Skip to main content
Log in

Comparative Safety and Tolerability of Anti-VEGF Therapy in Age-Related Macular Degeneration

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Neovascular age-related macular degeneration (NVAMD) is one of the leading causes of blindness. Over the last decade, the treatment of NVAMD has been revolutionized by the development of intravitreal anti-vascular endothelial growth factor (VEGF) therapies. Several anti-VEGF medications are used for the treatment of NVAMD. The safety and tolerability of these medications deserve review given the high prevalence of NVAMD and the significant utilization of these medications. Numerous large randomized clinical trials have not shown any definitive differential safety relative to ocular or systemic safety of these medications. Intravitreal anti-VEGF therapy does appear to impact systemic VEGF levels, but the implications of these changes remain unclear. One unique safety concern relates drug compounding and the potential risks of contamination, specifically for bevacizumab. Continued surveillance for systemic safety concerns, particularly for rare events, is merited. Overall, these medications are well tolerated and effective in the treatment of NVAMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bressler NM. Age-related macular degeneration is the leading cause of blindness. JAMA. 2004;291(15):1900–1.

    Article  CAS  PubMed  Google Scholar 

  2. Cruickshanks KJ, Hamman RF, Klein R, et al. The prevalence of age-related maculopathy by geographic region and ethnicity. The Colorado–Wisconsin Study of Age-Related Maculopathy. Arch Ophthalmol. 1997;115(2):242–50.

    Article  CAS  PubMed  Google Scholar 

  3. Dickinson AJ, Sparrow JM, Duke AM, et al. Prevalence of age-related maculopathy at two points in time in an elderly British population. Eye (Lond). 1997;11(Pt 3):301–14.

    Article  Google Scholar 

  4. Klein R, Klein BE, Jensen SC, Meuer SM. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology. 1997;104(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  5. Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012;379(9827):1728–38.

    Article  PubMed  Google Scholar 

  6. Age-Related Eye Disease Study Research. G. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–36.

    Article  Google Scholar 

  7. Ferris FL 3rd, Fine SL, Hyman L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 1984;102(11):1640–2.

    Article  PubMed  Google Scholar 

  8. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.

    Article  CAS  PubMed  Google Scholar 

  9. Ferrara N, Keyt B. Vascular endothelial growth factor: basic biology and clinical implications. EXS. 1997;79:209–32.

    CAS  PubMed  Google Scholar 

  10. Kvanta A, Algvere PV, Berglin L, Seregard S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 1996;37(9):1929–34.

    CAS  PubMed  Google Scholar 

  11. Velez-Montoya R, Oliver SC, Olson JL, et al. Current knowledge and trends in age-related macular degeneration: today’s and future treatments. Retina. 2013;33(8):1487–502.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36(4):331–5.

    PubMed  Google Scholar 

  13. Gragoudas ES, Adamis AP, Cunningham ET Jr, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805–16.

    Article  CAS  PubMed  Google Scholar 

  14. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44.

    Article  CAS  PubMed  Google Scholar 

  15. Heier JS, Antoszyk AN, Pavan PR, et al. Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology. 2006;113(4):633 e1–4.

  16. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenfeld PJ, Heier JS, Hantsbarger G, Shams N. Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular age-related macular degeneration. Ophthalmology. 2006;113(4):623 e1.

  18. Group VISiONCT, Chakravarthy U, Adamis AP, et al. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology. 2006;113(9):1508 e1–25.

  19. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400.

    Article  CAS  PubMed  Google Scholar 

  20. Michels S, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration twelve-week results of an uncontrolled open-label clinical study. Ophthalmology. 2005;112(6):1035–47.

    Article  PubMed  Google Scholar 

  21. Moshfeghi AA, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration: twenty-four-week results of an uncontrolled open-label clinical study. Ophthalmology. 2006;113(11):2002 e1–12.

