. Aluminum and Alzheimer’s disease: a new look. J Alzheimer’s Dis. 2006;10(2–3):179–201.Google Scholar
  53. 53.
    Kramer MF, Heath MD. Aluminium in allergen-specific subcutaneous immunotherapy—a German perspective. Vaccine. 2014;32(33):4140–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Eidi H, David MO, Crepeaux G, Henry L, Joshi V, Berger MH, et al. Fluorescent nanodiamonds as a relevant tag for the assessment of alum adjuvant particle biodisposition. BMC Med. 2015;13:144.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Shaw CA, Li Y, Tomljenovic L. Administration of aluminium to neonatal mice in vaccine-relevant amounts is associated with adverse long term neurological outcomes. J Inorg Biochem. 2013;128:237–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Shaw CA, Tomljenovic L. Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res. 2013;56(2–3):304–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Shaw CA, Li D, Tomljenovic L. Are there negative CNS impacts of aluminum adjuvants used in vaccines and immunotherapy? Immunotherapy. 2014;6(10):1055–71.PubMedCrossRefGoogle Scholar
  58. 58.
    Fanni D, Ambu R, Gerosa C, Nemolato S, Iacovidou N, Van Eyken P, et al. Aluminum exposure and toxicity in neonates: a practical guide to halt aluminum overload in the prenatal and perinatal periods. World J Pediatr. 2014;10(2):101–7.PubMedCrossRefGoogle Scholar
  59. 59.
    World Health Organization. Global Advisory Committee on Vaccine Safety, June 2012. WHO Wkly Epidemiol Rec. 2012;87(30):277–88.Google Scholar
  60. 60.
    von Biela LM. A disclosure dilemma: what you don’t know can kill you, but so can what you do know. Food Drug Law J. 2010;65(2):317–46 (ii).Google Scholar
  61. 61.
    Lindblad EB. Aluminium adjuvants—in retrospect and prospect. Vaccine. 2004;22(27–28):3658–68.PubMedCrossRefGoogle Scholar
  62. 62.
    Verdier F, Burnett R, Michelet-Habchi C, Moretto P, Fievet-Groyne F, Sauzeat E. Aluminium assay and evaluation of the local reaction at several time points after intramuscular administration of aluminium containing vaccines in the Cynomolgus monkey. Vaccine. 2005;23(11):1359–67.PubMedCrossRefGoogle Scholar
  63. 63.
    van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis–specific T-cell responses in human. Vaccine. 2014;32(52):7098–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Stills HF Jr. Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants. ILAR J. 2005;46(3):280–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Herbert WJ. The mode of action of mineral-oil emulsion adjuvants on antibody production in mice. Immunology. 1968;14(3):301–18.PubMedCentralPubMedGoogle Scholar
  66. 66.
    McCarthy JS, Marjason J, Elliott S, Fahey P, Bang G, Malkin E, et al. A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 formulated with Montanide® ISA 720. PLoS One. 2011;6(9):e24413.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Vera-Lastra O, Medina G, Cruz-Dominguez Mdel P, Ramirez P, Gayosso-Rivera JA, Anduaga-Dominguez H, et al. Human adjuvant disease induced by foreign substances: a new model of ASIA (Shoenfeld’s syndrome). Lupus. 2012;21(2):128–35.PubMedCrossRefGoogle Scholar
  68. 68.
    Whitehouse M. Oily adjuvants and autoimmunity: now time for reconsideration? Lupus. 2012;21(2):217–22.PubMedCrossRefGoogle Scholar
  69. 69.
    Kuroda Y, Akaogi J, Nacionales DC, Wasdo SC, Szabo NJ, Reeves WH, et al. Distinctive patterns of autoimmune response induced by different types of mineral oil. Toxicol Sci. 2004;78(2):222–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Koppang EO, Bjerkas I, Haugarvoll E, Chan EK, Szabo NJ, Ono N, et al. Vaccination-induced systemic autoimmunity in farmed Atlantic salmon. J Immunol. 2008;181(7):4807–14.PubMedCrossRefGoogle Scholar
  71. 71.
    Holm BC, Lorentzen JC, Bucht A. Adjuvant oil induces waves of arthritogenic lymph node cells prior to arthritis onset. Clin Exp Immunol. 2004;137(1):59–64.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Howell CD, Yoder TD. Murine experimental autoimmune hepatitis: nonspecific inflammation due to adjuvant oil. Clin Immunol Immunopathol. 1994;72(1):76–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Lorentzen JC, Klareskog L. Susceptibility of DA rats to arthritis induced with adjuvant oil or rat collagen is determined by genes both within and outside the major histocompatibility complex. Scand J Immunol. 1996;44(6):592–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Svelander L, Erlandsson Harris H, Lorentzen JC, Trollmo C, Klareskog L, Bucht A. Oligodeoxynucleotides containing CpG motifs can induce T cell–dependent arthritis in rats. Arthritis Rheum. 2004;50(1):297–304.PubMedCrossRefGoogle Scholar
  75. 75.
