World Health Organization. Fact sheet on preterm birth. 2013. Available at: http://www.who.int/mediacentre/factsheets/fs363/en/. Accessed 15 Jan 2015.
Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, et al. Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics. 2012;129:1019–26.
PubMed
Google Scholar
European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) and Paediatric Committee (PDCO). Guideline on the investigation of medicinal products in the term and preterm neonate. 2009. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003750.pdf. Accessed 15 Jan 2015.
Schreuder MF, Bueters RR, Allegaert K. The interplay between drugs and the kidney in premature neonates. Pediatr Nephrol. 2014;29:2083–91.
PubMed
Google Scholar
European Medicines Agency. The European paediatric initiative: history of the Paediatric Regulation. 2007. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2009/09/WC500003693.pdf. Accessed 15 Jan 2015.
US FDA. Modernization Act of 1997. Available at: http://www.gpo.gov/fdsys/pkg/PLAW-105publ115/pdf/PLAW-105publ115.pdf. Accessed 15 Jan 2015.
European Medicines Agency. Better medicines for children. 2002. Available at: http://ec.europa.eu/health/files/pharmacos/docs/doc2002/feb/cd_pediatrics_en.pdf. Accessed 15 Jan 2015.
US FDA. Pediatric Research Equity Act. 2003. Available at: http://www.gpo.gov/fdsys/pkg/PLAW-108publ155/html/PLAW-108publ155.htm. Accessed 15 Jan 2015.
Regulation on medicinal products for paediatric use. European Parliament and of the Council. 2006. Available at: http://ec.europa.eu/health/files/eudralex/vol-1/reg_2006_1901/reg_2006_1901_en.pdf. Accessed 15 Jan 2015.
European Medicines Agency. Better medicines for children from concept to reality: progress report on the Paediatric Regulation (EC) N°1901/2006. 2013. Available at: http://ec.europa.eu/health/files/paediatrics/2013_com443/paediatric_report-com%282013%29443_en.pdf. Accessed 15 Jan 2015.
US FDA. Food and Drug Administration Safety and Innovation Act (FDASIA). 2012. Available at: http://www.fda.gov/RegulatoryInformation/Legislation/FederalFoodDrugandCosmeticActFDCAct/SignificantAmendmentstotheFDCAct/FDASIA/. Accessed 15 Jan 2015.
World Health Organization. WHO model formulary for children. Geneva: World Health Organization; 2010. Available at: http://www.who.int/selection_medicines/list/WMFc_2010.pdf. Accessed 15 Jan 2015.
Ministero della salute. Direzione generale della valutazione dei medicinali e della farmacovigilanza. Guida all'uso dei farmaci per i bambini. Rome : Istituto poligrafico e Zecca dello Stato; 2003 [SBN Code: SNT0002326].
US FDA. New pediatric labeling information database. Available at: http://www.accessdata.fda.gov/scripts/sda/sdNavigation.cfm?sd=labelingdatabase. Accessed 15 Jan 2015.
European Medicines Agency. Success of the Paediatric Regulation after 5 years. 2013. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2013/06/WC500143984.pdf. Accessed 15 Jan 2015.
Laforgia N, Nuccio MM, Schettini F, Dell’aera M, Gasbarro AR, Dell’erba A, et al. Off-label and unlicensed drug use among neonatal intensive care units in Southern Italy. Pediatr Int. 2014;56:57–9.
PubMed
Google Scholar
Kieran EA, O’Callaghan N, O’Donnell CP. Unlicensed and off-label drug use in an Irish neonatal intensive care unit: a prospective cohort study. Acta Paediatr. 2014;103:e139–42.
CAS
PubMed
Google Scholar
Stiers JL, Ward RM. Newborns, one of the last therapeutic orphans to be adopted. JAMA Pediatr. 2014;168:106–8.
PubMed
Google Scholar
Conroy S, McIntyre J. The use of unlicensed and off-label medicines in the neonate. Semin Fetal Neonatal Med. 2005;10:115–22.