  22. Tufail A, Patel PJ, Egan C, et al. Bevacizumab for neovascular age related macular degeneration (ABC Trial): multicentre randomised double masked study. BMJ. 2010;340:c2459.

    Article  PubMed  Google Scholar 

  23. Chakravarthy U, Harding SP, Rogers CA, et al. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet. 2013;382(9900):1258–67.

    Article  CAS  PubMed  Google Scholar 

  24. Comparison of Age-related Macular Degeneration Treatments Trials Research Group, Martin DF, Maguire MG. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012;119(7):1388–98.

    Article  Google Scholar 

  25. Investigators IS, Chakravarthy U, Harding SP, et al. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology. 2012;119(7):1399–411.

    Article  Google Scholar 

  26. Kodjikian L, Souied EH, Mimoun G, et al. Ranibizumab versus Bevacizumab for neovascular age-related macular degeneration: results from the GEFAL Noninferiority Randomized Trial. Ophthalmology. 2013;120(11):2300–9.

    Article  PubMed  Google Scholar 

  27. Krebs I, Schmetterer L, Boltz A, et al. A randomised double-masked trial comparing the visual outcome after treatment with ranibizumab or bevacizumab in patients with neovascular age-related macular degeneration. Br J Ophthalmol. 2013;97(3):266–71.

    Article  PubMed  Google Scholar 

  28. Group CR, Martin DF, Maguire MG. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.

    Article  Google Scholar 

  29. Abraham P, Yue H, Wilson L. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 2. Am J Ophthalmol. 2010;150(3):315–24 e1.

  30. Regillo CD, Brown DM, Abraham P, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol. 2008;145(2):239–48.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt-Erfurth U, Eldem B, Guymer R, et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study. Ophthalmology. 2011;118(5):831–9.

    Article  PubMed  Google Scholar 

  32. Fung AE, Lalwani GA, Rosenfeld PJ, et al. An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (Lucentis) for neovascular age-related macular degeneration. Am J Ophthalmol. 2007;143(4):566–83.

    Article  CAS  PubMed  Google Scholar 

  33. Lalwani GA, Rosenfeld PJ, Fung AE, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. Am J Ophthalmol. 2009;148(1):43–58 e1.

  34. Semeraro F, Morescalchi F, Duse S, et al. Aflibercept in wet AMD: specific role and optimal use. Drug Des Devel Ther. 2013;7:711–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Nguyen QD, Shah SM, Browning DJ, et al. A phase I study of intravitreal vascular endothelial growth factor trap-eye in patients with neovascular age-related macular degeneration. Ophthalmology. 2009;116(11):2141–8 e1.

  36. Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–48.

    Article  PubMed  Google Scholar 

  37. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week results of the VIEW studies. Ophthalmology. 2014;121(1):193–201.

    Article  PubMed  Google Scholar 

  38. Matsuyama K, Ogata N, Matsuoka M, et al. Plasma levels of vascular endothelial growth factor and pigment epithelium-derived factor before and after intravitreal injection of bevacizumab. Br J Ophthalmol. 2010;94(9):1215–8.

    Article  CAS  PubMed  Google Scholar 

  39. Carneiro AM, Costa R, Falcao MS, et al. Vascular endothelial growth factor plasma levels before and after treatment of neovascular age-related macular degeneration with bevacizumab or ranibizumab. Acta Ophthalmol. 2012;90(1):e25–30.

    Article  CAS  PubMed  Google Scholar 

  40. Zehetner C, Kirchmair R, Huber S, et al. Plasma levels of vascular endothelial growth factor before and after intravitreal injection of bevacizumab, ranibizumab and pegaptanib in patients with age-related macular degeneration, and in patients with diabetic macular oedema. Br J Ophthalmol. 2013;97(4):454–9.

    Article  PubMed  Google Scholar 

  41. Yoshida I, Shiba T, Taniguchi H, et al. Evaluation of plasma vascular endothelial growth factor levels after intravitreal injection of ranibizumab and aflibercept for exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252(9):1483–9.

