Skip to main content
Log in

The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

It has now been established that a perturbation in gut microbiome composition exists in multiple sclerosis (MS) and its interplay with the immune system and brain could potentially contribute to the development of the disease and influence its course. The effects of the gut microbiota on the disease may be mediated by direct interactions between bacteria and immune cells or through interactions of products of bacterial metabolism with immune and CNS cells. In this review article we summarize the ways in which the gut microbiome of people with MS differs from controls and how bacterial metabolites can potentially play a role in MS pathogenesis, and examine approaches to alter the composition of the gut microbiota potentially alleviating gut dysbiosis and impacting the course of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet. 2008;9(7):516–26. https://doi.org/10.1038/nrg2395.

    Article  CAS  PubMed  Google Scholar 

  2. Mumford CJ, Wood NW, Kellar-Wood H, Thorpe JW, Miller DH, Compston DA. The British Isles survey of multiple sclerosis in twins. Neurology. 1994;44(1):11–5. https://doi.org/10.1212/wnl.44.1.11.

    Article  CAS  PubMed  Google Scholar 

  3. Islam T, Gauderman WJ, Cozen W, Hamilton AS, Burnett ME, Mack TM. Differential twin concordance for multiple sclerosis by latitude of birthplace. Ann Neurol. 2006;60(1):56–64. https://doi.org/10.1002/ana.20871.

    Article  PubMed  Google Scholar 

  4. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA. 2003;100(22):12877–82. https://doi.org/10.1073/pnas.1932604100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268–77. https://doi.org/10.1016/S1474-4422(08)70042-5.

    Article  PubMed  Google Scholar 

  6. Ascherio A. Environmental factors in multiple sclerosis. Expert Rev Neurother. 2013;13(sup2):3–9. https://doi.org/10.1586/14737175.2013.865866.

    Article  CAS  PubMed  Google Scholar 

  7. Belbasis L, Bellou V, Evangelou E, Ioannidis JPA, Tzoulaki I. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol. 2015;14(3):263–73. https://doi.org/10.1016/S1474-4422(14)70267-4.

    Article  PubMed  Google Scholar 

  8. Rook GW, Brunet LR. Microbes, immunoregulation, and the gut. Gut. 2005;54(3):317–20. https://doi.org/10.1136/gut.2004.053785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232–6. https://doi.org/10.1038/nature12331.

    Article  CAS  PubMed  Google Scholar 

  10. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci. 2011;108(Supplement 1):4615–22. https://doi.org/10.1073/pnas.1000082107.

    Article  PubMed  Google Scholar 

  11. Croxford JL, Miyake S. Immunoregulation of multiple sclerosis by gut environmental factors. Clin Exp Neuroimmunol. 2015;6(4):362–9. https://doi.org/10.1111/cen3.12252.

    Article  CAS  Google Scholar 

  12. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41. https://doi.org/10.1038/nature10554.

    Article  CAS  PubMed  Google Scholar 

  13. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50. https://doi.org/10.4049/jimmunol.0900747.

    Article  CAS  PubMed  Google Scholar 

  14. Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol. 2008;173(6):1714–23. https://doi.org/10.2353/ajpath.2008.080622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015. https://doi.org/10.1038/ncomms12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, et al. Gut microbiome in progressive multiple sclerosis. Ann Neurol. 2021;89(6):1195–211. https://doi.org/10.1002/ANA.26084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Durazzi F, Sala C, Castellani G, Manfreda G, Remondini D, De Cesare A. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci Rep. 2021;11(1):3030. https://doi.org/10.1038/s41598-021-82726-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019. https://doi.org/10.3389/FIMMU.2019.00277.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7):2485S-2493S. https://doi.org/10.1093/JN/133.7.2485S.

    Article  CAS  PubMed  Google Scholar 

  20. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9. https://doi.org/10.1074/JBC.M211609200.

    Article  CAS  PubMed  Google Scholar 

  21. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014. https://doi.org/10.1126/SCITRANSLMED.3009759.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pérez-Pérez S, Domínguez-Mozo MI, Alonso-Gómez A, Medina S, Villarrubia N, Fernández-Velasco JI, et al. Acetate correlates with disability and immune response in multiple sclerosis. PeerJ. 2020;8:e10220. https://doi.org/10.7717/peerj.10220.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moles L, Delgado S, Gorostidi-Aicua M, Sepúlveda L, Alberro A, Iparraguirre L, et al. Microbial dysbiosis and lack of SCFA production in a Spanish cohort of patients with multiple sclerosis. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.960761.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflamm. 2019;16(1):165. https://doi.org/10.1186/s12974-019-1552-y.

    Article  CAS  Google Scholar 

  25. Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Eilers E, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. 2020;180(6):1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035.