PubMed
Google Scholar
Laughon MM, Avant D, Tripathi N, Hornik CP, Cohen-Wolkowiez M, Clark RH, et al. Drug labeling and exposure in neonates. JAMA Pediatr. 2014;168:130–6.
PubMed
PubMed Central
Google Scholar
Kimland E, Nydert P, Odlind V, Bottiger Y, Lindemalm S. Paediatric drug use with focus on off-label prescriptions at Swedish hospitals: a nationwide study. Acta Paediatr. 2012;101:772–8.
CAS
PubMed
PubMed Central
Google Scholar
Dell’Aera M, Gasbarro AR, Padovano M, Laforgia N, Capodiferro D, Solarino B, et al. Unlicensed and off-label use of medicines at a neonatology clinic in Italy. Pharm World Sci. 2007;29:361–7.
PubMed
Google Scholar
Frattarelli DA, Galinkin JL, Green TP, Johnson TD, Neville KA, Paul IM, et al. Off-label use of drugs in children. Pediatrics. 2014;133:563–7.
PubMed
Google Scholar
Pansieri C, Bonati M, Choonara I, Jacqz-Aigrain E. Neonatal drug trials: impact of EU and US paediatric regulations. Arch Dis Child Fetal Neonatal Ed. 2014;99(5):F438.
PubMed
Google Scholar
Haslund-Krog S, Mathiasen R, Christensen HR, Holst H. The impact of legislation on drug substances used off-label in paediatric wards: a nationwide study. Eur J Clin Pharmacol. 2014;70:445–52.
PubMed
Google Scholar
Lindell-Osuagwu L, Hakkarainen M, Sepponen K, Vainio K, Naaranlahti T, Kokki H. Prescribing for off-label use and unauthorized medicines in three paediatric wards in Finland, the status before and after the European Union Paediatric Regulation. J Clin Pharm Ther. 2014;39:144–53.
CAS
PubMed
Google Scholar
Dessi A, Salemi C, Fanos V, Cuzzolin L. Drug treatments in a neonatal setting: focus on the off-label use in the first month of life. Pharm World Sci. 2010;32:120–4.
PubMed
Google Scholar
Neubert A, Lukas K, Leis T, Dormann H, Brune L, Rascher W. Drug utilisation on a preterm and neonatal intensive care unit in Germany: a prospective, cohort-based analysis. Eur J Clin Pharmacol. 2010;66:87–95.
PubMed
Google Scholar
Pandolfini C, Bonati M. European paediatric research and children’s therapeutic needs. A trial review. Acta Paediatr. 2008;97:1232–7.
CAS
PubMed
Google Scholar
Bellis JR, Kirkham JJ, Nunn AJ, Pirmohamed M. Adverse drug reactions and off-label and unlicensed medicines in children: a prospective cohort study of unplanned admissions to a paediatric hospital. Br J Clin Pharmacol. 2014;77:545–53.
CAS
PubMed
PubMed Central
Google Scholar
Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55:667–86.
CAS
PubMed
Google Scholar
European Medicines Agency. Discussion paper on the impact of renal immaturity when investigating medicinal products intended for paediatric use. European Medicines Agency (EMA). 2004. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003807.pdf. Accessed 15 Jan 2015.
Singh RR, Moritz KM, Bertram JF, Cullen-McEwen LA. Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. Am J Physiol Renal Physiol. 2007;293:F548–54.
CAS
PubMed
Google Scholar
Lasaitiene D, Chen Y, Guron G, Marcussen N, Tarkowski A, Telemo E, Friberg P. Perturbed medullary tubulogenesis in neonatal rat exposed to renin-angiotensin system inhibition. Nephrol Dial Transplant. 2003;18:2534–41.
CAS
PubMed
Google Scholar
Gubler MC, Antignac C. Renin-angiotensin system in kidney development: renal tubular dysgenesis. Kidney Int. 2010;77:400–6.
