Skip to main content
Log in

GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Premenstrual dysphoric disorder (PMDD) is characterized by the predictable onset of mood and physical symptoms secondary to gonadal steroid fluctuation during the luteal phase of the menstrual cycle. Although menstrual-related affective dysfunction is responsible for considerable functional impairment and reduction in quality of life worldwide, currently approved treatments for PMDD are suboptimal in their effectiveness. Research over the past two decades has suggested that the interaction between allopregnanolone, a neurosteroid derivative of progesterone, and the gamma-aminobutyric acid (GABA) system represents an important relationship underlying symptom genesis in reproductive-related mood disorders, including PMDD. The objective of this narrative review is to discuss the plausible link between changes in GABAergic transmission secondary to the fluctuation of allopregnanolone during the luteal phase and mood impairment in susceptible individuals. As part of this discussion, we explore promising findings from early clinical trials of several compounds that stabilize allopregnanolone signaling during the luteal phase, including dutasteride, a 5-alpha reductase inhibitor; isoallopregnanolone, a GABA-A modulating steroid antagonist; and ulipristal acetate, a selective progesterone receptor modulator. We then reflect on the implications of these therapeutic advances, including how they may promote our knowledge of affective regulation more generally. We conclude that these and other studies of PMDD may yield critical insight into the etiopathogenesis of affective disorders, considering that (1) symptoms in PMDD have a predictable onset and offset, allowing for examination of affective state kinetics, and (2) GABAergic interventions in PMDD can be used to better understand the relationship between mood states, network regulation, and the balance between excitatory and inhibitory signaling in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). [Internet]. 2013.

  2. Hartlage SA, Arduino KE, Gehlert S. Premenstrual dysphoric disorder and risk for major depressive disorder: a preliminary study. J Clin Psychol. 2001;57(12):1571–8. https://doi.org/10.1002/jclp.1119.

    Article  CAS  PubMed  Google Scholar 

  3. Kuehner C, Nayman S. Premenstrual exacerbations of mood disorders: findings and knowledge gaps. Curr Psychiatry Rep. 2021;23(11):78. https://doi.org/10.1007/s11920-021-01286-0.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rubinow DR, Roy-Byrne P, Hoban MC, Gold PW, Post RM. Prospective assessment of menstrually related mood disorders. Am J Psychiatry. 1984;141(5):684–6. https://doi.org/10.1176/ajp.141.5.684.

    Article  CAS  PubMed  Google Scholar 

  5. Muse KN, Cetel NS, Futterman LA, Yen SC. The premenstrual syndrome. Effects of “medical ovariectomy.” N Engl J Med. 1984;311(21):1345–9. https://doi.org/10.1056/NEJM198411223112104.

    Article  CAS  PubMed  Google Scholar 

  6. Hammarbäck S, Bäckström T. Induced anovulation as treatment of premenstrual tension syndrome. A double-blind cross-over study with GnRH-agonist versus placebo. Acta Obstet Gynecol Scand. 1988;67(2):159–66. https://doi.org/10.3109/00016348809004191.

    Article  PubMed  Google Scholar 

  7. Brown CS, Ling FW, Andersen RN, Farmer RG, Arheart KL. Efficacy of depot leuprolide in premenstrual syndrome: effect of symptom severity and type in a controlled trial. Obstet Gynecol. 1994;84(5):779–86.

    CAS  PubMed  Google Scholar 

  8. West CP, Hillier H. Ovarian suppression with the gonadotrophin-releasing hormone agonist goserelin (Zoladex) in management of the premenstrual tension syndrome. Hum Reprod. 1994;9(6):1058–63. https://doi.org/10.1093/oxfordjournals.humrep.a138633.

    Article  CAS  PubMed  Google Scholar 

  9. Schmidt PJ, Nieman LK, Danaceau MA, Adams LF, Rubinow DR. Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N Engl J Med. 1998;338(4):209–16. https://doi.org/10.1056/nejm199801223380401.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt PJ, Martinez PE, Nieman LK, Koziol DE, Thompson KD, Schenkel L, et al. Premenstrual dysphoric disorder symptoms following ovarian suppression: triggered by change in ovarian steroid levels but not continuous stable levels. Am J Psychiatry. 2017;174(10):980–9. https://doi.org/10.1176/appi.ajp.2017.16101113.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Baller EB, Wei SM, Kohn PD, Rubinow DR, Alarcón G, Schmidt PJ, et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry. 2013;170(3):305–14. https://doi.org/10.1176/appi.ajp.2012.12030385.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Duan C, Cosgrove J, Deligiannidis KM. Understanding peripartum depression through neuroimaging: a review of structural and functional connectivity and molecular imaging research. Curr Psychiatry Rep. 2017;19(10):70. https://doi.org/10.1007/s11920-017-0824-4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Tao J, Li L, Zhong Z, Liu S, Jiang T, et al. Alterations in white matter fractional anisotropy in subsyndromal perimenopausal depression. BMC Psychiatry. 2014;14:367. https://doi.org/10.1186/s12888-014-0367-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rubinow DR, Schmidt PJ. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology. 2019;44(1):111–28. https://doi.org/10.1038/s41386-018-0148-z.

    Article  PubMed  Google Scholar 

  15. Semyanov A, Walker MC, Kullmann DM. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 2003;6(5):484–90. https://doi.org/10.1038/nn1043.

    Article  CAS  PubMed  Google Scholar 

  16. Mody I. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem Res. 2001;26(8–9):907–13. https://doi.org/10.1023/a:1012376215967.

    Article  CAS  PubMed  Google Scholar 

  17. Holter NI, Zylla MM, Zuber N, Bruehl C, Draguhn A. Tonic GABAergic control of mouse dentate granule cells during postnatal development. Eur J Neurosci. 2010;32(8):1300–9. https://doi.org/10.1111/j.1460-9568.2010.07331.x.

    Article  PubMed  Google Scholar 

  18. Roth FC, Draguhn A. GABA metabolism and transport: effects on synaptic efficacy. Neural Plast. 2012;2012:805830. https://doi.org/10.1155/2012/805830

  19. Spellman T, Liston C. Toward circuit mechanisms of pathophysiology in depression. Am J Psychiatry. 2020;177(5):381–90. https://doi.org/10.1176/appi.ajp.2020.20030280.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron. 2019;102(1):75–90. https://doi.org/10.1016/j.neuron.2019.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Northoff G, Sibille E. Cortical GABA neurons and self-focus in depression: a model linking cellular, biochemical and neural network findings. Mol Psychiatry. 2014;19(9):959. https://doi.org/10.1038/mp.2014.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fee C, Banasr M, Sibille E. Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol Psychiatry. 2017;82(8):549–59. https://doi.org/10.1016/j.biopsych.2017.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2019;13:87. https://doi.org/10.3389/fncel.2019.00087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Northoff G, Sibille E. Why are cortical GABA neurons relevant to internal focus in depression? A cross-level model linking cellular, biochemical and neural network findings. Mol Psychiatry. 2014;19(9):966–77. https://doi.org/10.1038/mp.2014.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seney ML, Chang LC, Oh H, Wang X, Tseng GC, Lewis DA, et al. The role of genetic sex in affect regulation and expression of GABA-related genes across species. Front Psychiatry. 2013;4:104. https://doi.org/10.3389/fpsyt.2013.00104.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pandya M, Palpagama TH, Turner C, Waldvogel HJ, Faull RL, Kwakowsky A. Sex- and age-related changes in GABA signaling components in the human cortex. Biol Sex Differ. 2019;10(1):5. https://doi.org/10.1186/s13293-018-0214-6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gold BI, Bowers MBJ, Roth RH, Sweeney DW. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 1980;137(3):362–4. https://doi.org/10.1176/ajp.137.3.362.