    Article  CAS  PubMed  Google Scholar 

  42. Holz FG, Amoaku W, Donate J, et al. Safety and efficacy of a flexible dosing regimen of ranibizumab in neovascular age-related macular degeneration: the SUSTAIN study. Ophthalmology. 2011;118(4):663–71.

    Article  PubMed  Google Scholar 

  43. Boyer DS, Heier JS, Brown DM, et al. A Phase IIIb study to evaluate the safety of ranibizumab in subjects with neovascular age-related macular degeneration. Ophthalmology. 2009;116(9):1731–9.

    Article  PubMed  Google Scholar 

  44. Schmidt-Erfurth U. Clinical safety of ranibizumab in age-related macular degeneration. Expert Opin Drug Saf. 2010;9(1):149–65.

    Article  CAS  PubMed  Google Scholar 

  45. Berg K, Pedersen TR, Sandvik L, Bragadottir R. Comparison of ranibizumab and bevacizumab for neovascular age-related macular degeneration according to LUCAS treat-and-extend protocol. Ophthalmology. 2015;122(1):146–52.

    Article  PubMed  Google Scholar 

  46. Curtis LH, Hammill BG, Schulman KA, Cousins SW. Risks of mortality, myocardial infarction, bleeding, and stroke associated with therapies for age-related macular degeneration. Arch Ophthalmol. 2010;128(10):1273–9.

    Article  PubMed  Google Scholar 

  47. Moja L, Lucenteforte E, Kwag KH, et al. Systemic safety of bevacizumab versus ranibizumab for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;9:CD011230.

    PubMed  Google Scholar 

  48. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye (Lond). 2013;27(7):787–94.

    Article  Google Scholar 

  49. McCannel CA. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina. 2011;31(4):654–61.

    CAS  PubMed  Google Scholar 

  50. Scott IU, Flynn HW Jr. Reducing the risk of endophthalmitis following intravitreal injections. Retina. 2007;27(1):10–2.

    Article  PubMed  Google Scholar 

  51. Fintak DR, Shah GK, Blinder KJ, et al. Incidence of endophthalmitis related to intravitreal injection of bevacizumab and ranibizumab. Retina. 2008;28(10):1395–9.

    Article  PubMed  Google Scholar 

  52. Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol. 2011;56(2):95–113.

    Article  PubMed  Google Scholar 

  53. Mezad-Koursh D, Goldstein M, Heilwail G, et al. Clinical characteristics of endophthalmitis after an injection of intravitreal antivascular endothelial growth factor. Retina. 2010;30(7):1051–7.

    Article  PubMed  Google Scholar 

  54. Shah CP, Garg SJ, Vander JF, et al. Outcomes and risk factors associated with endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmology. 2011;118(10):2028–34.

    Article  PubMed  Google Scholar 

  55. Meyer CH, Michels S, Rodrigues EB, et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 2011;89(1):70–5.

    Article  CAS  PubMed  Google Scholar 

  56. Ladas ID, Karagiannis DA, Rouvas AA, et al. Safety of repeat intravitreal injections of bevacizumab versus ranibizumab: our experience after 2,000 injections. Retina. 2009;29(3):313–8.

    Article  PubMed  Google Scholar 

  57. Karagiannis DA, Mitropoulos P, Ladas ID. Large subretinal haemorrhage following change from intravitreal bevacizumab to ranibizumab. Ophthalmologica. 2009;223(4):279–82.

    Article  CAS  PubMed  Google Scholar 

  58. Brouzas D, Koutsandrea C, Moschos M, et al. Massive choroidal hemorrhage after intravitreal administration of bevacizumab (Avastin) for AMD followed by controlateral sympathetic ophthalmia. Clin Ophthalmol. 2009;3:457–9.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Bakri SJ, Pulido JS, McCannel CA, et al. Immediate intraocular pressure changes following intravitreal injections of triamcinolone, pegaptanib, and bevacizumab. Eye (Lond). 2009;23(1):181–5.