CAS
PubMed
Google Scholar
Kent AL, Maxwell LE, Koina ME, Falk MC, Willenborg D, Dahlstrom JE. Renal glomeruli and tubular injury following indomethacin, ibuprofen, and gentamicin exposure in a neonatal rat model. Pediatr Res. 2007;62:307–12.
CAS
PubMed
Google Scholar
Sutherland MR, Yoder BA, McCurnin D, Seidner S, Gubhaju L, Clyman RI, et al. Effects of ibuprofen treatment on the developing preterm baboon kidney. Am J Physiol Renal Physiol. 2012;302:F1286–92.
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol. 2004;7:17–25.
PubMed
Google Scholar
Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RS, et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol. 2011;22:1365–74.
PubMed
PubMed Central
Google Scholar
Carmody JB, Charlton JR. Short-term gestation, long-term risk: prematurity and chronic kidney disease. Pediatrics. 2013;131:1168–79.
PubMed
Google Scholar
Musso CG, Ghezzi L, Ferraris J. Renal physiology in newborns and old people: similar characteristics but different mechanisms. Int Urol Nephrol. 2004;36:273–6.
PubMed
Google Scholar
Gubhaju L, Sutherland MR, Horne RS, Medhurst A, Kent AL, Ramsden A, et al. Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol. 2014;307:F149–58.
CAS
PubMed
Google Scholar
Jose PA, Fildes RD, Gomez RA, Chevalier RL, Robillard JE. Neonatal renal function and physiology. Curr Opin Pediatr. 1994;6:172–7.
CAS
PubMed
Google Scholar
Sulemanji M, Vakili K. Neonatal renal physiology. Semin Pediatr Surg. 2013;22:195–8.
PubMed
Google Scholar
Berg CS, Barnette AR, Myers BJ, Shimony MK, Barton AW, Inder TE. Sodium bicarbonate administration and outcome in preterm infants. J Pediatr. 2010;157:684–7.
PubMed
Google Scholar
Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants: part I. Clin Pharmacokinet. 2002;41:959–98.
CAS
PubMed
Google Scholar
van den Anker JN, Schwab M, Kearns GL. Developmental pharmacokinetics. Handb Exp Pharmacol. 2011;205:51–75.
PubMed
Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.
Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol. 2013;28:661–6.
PubMed
Google Scholar
Koralkar R, Ambalavanan N, Levitan EB, McGwin G, Goldstein S, Askenazi D. Acute kidney injury reduces survival in very low birth weight infants. Pediatr Res. 2011;69:354–8.
PubMed
Google Scholar
Elmas AT, Tabel Y, Elmas ON. Serum cystatin C predicts acute kidney injury in preterm neonates with respiratory distress syndrome. Pediatr Nephrol. 2013;28:477–84.
PubMed
Google Scholar
Sarafidis K, Tsepkentzi E, Agakidou E, Diamanti E, Taparkou A, Soubasi V, et al. Serum and urine acute kidney injury biomarkers in asphyxiated neonates. Pediatr Nephrol. 2012;27:1575–82.
PubMed
Google Scholar
Walker MW, Clark RH, Spitzer AR. Elevation in plasma creatinine and renal failure in premature neonates without major anomalies: terminology, occurrence and factors associated with increased risk. J Perinatol. 2011;31:199–205.
CAS
PubMed
Google Scholar
Kandasamy Y, Smith R, Wright IM. Measuring cystatin C to determine renal function in neonates. Pediatr Crit Care Med. 2013;14:318–22.
PubMed
Google Scholar
Luyckx VA, Brenner BM. Low birth weight, nephron number, and kidney disease. Kidney Int Suppl. 2005;97:S68–77.
PubMed
Google Scholar
Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens. 1988;1:335–47.
CAS
PubMed
Google Scholar
Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994;23:171–5.
CAS
PubMed
Google Scholar
Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004;44:595–601.