    Article  CAS  PubMed  Google Scholar 

  28. Guilloux JP, Douillard-Guilloux G, Kota R, Wang X, Gardier AM, Martinowich K, et al. Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry. 2012;17(11):1130–42. https://doi.org/10.1038/mp.2011.113.

    Article  CAS  PubMed  Google Scholar 

  29. Seney ML, Tripp A, McCune S, Lewis DA, Sibille E. Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression. Neurobiol Dis. 2015;73:213–9. https://doi.org/10.1016/j.nbd.2014.10.005.

    Article  CAS  PubMed  Google Scholar 

  30. Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2007;32(2):471–82. https://doi.org/10.1038/sj.npp.1301234.

    Article  CAS  Google Scholar 

  31. Evans JW, Szczepanik J, Brutsché N, Park LT, Nugent AC, Zarate CAJ. Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biol Psychiatry. 2018;84(8):582–90. https://doi.org/10.1016/j.biopsych.2018.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62(5):429–37. https://doi.org/10.1016/j.biopsych.2006.09.020.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatr. 2015;72(6):603–11. https://doi.org/10.1001/jamapsychiatry.2015.0071.

    Article  Google Scholar 

  34. Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997;9(3):471–81. https://doi.org/10.1176/jnp.9.3.471.

    Article  CAS  PubMed  Google Scholar 

  35. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A. 2009;106(6):1942–7. https://doi.org/10.1073/pnas.0812686106.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Prévot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders. Mol Psychiatry. 2021;26(1):151–67. https://doi.org/10.1038/s41380-020-0727-3.

    Article  CAS  PubMed  Google Scholar 

  37. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91(2):260–92. https://doi.org/10.1016/j.neuron.2016.06.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murayama M, Pérez-Garci E, Nevian T, Bock T, Senn W, Larkum ME. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature. 2009;457(7233):1137–41. https://doi.org/10.1038/nature07663.

    Article  CAS  PubMed  Google Scholar 

  39. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature. 2011;477(7363):171–8. https://doi.org/10.1038/nature10360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soumier A, Sibille E. Opposing effects of acute versus chronic blockade of frontal cortex somatostatin-positive inhibitory neurons on behavioral emotionality in mice. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2014;39(9):2252–62. https://doi.org/10.1038/npp.2014.76.

    Article  CAS  Google Scholar 

  41. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, et al. GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci. 2007;10(12):1515–7. https://doi.org/10.1038/nn2001.

    Article  CAS  PubMed  Google Scholar 

  42. Hu Y, Chen X, Gu H, Yang Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J Neurosci Off J Soc Neurosci. 2013;33(47):18566–73. https://doi.org/10.1523/JNEUROSCI.1973-13.2013.

    Article  CAS  Google Scholar 

  43. Kapogiannis D, Reiter DA, Willette AA, Mattson MP. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage. 2013;64:112–9. https://doi.org/10.1016/j.neuroimage.2012.09.029.

    Article  CAS  PubMed  Google Scholar 

  44. Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjaǹska M, Doyon J, et al. GABA in the insula—a predictor of the neural response to interoceptive awareness. Neuroimage. 2014;86:10–8. https://doi.org/10.1016/j.neuroimage.2013.04.042.

    Article  CAS  PubMed  Google Scholar 

  45. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232(4753):1004–7. https://doi.org/10.1126/science.2422758.

    Article  CAS  PubMed  Google Scholar 

  46. Zorumski CF, Paul SM, Covey DF, Mennerick S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol Stress. 2019;11:100196. https://doi.org/10.1016/j.ynstr.2019.100196.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zorumski CF, Paul SM, Izumi Y, Covey DF, Mennerick S. Neurosteroids, stress and depression: potential therapeutic opportunities. Neurosci Biobehav Rev. 2013;37(1):109–22. https://doi.org/10.1016/j.neubiorev.2012.10.005.

    Article  CAS  PubMed  Google Scholar 

  48. Hosie AM, Wilkins ME, da Silva HMA, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature. 2006;444(7118):486–9. https://doi.org/10.1038/nature05324.

    Article  CAS  PubMed  Google Scholar 

  49. Sugasawa Y, Cheng WWL, Bracamontes JR, Chen ZW, Wang L, Germann AL, et al. Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. Czajkowski CM, Aldrich RW, editors. Elife [Internet]. 2020;9:e55331. https://doi.org/10.7554/eLife.55331

  50. Turkmen S, Backstrom T, Wahlstrom G, Andreen L, Johansson IM. Tolerance to allopregnanolone with focus on the GABA-A receptor. Br J Pharmacol. 2011;162(2):311–27. https://doi.org/10.1111/j.1476-5381.2010.01059.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci. 2005;6(7):565–75. https://doi.org/10.1038/nrn1703.

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez LD, Pecci A, Estrin DA. In search of GABA(A) receptor’s neurosteroid binding sites. J Med Chem. 2019;62(11):5250–60. https://doi.org/10.1021/acs.jmedchem.8b01400.

    Article  CAS  PubMed  Google Scholar 

  53. Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, et al. Neurosteroids act on recombinant human GABAA receptors. Neuron. 1990;4(5):759–65. https://doi.org/10.1016/0896-6273(90)90202-q.

    Article  CAS  PubMed  Google Scholar 

  54. Puia G, Vicini S, Seeburg PH, Costa E. Influence of recombinant gamma-aminobutyric acid-A receptor subunit composition on the action of allosteric modulators of gamma-aminobutyric acid-gated Cl-currents. Mol Pharmacol. 1991;39(6):691–6.

    CAS  PubMed  Google Scholar 

  55. Puia G, Ravazzini F, Castelnovo LF, Magnaghi V. PKCε and allopregnanolone: functional cross-talk at the GABAA receptor level. Front Cell Neurosci. 2015;9:83. https://doi.org/10.3389/fncel.2015.00083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reddy DS, Apanites LA. Anesthetic effects of progesterone are undiminished in progesterone receptor knockout mice. Brain Res. 2005;1033(1):96–101. https://doi.org/10.1016/j.brainres.2004.11.026.