    Tsai TF, Crucitti A, Nacci P, Nicolay U, Della Cioppa G, Ferguson J, et al. Explorations of clinical trials and pharmacovigilance databases of MF59®-adjuvanted influenza vaccines for associated cases of narcolepsy. Scand J Infect Dis. 2011;43(9):702–6.PubMedGoogle Scholar
  76. 76.
    Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 and non-classic Th1 cells in chronic inflammatory disorders: two sides of the same coin. Int Arch Allergy Immunol. 2014;164(3):171–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203(7):1685–91.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Vitoriano-Souza J, Moreira N, Teixeira-Carvalho A, Carneiro CM, Siqueira FA, Vieira PM, et al. Cell recruitment and cytokines in skin mice sensitized with the vaccine adjuvants: saponin, incomplete Freund’s adjuvant, and monophosphoryl lipid A. PLoS One. 2012;7(7):e40745.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs. 1998;7(9):1475–82.PubMedCrossRefGoogle Scholar
  80. 80.
    Wu JY, Gardner BH, Murphy CI, Seals JR, Kensil CR, Recchia J, et al. Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol. 1992;148(5):1519–25.PubMedGoogle Scholar
  81. 81.
    Stewart TJ, Drane D, Malliaros J, Elmer H, Malcolm KM, Cox JC, et al. Iscomatrix adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine. 2004;22(27–28):3738–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Waite DC, Jacobson EW, Ennis FA, Edelman R, White B, Kammer R, et al. Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine. 2001;19(28–29):3957–67.PubMedCrossRefGoogle Scholar
  83. 83.
    Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq MP. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem. 2014;12(44):8803–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. ISCOM, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature. 1984;308(5958):457–60.Google Scholar
  85. 85.
    Claassen I, Osterhaus A. The ISCOM structure as an immune-enhancing moiety: experience with viral systems. Res Immunol. 1992;143(5):531–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Ronnberg B, Fekadu M, Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine. 1995;13(14):1375–82.PubMedCrossRefGoogle Scholar
  87. 87.
    Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, et al. Recombinant NY-ESO-1 protein with Iscomatrix adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci. 2004;101(29):10697–702.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology. 2003;61(1):46–54.PubMedCrossRefGoogle Scholar
  89. 89.
    Asuni AA, Boutajangout A, Scholtzova H, Knudsen E, Li YS, Quartermain D, et al. Vaccination of Alzheimer’s model mice with Abeta derivative in alum adjuvant reduces Abeta burden without microhemorrhages. Eur J Neurosci. 2006;24(9):2530–42.PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Verstak B, Hertzog P, Mansell A. Toll-like receptor signalling and the clinical benefits that lie within. Inflamm Res. 2007;56(1):1–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Collins SE, Mossman KL. Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev. 2014;25(5):525–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol. 2012;24(3):310–5.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Tong NK, Beran J, Kee SA, Miguel JL, Sanchez C, Bayas JM, et al. Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int. 2005;68(5):2298–303.PubMedCrossRefGoogle Scholar
  94. 94.
    Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, et al. AS04, an aluminum salt- and TLR4 agonist–based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol. 2009;183(10):6186–97.PubMedCrossRefGoogle Scholar
  95. 95.
    Maroof A, Yorgensen YM, Li Y, Evans JT. Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog. 2014;10(1):e1003875.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Naik SR, Wala SM. Arthritis, a complex connective and synovial joint destructive autoimmune disease: animal models of arthritis with varied etiopathology and their significance. J Postgrad Med. 2014;60(3):309–17.Google Scholar
  97. 97.
    Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol. 2000;164(3):1617–24.PubMedCrossRefGoogle Scholar
  98. 98.
    Klinman DM, Yi AK, Beaucage SL, Conover J, Krieg AM. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci. 1996;93(7):2879–83.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Krug A, Rothenfusser S, Selinger S, Bock C, Kerkmann M, Battiany J, et al. CpG-A oligonucleotides induce a monocyte-derived dendritic cell–like phenotype that preferentially activates CD8 T cells. J Immunol. 2003;170(7):3468–77.PubMedCrossRefGoogle Scholar
  100. 100.