CAS
PubMed
Google Scholar
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300.
CAS
PubMed
Google Scholar
D’Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.
PubMed
Google Scholar
Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice. Dev Biol. 2007;310:379–87.
CAS
PubMed
PubMed Central
Google Scholar
Luyckx VA, Brenner BM. The clinical importance of nephron mass. J Am Soc Nephrol. 2010;21:898–910.
PubMed
Google Scholar
Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol. 2008;19:151–7.
PubMed
PubMed Central
Google Scholar
White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54:248–61.
PubMed
Google Scholar
Mammen C, Al AA, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59:523–30.
PubMed
Google Scholar
Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290:1360–70.
CAS
PubMed
Google Scholar
Slack R, Hawkins KC, Gilhooley L, Addison GM, Lewis MA, Webb NJ. Long-term outcome of meningococcal sepsis-associated acute renal failure. Pediatr Crit Care Med. 2005;6:477–9.
PubMed
Google Scholar
Taber SS, Pasko DA. The epidemiology of drug-induced disorders: the kidney. Expert Opin Drug Saf. 2008;7:679–90.
CAS
PubMed
Google Scholar
Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008;78:743–50.
PubMed
Google Scholar
Markowitz GS, Perazella MA. Drug-induced renal failure: a focus on tubulointerstitial disease. Clin Chim Acta. 2005;351:31–47.
CAS
PubMed
Google Scholar
Zager RA. Pathogenetic mechanisms in nephrotoxic acute renal failure. Semin Nephrol. 1997;17:3–14.
CAS
PubMed
Google Scholar
Bennett WM, DeBroe ME. Analgesic nephropathy: a preventable renal disease. N Engl J Med. 1989;320:1269–71.
CAS
PubMed
Google Scholar
Griffin MD, Bergstralhn EJ, Larson TS. Renal papillary necrosis: a sixteen-year clinical experience. J Am Soc Nephrol. 1995;6:248–56.
CAS
PubMed
Google Scholar
Perazella MA. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2005;4:689–706.
CAS
PubMed
Google Scholar
Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics. 2006;117:1979–87.
PubMed
Google Scholar
Gordon A, Jeffery HE. Antibiotic regimens for suspected late onset sepsis in newborn infants. Cochrane Database Syst Rev. 2005;3:CD004501.
PubMed
Google Scholar
Patzer L. Nephrotoxicity as a cause of acute kidney injury in children. Pediatr Nephrol. 2008;23:2159–73.
PubMed
Google Scholar
Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2011;11:CD005091.
PubMed
Google Scholar
Vieux R, Fresson J, Guillemin F, Hascoet JM. Perinatal drug exposure and renal function in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011;96:F290–5.
CAS
PubMed
Google Scholar
Michel DM, Kelly CJ. Acute interstitial nephritis. J Am Soc Nephrol. 1998;9:506–15.
CAS
PubMed
Google Scholar
Wai AO, Lo AM, Abdo A, Marra F. Vancomycin-induced acute interstitial nephritis. Ann Pharmacother. 1998;32:1160–4.
CAS
PubMed
Google Scholar
Sawaya BP, Briggs JP, Schnermann J. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties. J Am Soc Nephrol. 1995;6:154–64.
CAS
PubMed
Google Scholar
Goldman RD, Koren G. Amphotericin B nephrotoxicity in children. J Pediatr Hematol Oncol. 2004;26:421–6.
PubMed
Google Scholar
Joannidis M. Drug-induced renal failure in the ICU. Int J Artif Organs. 2004;27:1034–42.
CAS
PubMed
Google Scholar
Deray G. Amphotericin B nephrotoxicity. J Antimicrob Chemother. 2002;49(Suppl 1):37–41.
CAS
PubMed
Google Scholar
Turkova A, Roilides E, Sharland M. Amphotericin B in neonates: deoxycholate or lipid formulation as first-line therapy: is there a ‘right’ choice? Curr Opin Infect Dis. 2011;24:163–71.