    Article  CAS  PubMed  Google Scholar 

  57. Poisbeau P, Keller AF, Aouad M, Kamoun N, Groyer G, Schumacher M. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Front Cell Neurosci. 2014;8:174. https://doi.org/10.3389/fncel.2014.00174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kapur J, Joshi S. Progesterone modulates neuronal excitability bidirectionally. Neurosci Lett. 2021;744:135619. https://doi.org/10.1016/j.neulet.2020.135619

  59. Schüle C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. 2014;113:79–87. https://doi.org/10.1016/j.pneurobio.2013.09.003.

    Article  CAS  PubMed  Google Scholar 

  60. Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology. 2013;230(2):151–88. https://doi.org/10.1007/s00213-013-3276-5.

    Article  CAS  PubMed  Google Scholar 

  61. Antonoudiou P, Colmers PLW, Walton NL, Weiss GL, Smith AC, Nguyen DP, et al. Allopregnanolone mediates affective switching through modulation of oscillatory states in the basolateral amygdala. Biol Psychiatry. 2022;91(3):283–93. https://doi.org/10.1016/j.biopsych.2021.07.017.

    Article  CAS  PubMed  Google Scholar 

  62. Sripada RK, Welsh RC, Marx CE, Liberzon I. The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting-state amygdala connectivity. Hum Brain Mapp. 2014;35(7):3249–61. https://doi.org/10.1002/hbm.22399.

    Article  PubMed  Google Scholar 

  63. Dornellas APS, Macedo GC, McFarland MH, Gómez-A A, O’Buckley TK, Da Cunha C, et al. Allopregnanolone decreases evoked dopamine release differently in rats by sex and estrous stage. Front Pharmacol. 2020;11:608887. https://doi.org/10.3389/fphar.2020.608887

  64. Syan SK, Minuzzi L, Costescu D, Smith M, Allega OR, Coote M, et al. Influence of endogenous estradiol, progesterone, allopregnanolone, and dehydroepiandrosterone sulfate on brain resting state functional connectivity across the menstrual cycle. Fertil Steril. 2017;107(5):1246-1255.e4. https://doi.org/10.1016/j.fertnstert.2017.03.021.

    Article  CAS  PubMed  Google Scholar 

  65. Deligiannidis KM, Fales CL, Kroll-Desrosiers AR, Shaffer SA, Villamarin V, Tan Y, et al. Resting-state functional connectivity, cortical GABA, and neuroactive steroids in peripartum and peripartum depressed women: a functional magnetic resonance imaging and spectroscopy study. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2019;44(3):546–54. https://doi.org/10.1038/s41386-018-0242-2.

    Article  CAS  Google Scholar 

  66. Beauchamp MH, Ormerod BK, Jhamandas K, Boegman RJ, Beninger RJ. Neurosteroids and reward: allopregnanolone produces a conditioned place aversion in rats. Pharmacol Biochem Behav. 2000;67(1):29–35. https://doi.org/10.1016/s0091-3057(00)00299-9.

    Article  CAS  PubMed  Google Scholar 

  67. Fish EW, Whitman BJ, DiBerto JF, Robinson JE, Morrow AL, Malanga CJ. Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J mice. Psychopharmacology. 2014;231(17):3415–23. https://doi.org/10.1007/s00213-014-3600-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of cocaine-related behaviours by estrogen and progesterone. Neurosci Biobehav Rev. 2022;135:104584. https://doi.org/10.1016/j.neubiorev.2022.104584

  69. Meltzer-Brody S, Kanes SJ. Allopregnanolone in postpartum depression: Role in pathophysiology and treatment. Neurobiol Stress. 2020;12:100212. https://doi.org/10.1016/j.ynstr.2020.100212

  70. Meltzer-Brody S, Colquhoun H, Riesenberg R, Epperson CN, Deligiannidis KM, Rubinow DR, et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet (London, England). 2018;392(10152):1058–70. https://doi.org/10.1016/S0140-6736(18)31551-4.

    Article  CAS  PubMed  Google Scholar 

  71. Kanes S, Colquhoun H, Gunduz-Bruce H, Raines S, Arnold R, Schacterle A, et al. Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. Lancet (London, England). 2017;390(10093):480–9. https://doi.org/10.1016/S0140-6736(17)31264-3.

    Article  CAS  PubMed  Google Scholar 

  72. Nguyen AJ, Hoyer E, Rajhans P, Strathearn L, Kim S. A tumultuous transition to motherhood: Altered brain and hormonal responses in mothers with postpartum depression. J Neuroendocrinol. 2019;31(9):e12794. https://doi.org/10.1111/jne.12794

  73. Moses-Kolko EL, Horner MS, Phillips ML, Hipwell AE, Swain JE. In search of neural endophenotypes of postpartum psychopathology and disrupted maternal caregiving. J Neuroendocrinol. 2014;26(10):665–84. https://doi.org/10.1111/jne.12183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vignato J, Perkhounkova Y, McCarthy AM, Segre LS. Pain and depression symptoms during the third trimester of pregnancy. MCN Am J Matern Nurs [Internet]. 2020;45(6).

  75. Zhang L, Wang L, Cui S, Yuan Q, Huang C, Zhou X. Prenatal depression in women in the third trimester: prevalence, predictive factors, and relationship with maternal-fetal attachment. Front Public Health. 2020;8:602005. https://doi.org/10.3389/fpubh.2020.602005

  76. Gulinello M, Gong QH, Li X, Smith SS. Short-term exposure to a neuroactive steroid increases alpha4 GABA(A) receptor subunit levels in association with increased anxiety in the female rat. Brain Res. 2001;910(1–2):55–66. https://doi.org/10.1016/s0006-8993(01)02565-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gulinello M, Smith SS. Anxiogenic effects of neurosteroid exposure: sex differences and altered GABAA receptor pharmacology in adult rats. J Pharmacol Exp Ther. 2003;305(2):541–8. https://doi.org/10.1124/jpet.102.045120.

    Article  CAS  PubMed  Google Scholar 

  78. Beddig T, Reinhard I, Kuehner C. Stress, mood, and cortisol during daily life in women with premenstrual dysphoric disorder (PMDD). Psychoneuroendocrinology. 2019;109:104372. https://doi.org/10.1016/j.psyneuen.2019.104372

  79. Petersen N, London ED, Liang L, Ghahremani DG, Gerards R, Goldman L, et al. Emotion regulation in women with premenstrual dysphoric disorder. Arch Womens Ment Health. 2016;19(5):891–8. https://doi.org/10.1007/s00737-016-0634-4.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lee EE, Nieman LK, Martinez PE, Harsh VL, Rubinow DR, Schmidt PJ. ACTH and cortisol response to Dex/CRH testing in women with and without premenstrual dysphoria during GnRH agonist-induced hypogonadism and ovarian steroid replacement. J Clin Endocrinol Metab. 2012;97(6):1887–96. https://doi.org/10.1210/jc.2011-3451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Segebladh B, Bannbers E, Moby L, Nyberg S, Bixo M, Bäckström T, et al. Allopregnanolone serum concentrations and diurnal cortisol secretion in women with premenstrual dysphoric disorder. Arch Womens Ment Health. 2013;16(2):131–7. https://doi.org/10.1007/s00737-013-0327-1.