    Article  CAS  PubMed  Google Scholar 

  26. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. https://doi.org/10.1111/J.1574-6968.2009.01514.X.

    Article  CAS  PubMed  Google Scholar 

  27. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29–41. https://doi.org/10.1111/1462-2920.13589.

    Article  CAS  PubMed  Google Scholar 

  28. Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. https://doi.org/10.1371/journal.pone.0137429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tremlett H, Fadrosh DW, Faruqi AA, Zhu F, Hart J, Roalstad S, et al. Gut microbiota in early pediatric multiple sclerosis: a case–control study. Eur J Neurol. 2016;23(8):1308–21. https://doi.org/10.1111/ene.13026.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cantarel BL, Waubant E, Chehoud C, Kuczynski J, DeSantis TZ, Warrington J, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med Off Publ Am Fed Clin Res. 2015;63(5):729–34. https://doi.org/10.1097/JIM.0000000000000192.

    Article  CAS  Google Scholar 

  31. Swidsinski A, Dörffel Y, Loening-Baucke V, Gille C, Göktas Ö, Reißhauer A, et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017;8:1141. https://doi.org/10.3389/fmicb.2017.01141.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saresella M, Marventano I, Barone M, La Rosa F, Piancone F, Mendozzi L, et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front Immunol. 2020;11:1390. https://doi.org/10.3389/fimmu.2020.01390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takewaki D, Suda W, Sato W, Takayasu L, Kumar N, Kimura K, et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proc Natl Acad Sci. 2020;117(36):22402–12. https://doi.org/10.1073/PNAS.2011703117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levi I, Gurevich M, Perlman G, Magalashvili D, Menascu S, Bar N, et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep Med. 2021. https://doi.org/10.1016/J.XCRM.2021.100246.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Puccetti P, Grohmann U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nat Rev Immunol. 2007;7(10):817–23. https://doi.org/10.1038/nri2163.

    Article  CAS  PubMed  Google Scholar 

  36. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–9. https://doi.org/10.1038/nature06881.

    Article  CAS  PubMed  Google Scholar 

  37. Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev. 2013;65(4):1148. https://doi.org/10.1124/PR.113.007823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neavin DR, Liu D, Ray B, Weinshilboum RM. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci. 2018;19(12):3851. https://doi.org/10.3390/IJMS19123851.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lim CK, Bilgin A, Lovejoy DB, Tan V, Bustamante S, Taylor BV, et al. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci Rep. 2017;7(1):1–9. https://doi.org/10.1038/srep41473.

    Article  CAS  Google Scholar 

  40. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586–97. https://doi.org/10.1038/nm.4106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, et al. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557(7707):724–8. https://doi.org/10.1038/s41586-018-0119-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nourbakhsh B, Bhargava P, Tremlett H, Hart J, Graves J, Waubant E. Altered tryptophan metabolism is associated with pediatric multiple sclerosis risk and course. Ann Clin Transl Neurol. 2018;5(10):1211–21. https://doi.org/10.1002/ACN3.637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fitzgerald KC, Smith MD, Kim S, Sotirchos ES, Kornberg MD, Douglas M, et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med. 2021;2(10):100424. https://doi.org/10.1016/J.XCRM.2021.100424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25-37.e6. https://doi.org/10.1016/J.CHOM.2017.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zelante T, Iannitti RG, Cunha C, DeLuca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39(2):372–85. https://doi.org/10.1016/J.IMMUNI.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  46. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716–24. https://doi.org/10.1016/J.CHOM.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Paz Soldan MM, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. https://doi.org/10.1038/srep28484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50. https://doi.org/10.1016/J.CMET.2016.05.005.

    Article  PubMed  Google Scholar 

  49. Bhargava P, Smith MD, Mische L, Harrington E, Fitzgerald KC, Martin K, et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Investig. 2020;130(7):3467–82. https://doi.org/10.1172/JCI129401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53. https://doi.org/10.1016/S1097-2765(00)80348-2.

    Article  CAS  PubMed  Google Scholar 

  51. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284(5418):1362–5. https://doi.org/10.1126/SCIENCE.284.5418.1362.

    Article  CAS  PubMed  Google Scholar 

  52. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278(11):9435–40. https://doi.org/10.1074/JBC.M209706200.

    Article  CAS  PubMed  Google Scholar 

  53. Yanguas-Casás N, Barreda-Manso MA, Nieto-Sampedro M, Romero-Ramírez L. TUDCA: an agonist of the bile acid receptor GPBAR1/TGR5 with anti-inflammatory effects in microglial cells. J Cell Physiol. 2017;232(8):2231–45. https://doi.org/10.1002/JCP.25742.