CAS
PubMed
Google Scholar
Pacifici GM. Clinical pharmacology of furosemide in neonates: a review. Pharmaceuticals (Basel). 2013;6:1094–129.
PubMed
PubMed Central
Google Scholar
Allegaert K, Anderson B, Simons S, van Overmeire B. Paracetamol to induce ductus arteriosus closure: is it valid? Arch Dis Child. 2013;98:462–6.
PubMed
Google Scholar
Allegaert K. The impact of ibuprofen or indomethacin on renal drug clearance in neonates. J Matern Fetal Neonatal Med. 2009;22(Suppl 3):88–91.
CAS
PubMed
Google Scholar
Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000140.
PubMed
Google Scholar
Spitzer AR. Evidence-based methylxanthine use in the NICU. Clin Perinatol. 2012;39:137–48.
PubMed
Google Scholar
Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–21.
CAS
PubMed
Google Scholar
Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82.
CAS
PubMed
Google Scholar
Sekine T, Endou H. Children’s toxicology from bench to bed: Drug-induced renal injury (3). Drug transporters and toxic nephropathy in childhood. J Toxicol Sci. 2009;34 Suppl 2:SP259–65.
PubMed
Google Scholar
Gallini F, Maggio L, Romagnoli C, Marrocco G, Tortorolo G. Progression of renal function in preterm neonates with gestational age < or = 32 weeks. Pediatr Nephrol. 2000;15:119–24.
CAS
PubMed
Google Scholar
Brion LP, Fleischman AR, McCarton C, Schwartz GJ. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986;109:698–707.
CAS
PubMed
Google Scholar
Liborio AB, Branco KM, Torres de Melo BC. Acute kidney injury in neonates: from urine output to new biomarkers. Biomed Res Int. 2014;2014:601568.
PubMed
PubMed Central
Google Scholar
Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.
CAS
PubMed
Google Scholar
Krawczeski CD, Woo JG, Wang Y, Bennett MR, Ma Q, Devarajan P. Neutrophil gelatinase-associated lipocalin concentrations predict development of acute kidney injury in neonates and children after cardiopulmonary bypass. J Pediatr. 2011;158:1009–15.
CAS
PubMed
Google Scholar
Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M, Cvijanovich N, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36:1297–303.
CAS
PubMed
PubMed Central
Google Scholar
Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84.
PubMed
PubMed Central
Google Scholar
Askenazi DJ, Montesanti A, Hunley H, Koralkar R, Pawar P, Shuaib F, et al. Urine biomarkers predict acute kidney injury and mortality in very low birth weight infants. J Pediatr. 2011;159:907–12.
CAS
PubMed
Google Scholar
La MG, Galletti S, Capelli I, Vandini S, Nisi K, Aquilano G, et al. Urinary neutrophil gelatinase-associated lipocalin at birth predicts early renal function in very low birth weight infants. Pediatr Res. 2011;70:379–83.
Google Scholar
Askenazi DJ, Ambalavanan N, Goldstein SL. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatr Nephrol. 2009;24:265–74.
PubMed
PubMed Central
Google Scholar
Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M. Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol. 1999;16:287–95.
CAS
PubMed
Google Scholar
Sharma AP, Kathiravelu A, Nadarajah R, Yasin A, Filler G. Body mass does not have a clinically relevant effect on cystatin C eGFR in children. Nephrol Dial Transplant. 2009;24:470–4.
CAS
PubMed
Google Scholar
Li Y, Fu C, Zhou X, Xiao Z, Zhu X, Jin M, et al. Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol. 2012;27:851–60.
PubMed
PubMed Central
Google Scholar
Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review. Inflamm Allergy Drug Targets. 2011;10:260–71.
CAS
PubMed
Google Scholar
Coca SG, Yalavarthy R, Concato J, Parikh CR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int. 2008;73:1008–16.