    Article  PubMed  Google Scholar 

  82. Rasgon N, McGuire M, Tanavoli S, Fairbanks L, Rapkin A. Neuroendocrine response to an intravenous l-tryptophan challenge in women with premenstrual syndrome. Fertil Steril. 2000;73(1):144–9. https://doi.org/10.1016/s0015-0282(99)00452-5.

    Article  CAS  PubMed  Google Scholar 

  83. Girdler SS, Straneva PA, Light KC, Pedersen CA, Morrow AL. Allopregnanolone levels and reactivity to mental stress in premenstrual dysphoric disorder. Biol Psychiatry. 2001;49(9):788–97. https://doi.org/10.1016/s0006-3223(00)01044-1.

    Article  CAS  PubMed  Google Scholar 

  84. Huang Y, Zhou R, Wu M, Wang Q, Zhao Y. Premenstrual syndrome is associated with blunted cortisol reactivity to the TSST. Stress. 2015;18(2):160–8. https://doi.org/10.3109/10253890.2014.999234.

    Article  CAS  PubMed  Google Scholar 

  85. Lombardi I, Luisi S, Quirici B, Monteleone P, Bernardi F, Liut M, et al. Adrenal response to adrenocorticotropic hormone stimulation in patients with premenstrual syndrome. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2004;18(2):79–87. https://doi.org/10.1080/09513590310001652955.

    Article  CAS  Google Scholar 

  86. Sarkar J, Wakefield S, MacKenzie G, Moss SJ, Maguire J. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci Off J Soc Neurosci. 2011;31(50):18198–210. https://doi.org/10.1523/JNEUROSCI.2560-11.2011.

    Article  CAS  Google Scholar 

  87. Almeida FB, Pinna G, Barros HMT. The role of HPA axis and allopregnanolone on the neurobiology of major depressive disorders and PTSD. Int J Mol Sci. 2021;22(11). https://doi.org/10.3390/ijms22115495

  88. Cullinan WE, Ziegler DR, Herman JP. Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct. 2008;213(1–2):63–72. https://doi.org/10.1007/s00429-008-0192-2.

    Article  CAS  PubMed  Google Scholar 

  89. Miklós IH, Kovács KJ, Herman JP, Cullinan WE, Ziegler DR, Tasker JG. GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Eur J Neurosci. 2002;113(3):381–5. https://doi.org/10.1046/j.1460-9568.2002.02133.x.

    Article  Google Scholar 

  90. Herman JP, Cullinan WE, Ziegler DR, Tasker JG. Role of the paraventricular nucleus microenvironment in stress integration. Eur J Neurosci. 2002;16(3):381–5. https://doi.org/10.1046/j.1460-9568.2002.02133.x.

    Article  PubMed  Google Scholar 

  91. Patchev VK, Shoaib M, Holsboer F, Almeida OF. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neuroscience. 1994;62(1):265–71. https://doi.org/10.1016/0306-4522(94)90330-1.

    Article  CAS  PubMed  Google Scholar 

  92. Gordon JL, Girdler SS, Meltzer-Brody SE, Stika CS, Thurston RC, Clark CT, et al. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry. 2015;172(3):227–36. https://doi.org/10.1176/appi.ajp.2014.14070918.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E. The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5alpha-dihydroprogesterone in psychiatric disorders. Brain Res Brain Res Rev. 2001;37(1–3):110–5. https://doi.org/10.1016/s0165-0173(01)00129-1.

    Article  CAS  PubMed  Google Scholar 

  94. Concas A, Mostallino MC, Porcu P, Follesa P, Barbaccia ML, Trabucchi M, et al. Role of brain allopregnanolone in the plasticity of gamma-aminobutyric acid type A receptor in rat brain during pregnancy and after delivery. Proc Natl Acad Sci U S A. 1998;95(22):13284–9. https://doi.org/10.1073/pnas.95.22.13284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Concas A, Follesa P, Barbaccia ML, Purdy RH, Biggio G. Physiological modulation of GABA(A) receptor plasticity by progesterone metabolites. Eur J Pharmacol. 1999;375(1–3):225–35. https://doi.org/10.1016/s0014-2999(99)00232-0.

    Article  CAS  PubMed  Google Scholar 

  96. Boero G, Pisu MG, Biggio F, Muredda L, Carta G, Banni S, et al. Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats. Neuropharmacology. 2018;133:242–53. https://doi.org/10.1016/j.neuropharm.2018.01.045.

    Article  CAS  PubMed  Google Scholar 

  97. Brunton PJ, Russell JA. Allopregnanolone and suppressed hypothalamo–pituitary–adrenal axis stress responses in late pregnancy in the rat. Stress. 2011;14(1):6–12. https://doi.org/10.3109/10253890.2010.482628.

    Article  CAS  PubMed  Google Scholar 

  98. Serra M, Mostallino MC, Talani G, Pisu MG, Carta M, Mura ML, et al. Social isolation-induced increase in alpha and delta subunit gene expression is associated with a greater efficacy of ethanol on steroidogenesis and GABA receptor function. J Neurochem. 2006;98(1):122–33. https://doi.org/10.1111/j.1471-4159.2006.03850.x.

    Article  CAS  PubMed  Google Scholar 

  99. Maguire J, Mody I. GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron. 2008;59(2):207–13. https://doi.org/10.1016/j.neuron.2008.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huo L, Straub RE, Roca C, Schmidt PJ, Shi K, Vakkalanka R, et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry. 2007;62(8):925–33. https://doi.org/10.1016/j.biopsych.2006.12.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miller A, Vo H, Huo L, Roca C, Schmidt PJ, Rubinow DR. Estrogen receptor alpha (ESR-1) associations with psychological traits in women with PMDD and controls. J Psychiatr Res. 2010;44(12):788–94. https://doi.org/10.1016/j.jpsychires.2010.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pinsonneault JK, Sullivan D, Sadee W, Soares CN, Hampson E, Steiner M. Association study of the estrogen receptor gene ESR1 with postpartum depression—a pilot study. Arch Womens Ment Health. 2013;16(6):499–509. https://doi.org/10.1007/s00737-013-0373-8.

    Article  PubMed  Google Scholar 

  103. Costas J, Gratacòs M, Escaramís G, Martín-Santos R, de Diego Y, Baca-García E, et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J Psychiatr Res. 2010;44(11):717–24. https://doi.org/10.1016/j.jpsychires.2009.12.012.

    Article  PubMed  Google Scholar 

  104. Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med. 2014;44(11):2309–22. https://doi.org/10.1017/S0033291713003231.