    Article  CAS  Google Scholar 

  60. Gismondi M, Salati C, Salvetat ML, et al. Short-term effect of intravitreal injection of Ranibizumab (Lucentis) on intraocular pressure. J Glaucoma. 2009;18(9):658–61.

    Article  PubMed  Google Scholar 

  61. Kahook MY, Kimura AE, Wong LJ, et al. Sustained elevation in intraocular pressure associated with intravitreal bevacizumab injections. Ophthalmic Surg Lasers Imaging. 2009;40(3):293–5.

    Article  PubMed  Google Scholar 

  62. Sniegowski M, Mandava N, Kahook MY. Sustained intraocular pressure elevation after intravitreal injection of bevacizumab and ranibizumab associated with trabeculitis. Open Ophthalmol J. 2010;4:28–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tseng JJ, Vance SK, Della Torre KE, et al. Sustained increased intraocular pressure related to intravitreal antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. J Glaucoma. 2012;21(4):241–7.

    Article  PubMed  Google Scholar 

  64. Good TJ, Kimura AE, Mandava N, Kahook MY. Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol. 2011;95(8):1111–4.

    Article  PubMed  Google Scholar 

  65. Theoulakis PE, Lepidas J, Petropoulos IK, et al. Effect of brimonidine/timolol fixed combination on preventing the short-term intraocular pressure increase after intravitreal injection of ranibizumab. Klin Monbl Augenheilkd. 2010;227(4):280–4.

    Article  CAS  PubMed  Google Scholar 

  66. Grunwald JE, Daniel E, Huang J, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121(1):150–61.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Goldberg RA, Flynn HW Jr, Miller D, et al. Streptococcus endophthalmitis outbreak after intravitreal injection of bevacizumab: one-year outcomes and investigative results. Ophthalmology. 2013;120(7):1448–53.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Sheyman AT, Cohen BZ, Friedman AH, Ackert JM. An outbreak of fungal endophthalmitis after intravitreal injection of compounded combined bevacizumab and triamcinolone. JAMA Ophthalmol. 2013;131(7):864–9.

    Article  CAS  PubMed  Google Scholar 

  69. Fileta JB, Scott IU, Flynn HW Jr. Meta-analysis of infectious endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents. Ophthalmic Surg Lasers Imaging Retina. 2014;45(2):143–9.

    Article  PubMed  Google Scholar 

  70. Wang F, Yu S, Liu K, et al. Acute intraocular inflammation caused by endotoxin after intravitreal injection of counterfeit bevacizumab in Shanghai, China. Ophthalmology. 2013;120(2):355–61.

    Article  PubMed  Google Scholar 

  71. Ho AC, Busbee BG, Regillo CD, et al. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology. 2014;121(11):2181–92.

    Article  PubMed  Google Scholar 

Download references

Funding and conflicts of interest

This work was funded by the National Institutes of Health/National Eye Institute Grant NIH/NEI K23-EY022947-01A1 (Justis P. Ehlers), Ohio Department of Development Grant TECH-13-059 (Justis P. Ehlers) and institutional Grant from Research to Prevent Blindness to Cole Eye Institute. The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript.

Yasha S. Modi and Carley Tanchon have no conflicts of interest that are directly relevant to the content of this review. Justis P. Ehlers has received fees and honoraria from Bioptigen, Thrombogenics, Synergetics, Genentech, Leica, Zeiss and Alcon; however, none of this was utilized for data collection and analysis or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justis P. Ehlers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, Y.S., Tanchon, C. & Ehlers, J.P. Comparative Safety and Tolerability of Anti-VEGF Therapy in Age-Related Macular Degeneration. Drug Saf 38, 279–293 (2015). https://doi.org/10.1007/s40264-015-0273-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-015-0273-0

Keywords

Navigation