    Klinman DM, Barnhart KM, Conover J. CpG motifs as immune adjuvants. Vaccine. 1999;17(1):19–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Krieg AM, Efler SM, Wittpoth M, Al Adhami MJ, Davis HL. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J Immunother (1997). 2004;27(6):460–71.Google Scholar
  102. 102.
    Jegerlehner A, Maurer P, Bessa J, Hinton HJ, Kopf M, Bachmann MF. TLR9 signaling in B cells determines class switch recombination to IgG2a. J Immunol. 2007;178(4):2415–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discovery. 2006;5(6):471–84.PubMedCrossRefGoogle Scholar
  104. 104.
    Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci. 1991;88(17):7595–9.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S, et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat Med. 2004;10(2):187–92.PubMedCrossRefGoogle Scholar
  106. 106.
    Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine. 2014;32(48):6377–89.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MA, Krieg AM, et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol. 2004;24(6):693–701.PubMedCrossRefGoogle Scholar
  108. 108.
    Halperin SA, Dobson S, McNeil S, Langley JM, Smith B, McCall-Sani R, et al. Comparison of the safety and immunogenicity of hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligonucleotide and a licensed hepatitis B vaccine in healthy young adults. Vaccine. 2006;24(1):20–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Halperin SA, Ward B, Cooper C, Predy G, Diaz-Mitoma F, Dionne M, et al. Comparison of safety and immunogenicity of two doses of investigational hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligodeoxyribonucleotide and three doses of a licensed hepatitis B vaccine in healthy adults 18–55 years of age. Vaccine. 2012;30(15):2556–63.PubMedCrossRefGoogle Scholar
  110. 110.
    Sablan BP, Kim DJ, Barzaga NG, Chow WC, Cho M, Ahn SH, et al. Demonstration of safety and enhanced seroprotection against hepatitis B with investigational HBsAg-1018 ISS vaccine compared to a licensed hepatitis B vaccine. Vaccine. 2012;30(16):2689–96.PubMedCrossRefGoogle Scholar
  111. 111.
    Heyward WL, Kyle M, Blumenau J, Davis M, Reisinger K, Kabongo ML, et al. Immunogenicity and safety of an investigational hepatitis B vaccine with a Toll-like receptor 9 agonist adjuvant (HBsAg-1018) compared to a licensed hepatitis B vaccine in healthy adults 40–70 years of age. Vaccine. 2013;31(46):5300–5.PubMedCrossRefGoogle Scholar
  112. 112.
    US Food and Drug Administration. 2012 meeting materials, Vaccines and Related Biological Products Advisory Committee. US Food and Drug Administration. 2012. http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/BloodVaccinesandOtherBiologics/VaccinesandRelatedBiologicalProductsAdvisoryCommittee/ucm288695.htm. Accessed 23 Sept 2015.
  113. 113.
    Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol. 2010;185(10):5677–82.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, Fitzgerald T, et al. Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine. 2010;28(52):8268–74.PubMedCrossRefGoogle Scholar
  115. 115.
    Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfson J, Tussey L, et al. Safety and immunogenicity of a recombinant M2e-flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine. 2011;29(32):5145–52.PubMedCrossRefGoogle Scholar
  116. 116.
    Larena M, Holmgren J, Lebens M, Terrinoni M, Lundgren A. Cholera toxin, and the related nontoxic adjuvants mmCT and dmLT, promote human Th17 responses via cyclic AMP–protein kinase A and inflammasome-dependent IL-1 signaling. J Immunol. 2015;194(8):3829–39.PubMedCrossRefGoogle Scholar
  117. 117.
    Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine. 1993;11(12):1179–84.PubMedCrossRefGoogle Scholar
  118. 118.
    Freytag LC, Clements JD. Mucosal adjuvants. Vaccine. 2005;23(15):1804–13.PubMedCrossRefGoogle Scholar
  119. 119.
    Liang S, Hajishengallis G. Heat-labile enterotoxins as adjuvants or anti-inflammatory agents. Immunol Invest. 2010;39(4–5):449–67.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Lewis DJ, Huo Z, Barnett S, Kromann I, Giemza R, Galiza E, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4(9):e6999.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Petrovsky N, Cooper PD. Carbohydrate-based immune adjuvants. Expert Rev Vaccines. 2011;10(4):523–37.PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Cooper PD, Petrovsky N. Delta inulin: a novel, immunologically active, stable packing structure comprising beta-D-[2 → 1] poly(fructo-furanosyl) alpha-D-glucose polymers. Glycobiology. 2011;21(5):595–606.PubMedCentralPubMedCrossRefGoogle Scholar
  123. 123.