    Article  CAS  PubMed  Google Scholar 

  105. Dubey N, Hoffman JF, Schuebel K, Yuan Q, Martinez PE, Nieman LK, et al. The ESC/E(Z) complex, an effector of response to ovarian steroids, manifests an intrinsic difference in cells from women with premenstrual dysphoric disorder. Mol Psychiatry. 2017;22(8):1172–84. https://doi.org/10.1038/mp.2016.229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li HJ, Goff A, Rudzinskas SA, Jung Y, Dubey N, Hoffman J, et al. Altered estradiol-dependent cellular Ca(2+) homeostasis and endoplasmic reticulum stress response in premenstrual dysphoric disorder. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01144-8.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Marrocco J, Einhorn NR, Petty GH, Li H, Dubey N, Hoffman J, et al. Epigenetic intersection of BDNF Val66Met genotype with premenstrual dysphoric disorder transcriptome in a cross-species model of estradiol add-back. Mol Psychiatry. 2020;25(3):572–83. https://doi.org/10.1038/s41380-018-0274-3.

    Article  CAS  PubMed  Google Scholar 

  108. Bath KG, Chuang J, Spencer-Segal JL, Amso D, Altemus M, McEwen BS, et al. Variant brain-derived neurotrophic factor (Valine66Methionine) polymorphism contributes to developmental and estrous stage-specific expression of anxiety-like behavior in female mice. Biol Psychiatry. 2012;72(6):499–504. https://doi.org/10.1016/j.biopsych.2012.03.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Comasco E, Hahn A, Ganger S, Gingnell M, Bannbers E, Oreland L, et al. Emotional fronto-cingulate cortex activation and brain derived neurotrophic factor polymorphism in premenstrual dysphoric disorder. Hum Brain Mapp. 2014;35(9):4450–8. https://doi.org/10.1002/hbm.22486.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Ullah A, Long X, Mat WK, Hu T, Khan MI, Hui L, et al. Highly recurrent copy number variations in GABRB2 associated with schizophrenia and premenstrual dysphoric disorder. Front psychiatry. 2020;11:572. https://doi.org/10.3389/fpsyt.2020.00572.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB, et al. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod. 2014;29(9):1987–94. https://doi.org/10.1093/humrep/deu170.

    Article  CAS  PubMed  Google Scholar 

  112. Yama K, Asari Y, Ono A, Machida M, Miura J. Plasma interleukin-10 levels are altered in women with severe premenstrual syndrome: a preliminary study. Women’s Heal Rep (New Rochelle, NY). 2020;1(1):73–9. https://doi.org/10.1089/whr.2019.0010.

    Article  Google Scholar 

  113. Crowley T, Cryan JF, Downer EJ, O’Leary OF. Inhibiting neuroinflammation: the role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun. 2016;54:260–77. https://doi.org/10.1016/j.bbi.2016.02.001.

    Article  CAS  PubMed  Google Scholar 

  114. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci U S A. 2010;107(6):2580–5. https://doi.org/10.1073/pnas.0915139107.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tian J, Middleton B, Kaufman DL. GABA(A)-receptor agonists limit pneumonitis and death in murine coronavirus-infected mice. Viruses. 2021;13(6). https://doi.org/10.3390/v13060966

  116. Mechawar N, Savitz J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry. 2016;6(11):e946. https://doi.org/10.1038/tp.2016.212

  117. Clements RJ, McDonough J, Freeman EJ. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Exp Brain Res. 2008;187(3):459–65. https://doi.org/10.1007/s00221-008-1317-9.

    Article  CAS  PubMed  Google Scholar 

  118. Wieck A, Andersen SL, Brenhouse HC. Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun. 2013;28:218–26. https://doi.org/10.1016/j.bbi.2012.11.012.

    Article  CAS  PubMed  Google Scholar 

  119. Giovanoli S, Weber L, Meyer U. Single and combined effects of prenatal immune activation and peripubertal stress on parvalbumin and reelin expression in the hippocampal formation. Brain Behav Immun. 2014;40:48–54. https://doi.org/10.1016/j.bbi.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  120. Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, et al. Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4(9):490–503. https://doi.org/10.1038/ncpneuro0883.

    Article  CAS  PubMed  Google Scholar 

  121. Bäckström T, Bixo M, Johansson M, Nyberg S, Ossewaarde L, Ragagnin G, et al. Allopregnanolone and mood disorders. Prog Neurobiol. 2014;113:88–94. https://doi.org/10.1016/j.pneurobio.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  122. Tiranini L, Nappi RE. Recent advances in understanding/management of premenstrual dysphoric disorder/premenstrual syndrome. Fac Rev. 2022;11:11. https://doi.org/10.12703/r/11-11

  123. Smith SS, Ruderman Y, Frye C, Homanics G, Yuan M. Steroid withdrawal in the mouse results in anxiogenic effects of 3alpha,5beta-THP: a possible model of premenstrual dysphoric disorder. Psychopharmacology. 2006;186(3):323–33. https://doi.org/10.1007/s00213-005-0168-3.

    Article  CAS  PubMed  Google Scholar 

  124. Shen H, Gong QH, Yuan M, Smith SS. Short-term steroid treatment increases delta GABAA receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology. 2005;49(5):573–86. https://doi.org/10.1016/j.neuropharm.2005.04.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Timby E, Bäckström T, Nyberg S, Stenlund H, Wihlbäck ACN, Bixo M. Women with premenstrual dysphoric disorder have altered sensitivity to allopregnanolone over the menstrual cycle compared to controls-a pilot study. Psychopharmacology. 2016;233(11):2109–17. https://doi.org/10.1007/s00213-016-4258-1.

    Article  CAS  PubMed  Google Scholar 

  126. Hantsoo L, Epperson CN. Premenstrual dysphoric disorder: epidemiology and treatment. Curr Psychiatry Rep. 2015;17(11):87. https://doi.org/10.1007/s11920-015-0628-3.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Epperson CN, Pittman B, Czarkowski KA, Stiklus S, Krystal JH, Grillon C. Luteal-phase accentuation of acoustic startle response in women with premenstrual dysphoric disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2007;32(10):2190–8. https://doi.org/10.1038/sj.npp.1301351.

    Article  Google Scholar 

  128. Davis M. Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol. 2006;61(8):741–56. https://doi.org/10.1037/0003-066X.61.8.741.

    Article  PubMed  Google Scholar 

  129. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(1):105–35. https://doi.org/10.1038/npp.2009.109.

    Article  Google Scholar 

  130. Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022;47:1141. https://doi.org/10.1038/s41386-021-01216-x.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Riemann D, Spiegelhalder K, Feige B, Voderholzer U, Berger M, Perlis M, et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev. 2010;14(1):19–31. https://doi.org/10.1016/j.smrv.2009.04.002.

    Article  PubMed  Google Scholar 

  132. Aue T, Okon-Singer H. Expectancy biases in fear and anxiety and their link to biases in attention. Clin Psychol Rev. 2015;42:83–95. https://doi.org/10.1016/j.cpr.2015.08.005.