CAS
PubMed
Google Scholar
Sprenkle P, Russo P. Molecular markers for ischemia, do we have something better then creatinine and glomerular filtration rate? Arch Esp Urol. 2013;66:99–114.
PubMed
Google Scholar
Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D, Shlipak MG, Koyner JL, et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol. 2013;8:1079–88.
CAS
PubMed
PubMed Central
Google Scholar
Hoffmann A, Nimtz M, Conradt HS. Molecular characterization of beta-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology. 1997;7:499–506.
CAS
PubMed
Google Scholar
Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, et al. Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem. 2002;48:729–36.
CAS
PubMed
Google Scholar
Bariciak E, Yasin A, Harrold J, Walker M, Lepage N, Filler G. Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem. 2011;44:1156–9.
CAS
PubMed
Google Scholar
Zwiers AJ, Cransberg K, de Rijke YB, Willemsen SP, de Mol AC, Tibboel D, et al. Reference ranges for serum beta-trace protein in neonates and children younger than 1 year of age. Clin Chem Lab Med. 2014;52:1815–21.
CAS
PubMed
Google Scholar
Trof RJ, Di MF, Leemreis J, Groeneveld AB. Biomarkers of acute renal injury and renal failure. Shock. 2006;26:245–53.
CAS
PubMed
Google Scholar
Fanos V, Antonucci R, Barberini L, Noto A, Atzori L. Clinical application of metabolomics in neonatology. J Matern Fetal Neonatal Med. 2012;25(Suppl 1):104–9.
CAS
PubMed
Google Scholar
Krekels EH, Neely M, Panoilia E, Tibboel D, Capparelli E, Danhof M, et al. From pediatric covariate model to semiphysiological function for maturation: part I. Extrapolation of a covariate model from morphine to zidovudine. CPT Pharmacometrics Syst Pharmacol. 2012;1:e9.
CAS
PubMed
PubMed Central
Google Scholar
Krekels EH, Johnson TN, den Hoedt SM, Rostami-Hodjegan A, Danhof M, Tibboel D, et al. From pediatric covariate model to semiphysiological function for maturation: part II. Sensitivity to physiological and physicochemical properties. CPT Pharmacometrics Syst Pharmacol. 2012;1:e10.
CAS
PubMed
PubMed Central
Google Scholar
Allegaert K, Smits A, van den Anker JN. Physiologically based pharmacokinetic modeling in pediatric drug development: a clinician’s request for a more integrated approach. J Biomed Biotechnol. 2012;2012:103763.
PubMed
PubMed Central
Google Scholar
De Cock RF, Piana C, Krekels EH, Danhof M, Allegaert K, Knibbe CA. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl 1):5–16.
PubMed
PubMed Central
Google Scholar
Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: general principles. Eur J Pediatr. 2006;165:741–6.
PubMed
Google Scholar
Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: modelling covariate effects. Eur J Pediatr. 2006;165:819–29.
PubMed
Google Scholar
De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51:105–17.
PubMed
Google Scholar
De Cock RF, Allegaert K, Sherwin CM, Nielsen EI, de Hoog M, van den Anker JN, et al. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm Res. 2014;31:754–67.
PubMed
Google Scholar
Kapur G, Mattoo T, Aranda JV. Pharmacogenomics and renal drug disposition in the newborn. Semin Perinatol. 2004;28:132–40.
PubMed
Google Scholar
Aleksa K, Halachmi N, Ito S, Koren G. Renal ontogeny of ifosfamide nephrotoxicity. J Lab Clin Med. 2004;144:285–93.
CAS
PubMed
Google Scholar
Hanna MH, Brophy PD. Metabolomics in pediatric nephrology: emerging concepts. Pediatr Nephrol. 2014. doi:10.1007/s00467-014-2880-x.
Fanos V, Fanni C, Ottonello G, Noto A, Dessi A, Mussap M. Metabolomics in adult and pediatric nephrology. Molecules. 2013;18:4844–57.
CAS
PubMed
Google Scholar