    Honda-Okubo Y, Saade F, Petrovsky N. Advax, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine. 2012;30(36):5373–81.PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Lobigs M, Pavy M, Hall RA, Lobigs P, Cooper P, Komiya T, et al. An inactivated Vero cell–grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol. 2010;91(Pt 6):1407–17.PubMedCentralPubMedCrossRefGoogle Scholar
  125. 125.
    Rodriguez-Del Rio E, Marradi M, Calderon-Gonzalez R, Frande-Cabanes E, Penades S, Petrovsky N, et al. A gold glyco-nanoparticle carrying a listeriolysin O peptide and formulated with Advax delta inulin adjuvant induces robust T-cell protection against listeria infection. Vaccine. 2015;33(12):1465–73.Google Scholar
  126. 126.
    Petrovsky N, Larena M, Siddharthan V, Prow NA, Hall RA, Lobigs M, et al. An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol. 2013;87(18):10324–33.PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Feinen B, Petrovsky N, Verma A, Merkel TJ. Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant. Clin Vaccine Immunol. 2014;21(4):580–6.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Honda-Okubo Y, Kolpe A, Li L, Petrovsky N. A single immunization with inactivated H1N1 influenza vaccine formulated with delta inulin adjuvant (Advax) overcomes pregnancy-associated immune suppression and enhances passive neonatal protection. Vaccine. 2014;32(36):4651–9.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine. 2015;33(38):4892–900.PubMedCrossRefGoogle Scholar
  130. 130.
    Mastelic Gavillet B, Eberhardt CS, Auderset F, Castellino F, Seubert A, Tregoning JS, et al. MF59 mediates its B cell adjuvanticity by promoting T follicular helper cells and thus germinal center responses in adult and early life. J Immunol. 2015;194(10):4836–45.Google Scholar
  131. 131.
    Gordon D, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled phase 1 study. Vaccine. 2014;32(48):6469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Gordon DL, Sajkov D, Woodman RJ, Honda-Okubo Y, Cox MM, Heinzel S, et al. Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax polysaccharide adjuvant. Vaccine. 2012;30(36):5407–16.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Heddle R, Russo P, Petrovsky N, Hanna R, Smith A. Immunotherapy—2076. A controlled study of delta inulin–adjuvanted honey bee venom immunotherapy. World Allergy Organ J. 2013;6(Suppl 1):P158-P.Google Scholar
  134. 134.
    Szebeni J. Complement activation–related pseudoallergy caused by amphiphilic drug carriers: the role of lipoproteins. Curr Drug Deliv. 2005;2(4):443–9.PubMedCrossRefGoogle Scholar
  135. 135.
    Tefit JN, Crabe S, Orlandini B, Nell H, Bendelac A, Deng S, et al. Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. Vaccine. 2014;32(46):6138–45.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Takeda K, Hayakawa Y, Van Kaer L, Matsuda H, Yagita H, Okumura K. Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci. 2000;97(10):5498–503.PubMedCentralPubMedCrossRefGoogle Scholar
  137. 137.
    Sesardic D. Regulatory considerations on new adjuvants and delivery systems. Vaccine. 2006;24 Suppl 2:S2-86–7.Google Scholar
  138. 138.
    Beck FW, Whitehouse MW, Pearson CM. Improvements for consistently inducing experimental allergic encephalomyelitis (EAE) in rats: I. without using mycobacterium. II. Inoculating encephalitogen into the ear. Proc Soc Exp Biol Med. 1976;151(3):615–22.PubMedCrossRefGoogle Scholar
  139. 139.
    Panitch H, Ciccone C. Induction of recurrent experimental allergic encephalomyelitis with myelin basic protein. Ann Neurol. 1981;9(5):433–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Barkhordarian A, Thames AD, Du AM, Jan AL, Nahcivan M, Nguyen MT, et al. Viral immune surveillance: toward a TH17/TH9 gate to the central nervous system. Bioinformation. 2015;11(1):47–54.PubMedCentralPubMedCrossRefGoogle Scholar
  141. 141.
    Mastelic B, Garcon N, Del Giudice G, Golding H, Gruber M, Neels P, et al. Predictive markers of safety and immunogenicity of adjuvanted vaccines. Biologicals. 2013;41(6):458–68.PubMedCrossRefGoogle Scholar
  142. 142.