    Article  PubMed  Google Scholar 

  133. Marjoribanks J, Brown J, O’Brien PMS, Wyatt K. Selective serotonin reuptake inhibitors for premenstrual syndrome. Cochrane Database Syst Rev. 2013;2013(6):CD001396. https://doi.org/10.1002/14651858.CD001396.pub3

  134. Steiner M, Steinberg S, Stewart D, Carter D, Berger C, Reid R, et al. Fluoxetine in the treatment of premenstrual dysphoria. Canadian Fluoxetine/Premenstrual Dysphoria Collaborative Study Group. N Engl J Med. 1995;332(23):1529–34. https://doi.org/10.1056/NEJM199506083322301

  135. Yonkers KA, Halbreich U, Freeman E, Brown C, Endicott J, Frank E, et al. Symptomatic improvement of premenstrual dysphoric disorder with sertraline treatment. A randomized controlled trial. Sertraline Premenstrual Dysphoric Collaborative Study Group. JAMA. 1997;278(12):983–8.

  136. Steinberg EM, Cardoso GMP, Martinez PE, Rubinow DR, Schmidt PJ. Rapid response to fluoxetine in women with premenstrual dysphoric disorder. Depress Anxiety. 2012;29(6):531–40. https://doi.org/10.1002/da.21959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kornstein SG, Pearlstein TB, Fayyad R, Farfel GM, Gillespie JA. Low-dose sertraline in the treatment of moderate-to-severe premenstrual syndrome: efficacy of 3 dosing strategies. J Clin Psychiatry. 2006;67(10):1624–32. https://doi.org/10.4088/jcp.v67n1020.

    Article  CAS  PubMed  Google Scholar 

  138. Griffin LD, Mellon SH. Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci U S A. 1999;96(23):13512–7. https://doi.org/10.1073/pnas.96.23.13512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Trauger JW, Jiang A, Stearns BA, LoGrasso PV. Kinetics of allopregnanolone formation catalyzed by human 3 alpha-hydroxysteroid dehydrogenase type III (AKR1C2). Biochemistry. 2002;41(45):13451–9. https://doi.org/10.1021/bi026109w.

    Article  CAS  PubMed  Google Scholar 

  140. Pinna G, Costa E, Guidotti A. SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol. 2009;9(1):24–30. https://doi.org/10.1016/j.coph.2008.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Devall AJ, Santos JM, Fry JP, Honour JW, Brandão ML, Lovick TA. Elevation of brain allopregnanolone rather than 5-HT release by short term, low dose fluoxetine treatment prevents the estrous cycle-linked increase in stress sensitivity in female rats. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2015;25(1):113–23. https://doi.org/10.1016/j.euroneuro.2014.11.017.

    Article  CAS  Google Scholar 

  142. Gracia CR, Freeman EW, Sammel MD, Lin H, Sheng L, Frye C. Allopregnanolone levels before and after selective serotonin reuptake inhibitor treatment of premenstrual symptoms. J Clin Psychopharmacol US 2009;403–5. https://doi.org/10.1097/JCP.0b013e3181ad8825

  143. Bhagwagar Z, Wylezinska M, Taylor M, Jezzard P, Matthews PM, Cowen PJ. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry. 2004;161(2):368–70. https://doi.org/10.1176/appi.ajp.161.2.368.

    Article  PubMed  Google Scholar 

  144. Freeman EW, Kroll R, Rapkin A, Pearlstein T, Brown C, Parsey K, et al. Evaluation of a unique oral contraceptive in the treatment of premenstrual dysphoric disorder. J Womens Health Gend Based Med. 2001;10(6):561–9. https://doi.org/10.1089/15246090152543148.

    Article  CAS  PubMed  Google Scholar 

  145. Graham CA, Sherwin BB. A prospective treatment study of premenstrual symptoms using a triphasic oral contraceptive. J Psychosom Res. 1992;36(3):257–66. https://doi.org/10.1016/0022-3999(92)90090-o.

    Article  CAS  PubMed  Google Scholar 

  146. Yonkers KA, Brown C, Pearlstein TB, Foegh M, Sampson-Landers C, Rapkin A. Efficacy of a new low-dose oral contraceptive with drospirenone in premenstrual dysphoric disorder. Obstet Gynecol. 2005;106(3):492–501. https://doi.org/10.1097/01.AOG.0000175834.77215.2e.

    Article  CAS  PubMed  Google Scholar 

  147. Pearlstein TB, Bachmann GA, Zacur HA, Yonkers KA. Treatment of premenstrual dysphoric disorder with a new drospirenone-containing oral contraceptive formulation. Contraception. 2005;72(6):414–21. https://doi.org/10.1016/j.contraception.2005.08.021.

    Article  CAS  PubMed  Google Scholar 

  148. Eisenlohr-Moul TA, Girdler SS, Johnson JL, Schmidt PJ, Rubinow DR. Treatment of premenstrual dysphoria with continuous versus intermittent dosing of oral contraceptives: results of a three-arm randomized controlled trial. Depress Anxiety. 2017;34(10):908–17. https://doi.org/10.1002/da.22673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Halbreich U, Freeman EW, Rapkin AJ, Cohen LS, Grubb GS, Bergeron R, et al. Continuous oral levonorgestrel/ethinyl estradiol for treating premenstrual dysphoric disorder. Contraception. 2012;85(1):19–27. https://doi.org/10.1016/j.contraception.2011.05.008.

    Article  CAS  PubMed  Google Scholar 

  150. Martinez PE, Rubinow DR, Nieman LK, Koziol DE, Morrow AL, Schiller CE, et al. 5α-Reductase inhibition prevents the luteal phase increase in plasma allopregnanolone levels and mitigates symptoms in women with premenstrual dysphoric disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2016;41(4):1093–102. https://doi.org/10.1038/npp.2015.246.

    Article  CAS  Google Scholar 

  151. Bixo M, Ekberg K, Poromaa IS, Hirschberg AL, Jonasson AF, Andréen L, et al. Treatment of premenstrual dysphoric disorder with the GABA(A) receptor modulating steroid antagonist Sepranolone (UC1010)-A randomized controlled trial. Psychoneuroendocrinology. 2017;80:46–55. https://doi.org/10.1016/j.psyneuen.2017.02.031.

    Article  CAS  PubMed  Google Scholar 

  152. Comasco E, Kopp Kallner H, Bixo M, Hirschberg AL, Nyback S, de Grauw H, et al. Ulipristal acetate for treatment of premenstrual dysphoric disorder: a proof-of-concept randomized controlled trial. Am J Psychiatry. 2021;178(3):256–65. https://doi.org/10.1176/appi.ajp.2020.20030286.

    Article  PubMed  Google Scholar 

  153. Bäckström T, Das R, Bixo M. Positive GABA(A) receptor modulating steroids and their antagonists: implications for clinical treatments. J Neuroendocrinol. 2022;34(2):e13013. https://doi.org/10.1111/jne.13013.

    Article  CAS  PubMed  Google Scholar 

  154. Bäckström T, Ekberg K, Hirschberg AL, Bixo M, Epperson CN, Briggs P, et al. A randomized, double-blind study on efficacy and safety of sepranolone in premenstrual dysphoric disorder. Psychoneuroendocrinology. 2021;133:105426. https://doi.org/10.1016/j.psyneuen.2021.105426.

    Article  CAS  PubMed  Google Scholar 

  155. Kaltsouni E, Fisher PM, Dubol M, Hustad S, Lanzenberger R, Frokjaer VG, et al. Brain reactivity during aggressive response in women with premenstrual dysphoric disorder treated with a selective progesterone receptor modulator. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2021;46(8):1460–7. https://doi.org/10.1038/s41386-021-01010-9.

    Article  CAS  Google Scholar 

  156. Dubol M, Epperson CN, Lanzenberger R, Sundström-Poromaa I, Comasco E. Neuroimaging premenstrual dysphoric disorder: a systematic and critical review. Front Neuroendocrinol. 2020;57:100838. https://doi.org/10.1016/j.yfrne.2020.100838.

    Article  CAS  PubMed  Google Scholar 

  157. Rabe T, Saenger N, Ebert AD, Roemer T, Tinneberg HR, De Wilde RL, et al. Selective progesterone receptor modulators for the medical treatment of uterine fibroids with a focus on ulipristal acetate. Biomed Res Int. 2018;2018:1374821. https://doi.org/10.1155/2018/1374821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Whitaker LHR, Williams ARW, Critchley HOD. Selective progesterone receptor modulators. Curr Opin Obstet Gynecol [Internet]. 2014;26(4).

  159. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol. 2008;29(2):313–39. https://doi.org/10.1016/j.yfrne.2008.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Beckley EH, Scibelli AC, Finn DA. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability. Psychoneuroendocrinology. 2011;36(6):824–33. https://doi.org/10.1016/j.psyneuen.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  161. Rudolph LM, Cornil CA, Mittelman-Smith MA, Rainville JR, Remage-Healey L, Sinchak K, et al. Actions of steroids: new neurotransmitters. J Neurosci Off J Soc Neurosci. 2016;36(45):11449–58. https://doi.org/10.1523/JNEUROSCI.2473-16.2016.

    Article  CAS  Google Scholar 

  162. Mani SK, Oyola MG. Progesterone signaling mechanisms in brain and behavior. Front Endocrinol (Lausanne). 2012;3:7. https://doi.org/10.3389/fendo.2012.00007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Thomas P, Pang Y. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology. 2012;96(2):162–71. https://doi.org/10.1159/000339822.

    Article  CAS  PubMed  Google Scholar 

  164. Paulmurugan R, Tamrazi A, Massoud TF, Katzenellenbogen JA, Gambhir SS. In vitro and in vivo molecular imaging of estrogen receptor α and β homo- and heterodimerization: exploration of new modes of receptor regulation. Mol Endocrinol. 2011;25(12):2029–40. https://doi.org/10.1210/me.2011-1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Riggs BL, Hartmann LC. Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice. N Engl J Med. 2003;348(7):618–29. https://doi.org/10.1056/NEJMra022219.

    Article  CAS  PubMed  Google Scholar 

  166. Lonard DM, O’Malley BW. The expanding cosmos of nuclear receptor coactivators. Cell. 2006;125(3):411–4. https://doi.org/10.1016/j.cell.2006.04.021.

    Article  CAS  PubMed  Google Scholar 

  167. Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev [Internet]. 2004;25(1):45–71. https://doi.org/10.1210/er.2003-0023.

    Article  CAS  PubMed  Google Scholar 

  168. Martinkovich S, Shah D, Planey SL, Arnott JA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging. 2014;9:1437–52. https://doi.org/10.2147/CIA.S66690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Moskovic DJ, Katz DJ, Akhavan A, Park K, Mulhall JP. Clomiphene citrate is safe and effective for long-term management of hypogonadism. BJU Int. 2012;110(10):1524–8. https://doi.org/10.1111/j.1464-410X.2012.10968.x.

    Article  CAS  PubMed  Google Scholar 

  170. Adashi EY. Clomiphene citrate: mechanism(s) and site(s) of action—a hypothesis revisited. Fertil Steril. 1984;42(3):331–44. https://doi.org/10.1016/s0015-0282(16)48069-6.

    Article  CAS  PubMed  Google Scholar 

  171. Gainer EE, Ulmann A. Pharmacologic properties of CDB(VA)-2914. Steroids. 2003;68(10–13):1005–11. https://doi.org/10.1016/s0039-128x(03)00130-2.

    Article  CAS  PubMed  Google Scholar 

  172. Hild SA, Reel JR, Hoffman LH, Blye RP. CDB-2914: anti-progestational/anti-glucocorticoid profile and post-coital anti-fertility activity in rats and rabbits. Hum Reprod. 2000;15(4):822–9. https://doi.org/10.1093/humrep/15.4.822.

    Article  CAS  PubMed  Google Scholar 

  173. Communal L, Vilasco M, Hugon-Rodin J, Courtin A, Mourra N, Lahlou N, et al. Ulipristal acetate does not impact human normal breast tissue. Hum Reprod. 2012;27(9):2785–98. https://doi.org/10.1093/humrep/des221.

    Article  CAS  PubMed  Google Scholar 

  174. Halbreich U. Selective serotonin reuptake inhibitors and initial oral contraceptives for the treatment of PMDD: effective but not enough. CNS Spectr. 2008;13(7):566–72. https://doi.org/10.1017/s1092852900016849.

    Article  PubMed  Google Scholar 

  175. Dimmock PW, Wyatt KM, Jones PW, O’Brien PM. Efficacy of selective serotonin-reuptake inhibitors in premenstrual syndrome: a systematic review. Lancet (London, England). 2000;356(9236):1131–6. https://doi.org/10.1016/s0140-6736(00)02754-9.

    Article  CAS  PubMed  Google Scholar 

  176. Shah NR, Jones JB, Aperi J, Shemtov R, Karne A, Borenstein J. Selective serotonin reuptake inhibitors for premenstrual syndrome and premenstrual dysphoric disorder: a meta-analysis. Obstet Gynecol. 2008;111(5):1175–82. https://doi.org/10.1097/AOG.0b013e31816fd73b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lopez LM, Kaptein AA, Helmerhorst FM. Oral contraceptives containing drospirenone for premenstrual syndrome. Cochrane Database Syst Rev. 2012;(2):CD006586. https://doi.org/10.1002/14651858.CD006586.pub4

  178. de Wit AE, de Vries YA, de Boer MK, Scheper C, Fokkema A, Janssen CAH, et al. Efficacy of combined oral contraceptives for depressive symptoms and overall symptomatology in premenstrual syndrome: pairwise and network meta-analysis of randomized trials. Am J Obstet Gynecol. 2021;225(6):624–33. https://doi.org/10.1016/j.ajog.2021.06.090.