    Sun Y, Gruber M, Matsumoto M. Overview of global regulatory toxicology requirements for vaccines and adjuvants. J Pharmacol Toxicol Methods. 2012;65(2):49–57.PubMedCrossRefGoogle Scholar
  143. 143.
    Tiwari JL, Terasaki PI. HLA-DR and disease associations. Prog Clin Biol Res. 1981;58:151–63.PubMedGoogle Scholar
  144. 144.
    Vaarala O, Vuorela A, Partinen M, Baumann M, Freitag TL, Meri S, et al. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for pandemrix-associated narcolepsy risk. PLoS One. 2014;9(12):e114361.PubMedCentralPubMedCrossRefGoogle Scholar
  145. 145.
    Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao KA, Masterman KA, et al. Conservation and divergence in Toll-like receptor 4–regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci. 2012;109(16):E944–53.PubMedCentralPubMedCrossRefGoogle Scholar
  146. 146.
    Zaitseva M, Romantseva T, Blinova K, Beren J, Sirota L, Drane D, et al. Use of human MonoMac6 cells for development of in vitro assay predictive of adjuvant safety in vivo. Vaccine. 2012;30(32):4859–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Pignatti F, Jonsson B, Blumenthal G, Justice R. Assessment of benefits and risks in development of targeted therapies for cancer—the view of regulatory authorities. Mol Oncol. 2015;9(5):1034–41.PubMedCrossRefGoogle Scholar
  148. 148.
    Thompson A, Komparic A, Smith MJ. Ethical considerations in post-market-approval monitoring and regulation of vaccines. Vaccine. 2014;32(52):7171–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Bults M, Beaujean DJ, Richardus JH, van Steenbergen JE, Voeten HA. Pandemic influenza A (H1N1) vaccination in the Netherlands: parental reasoning underlying child vaccination choices. Vaccine. 2011;29(37):6226–35.PubMedCrossRefGoogle Scholar
  150. 150.
    Ropeik D. How society should respond to the risk of vaccine rejection. Hum Vaccines Immunother. 2013;9(8):1815–8.CrossRefGoogle Scholar
  151. 151.
    Leask J, Braunack-Mayer A, Kerridge I. Consent and public engagement in an era of expanded childhood immunisation. J Paediatr Child Health. 2011;47(9):603–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Spadea A, Unim B, Colamesta V, Meneghini A, D’Amici AM, Giudiceandrea B, et al. Is the adjuvanted influenza vaccine more effective than the trivalent inactivated vaccine in the elderly population? Results of a case–control study. Vaccine. 2014;32(41):5290–4.PubMedCrossRefGoogle Scholar
  153. 153.
    Begue P. Consequences of opposition to vaccination in France and Europe. How to maintain effective vaccine coverage in 2010?. Bulletin de l’Academie nationale de medecine. 2010;194(4–5):719–32 (discussion 732).Google Scholar
  154. 154.
    Butler D. Regulators face tough flu-jab choices. Nature. 2009;460(7254):446.PubMedCrossRefGoogle Scholar
  155. 155.
    How to win trust over flu. Nature. 2009;461(7265):698.Google Scholar
  156. 156.
    Opel DJ, Marcuse EK. Rethinking vaccine policy making in an era of vaccine hesitancy: time to rebuild, not remodel? Hum Vaccines Immunother. 2013;9(12):2672–3.CrossRefGoogle Scholar
  157. 157.
    Glanz JM, McClure DL, Magid DJ, Daley MF, France EK, Salmon DA, et al. Parental refusal of pertussis vaccination is associated with an increased risk of pertussis infection in children. Pediatrics. 2009;123(6):1446–51.PubMedCrossRefGoogle Scholar
  158. 158.
    Buttenheim AM, Cherng ST, Asch DA. Provider dismissal policies and clustering of vaccine-hesitant families: an agent-based modeling approach. Hum Vaccines Immunother. 2013;9(8):1819–24.CrossRefGoogle Scholar
  159. 159.
    Folb PI, Bernatowska E, Chen R, Clemens J, Dodoo AN, Ellenberg SS, et al. A global perspective on vaccine safety and public health: the Global Advisory Committee on Vaccine Safety. Am J Public Health. 2004;94(11):1926–31.PubMedCentralPubMedCrossRefGoogle Scholar
  160. 160.
    Elmgren L, Li X, Wilson C, Ball R, Wang J, Cichutek K, et al. A global regulatory science agenda for vaccines. Vaccine. 2013;18(31 Suppl 2):B163–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Endocrinology and DiabetesFlinders UniversityAdelaideAustralia
  2. 2.Vaxine Pty LtdAdelaideAustralia

Personalised recommendations