    Article  CAS  PubMed  Google Scholar 

  179. Sletten IW, Gershon S. The premenstrual syndrome: A discussion of its pathophysiology and treatment with lithium ion. Compr Psychiatry [Internet]. 1966;7(3):197–206. https://doi.org/10.1016/S0010-440X(66)80015-9

  180. Deleon-Jones FA, Val E, Herts C. MHPG excretion and lithium treatment during premenstrual tension syndrome: a case report. Am J Psychiatry. 1982;139(7):950–2. https://doi.org/10.1176/ajp.139.7.950.

    Article  CAS  PubMed  Google Scholar 

  181. Jackson C, Pearson B, Girdler S, Johnson J, Hamer RM, Killenberg S, et al. Double-blind, placebo-controlled pilot study of adjunctive quetiapine SR in the treatment of PMS/PMDD. Hum Psychopharmacol. 2015;30(6):425–34. https://doi.org/10.1002/hup.2494.

    Article  CAS  PubMed  Google Scholar 

  182. Whelan AM, Jurgens TM, Naylor H. Herbs, vitamins and minerals in the treatment of premenstrual syndrome: a systematic review. Can J Clin Pharmacol. 2009;16(3):e407-29.

  183. Doll H, Brown S, Thurston A, Vessey M. Pyridoxine (vitamin B6) and the premenstrual syndrome: a randomized crossover trial. J R Coll Gen Pract. 1989;39(326):364–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kendall KE, Schnurr PP. The effects of vitamin B6 supplementation on premenstrual symptoms. Obstet Gynecol. 1987;70(2):145–9.

  185. Moslehi M, Arab A, Shadnoush M, Hajianfar H. The association between serum magnesium and premenstrual syndrome: a systematic review and meta-analysis of observational studies. Biol Trace Elem Res. 2019;192(2):145–52. https://doi.org/10.1007/s12011-019-01672-z.

    Article  CAS  PubMed  Google Scholar 

  186. Arab A, Rafie N, Askari G, Taghiabadi M. Beneficial role of calcium in premenstrual syndrome: a systematic review of current literature. Int J Prev Med. 2020;11:156. https://doi.org/10.4103/ijpvm.IJPVM_243_19.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Thys-Jacobs S, Starkey P, Bernstein D, Tian J. Calcium carbonate and the premenstrual syndrome: effects on premenstrual and menstrual symptoms. Premenstrual Syndrome Study Group. Am J Obstet Gynecol. 1998;179(2):444–52. https://doi.org/10.1016/s0002-9378(98)70377-1.

    Article  CAS  PubMed  Google Scholar 

  188. Mortola JF, Girton L, Fischer U. Successful treatment of severe premenstrual syndrome by combined use of gonadotropin-releasing hormone agonist and estrogen/progestin. J Clin Endocrinol Metab. 1991;72(2):252A-252F. https://doi.org/10.1210/jcem-72-2-252.

    Article  CAS  PubMed  Google Scholar 

  189. Mezrow G, Shoupe D, Spicer D, Lobo R, Leung B, Pike M. Depot leuprolide acetate with estrogen and progestin add-back for long-term treatment of premenstrual syndrome. Fertil Steril. 1994;62(5):932–7.

    Article  CAS  PubMed  Google Scholar 

  190. Freeman EW, Sondheimer SJ, Rickels K. Gonadotropin-releasing hormone agonist in the treatment of premenstrual symptoms with and without ongoing dysphoria: a controlled study. Psychopharmacol Bull. 1997;33(2):303–9.

    CAS  PubMed  Google Scholar 

  191. Halbreich U, Borenstein J, Pearlstein T, Kahn LS. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology. 2003;28(Suppl 3):1–23. https://doi.org/10.1016/s0306-4530(03)00098-2.

    Article  CAS  PubMed  Google Scholar 

  192. Rapkin AJ, Lewis EI. Treatment of premenstrual dysphoric disorder. Women’s Heal [Internet]. 2013;9(6):537–56. https://doi.org/10.2217/WHE.13.62.

    Article  CAS  Google Scholar 

  193. Sundström-Poromaa I, Comasco E. New pharmacological approaches to the management of premenstrual dysphoric disorder. CNS Drugs. 2023;37(5):371–9. https://doi.org/10.1007/s40263-023-01004-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sundström I, Nyberg S, Bäckström T. Patients with premenstrual syndrome have reduced sensitivity to midazolam compared to control subjects. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 1997;17(6):370–81. https://doi.org/10.1016/S0893-133X(97)00086-9.

    Article  Google Scholar 

  195. Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res. 1980;36:53–88. https://doi.org/10.1016/b978-0-12-571136-4.50008-5.

    Article  CAS  PubMed  Google Scholar 

  196. Carroll BJ, Ritchie JC, Rogers H, Kim DK. Fast feedback inhibition of adrenocorticotropic hormone secretion by endogenous cortisol in humans. Neuroendocrinology [Internet]. 2019;109(4):299–309. https://doi.org/10.1159/000499662.

    Article  CAS  PubMed  Google Scholar 

  197. Dallman MF, Yates FE. Dynamic asymmetries in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Ann N Y Acad Sci. 1969;156(2):696–721. https://doi.org/10.1111/j.1749-6632.1969.tb14008.x.

    Article  CAS  PubMed  Google Scholar 

  198. Sundström-Poromaa I, Comasco E, Sumner R, Luders E. Progesterone—friend or foe? Front Neuroendocrinol. 2020;59:100856. https://doi.org/10.1016/j.yfrne.2020.100856.

    Article  CAS  PubMed  Google Scholar 

  199. Olbert CM, Gala GJ, Tupler LA. Quantifying heterogeneity attributable to polythetic diagnostic criteria: theoretical framework and empirical application. J Abnorm Psychol. 2014;123(2):452–62. https://doi.org/10.1037/a0036068.

    Article  PubMed  Google Scholar 

  200. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;35(3):121–43. https://doi.org/10.1017/S0140525X11000446.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Carvalho T. New depression drug zuranolone one step closer to FDA ruling. Nat Med US. 2023;49:1032–3. https://doi.org/10.1038/d41591-023-00032-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Sikes-Keilp.

Ethics declarations

Funding

No funding was received for the preparation of this manuscript.

Conflicts of Interest

Dr. Rubinow is on the Scientific Advisory Board of (and has received honoraria and stock options from) Sage Therapeutics. He is also on the Scientific Advisory Boards of Sensorium Therapeutics and Embarq Neuro. He also has consulted to Arrivo Therapeutics. Dr. Sikes-Keilp reports no conflicts of interest.

Ethics approval

No ethics approval for this review was required.

Consent to participate

Not applicable.

Availability of data and material

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

No software application or custom code was used in the generation of this manuscript.

Author contributions

CSK and DRR both made substantial contributions to the written manuscript, including conceptualization, drafting, and critical review for important intellectual content. Both authors provided final approval of the version to be published, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikes-Keilp, C., Rubinow, D.R. GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs 37, 679–693 (2023). https://doi.org/10.1007/s40263-023-01030-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-01030-7

Navigation