    Article  PubMed  Google Scholar 

  54. Lewis ND, Patnaude LA, Pelletier J, Souza DJ, Lukas SM, King FJ, et al. A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo. PLoS One. 2014;9(6):e100883. https://doi.org/10.1371/JOURNAL.PONE.0100883.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ho PP, Steinman L. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis. Proc Natl Acad Sci. 2016;113(6):1600–5. https://doi.org/10.1073/PNAS.1524890113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hucke S, Herold M, Liebmann M, Freise N, Lindner M, Fleck AK, et al. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion. Acta Neuropathol. 2016;132(3):413–31. https://doi.org/10.1007/S00401-016-1593-6.

    Article  CAS  PubMed  Google Scholar 

  57. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature. 2001;414(6863):555–8. https://doi.org/10.1038/35107092.

    Article  CAS  PubMed  Google Scholar 

  58. Mazmanian SK, Cui HL, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18. https://doi.org/10.1016/j.cell.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  59. Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5. https://doi.org/10.1038/nature07008.

    Article  CAS  PubMed  Google Scholar 

  60. Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487–95. https://doi.org/10.1038/mi.2010.29.

    Article  CAS  PubMed  Google Scholar 

  61. Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T, et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell. 2019;176(3):610-624.e18. https://doi.org/10.1016/j.cell.2018.11.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, et al. Gut microbiota–specific iga+ B cells traffic to the CNS in active multiple sclerosis. Sci Immunol. 2020. https://doi.org/10.1126/SCIIMMUNOL.ABC7191.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Miyauchi E, Kim SW, Suda W, Kawasumi M, Onawa S, Taguchi-Atarashi N, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585(7823):102–6. https://doi.org/10.1038/s41586-020-2634-9.

    Article  CAS  PubMed  Google Scholar 

  64. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185(7):4101–8. https://doi.org/10.4049/JIMMUNOL.1001443.

    Article  PubMed  Google Scholar 

  65. Lavasani S, Dzhambazov B, Nouri M, Fåk F, Buske S, Molin G, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One. 2010;5(2):e9009. https://doi.org/10.1371/JOURNAL.PONE.0009009.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mangalam A, Shahi SK, Luckey D, Karau M, Marietta E, Luo N, et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep. 2017;20(6):1269–77. https://doi.org/10.1016/J.CELREP.2017.07.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shahi SK, Freedman SN, Murra AC, Zarei K, Sompallae R, Gibson-Corley KN, et al. Prevotella histicola, a human gut commensal, is as potent as COPAXONE® in an animal model of multiple sclerosis. Front Immunol. 2019. https://doi.org/10.3389/FIMMU.2019.00462.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shahi SK, Jensen SN, Murra AC, Tang N, Guo H, Gibson-Corley KN, et al. Human commensal Prevotella histicola ameliorates disease as effectively as interferon-beta in the experimental autoimmune encephalomyelitis. Front Immunol. 2020. https://doi.org/10.3389/FIMMU.2020.578648.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Quigley EMM, Gajula P. Recent advances in modulating the microbiome. F1000Research. 2020;9:46. https://doi.org/10.12688/f1000research.20204.1.

    Article  CAS  Google Scholar 

  70. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nat 2012 4887410. 2012;488(7410):178-184. doi:https://doi.org/10.1038/nature11319

  72. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2013;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://doi.org/10.1186/s12967-017-1175-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kolodziejczyk AA, Zheng D, Elinav E. Diet–microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742–53. https://doi.org/10.1038/s41579-019-0256-8.

    Article  CAS  PubMed  Google Scholar 

  75. Meydani SN, Das SK, Pieper CF, Lewis MR, Klein S, Dixit VD, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging. 2016;8(7):1416–31. https://doi.org/10.18632/AGING.100994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018;27(6):1222-1235.e6. https://doi.org/10.1016/j.cmet.2018.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15(12):771–85. https://doi.org/10.1038/nrn3820.

    Article  CAS  PubMed  Google Scholar 

  78. Hoare S, Lithander F, van der Mei I, Ponsonby AL, Lucas R. Higher intake of omega-3 polyunsaturated fatty acids is associated with a decreased risk of a first clinical diagnosis of central nervous system demyelination: results from the Ausimmune Study. Mult Scler J. 2016;22(7):884–92. https://doi.org/10.1177/1352458515604380.

    Article  CAS  Google Scholar 

  79. Gu Y, Vorburger RS, Gazes Y, Habeck CG, Stern Y, Luchsinger JA, et al. White matter integrity as a mediator in the relationship between dietary nutrients and cognition in the elderly. Ann Neurol. 2016;79(6):1014–25. https://doi.org/10.1002/ana.24674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2017.02012.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Di Majo D, Cacciabaudo F, Accardi G, Gambino G, Giglia G, Ferraro G, et al. Ketogenic and modified mediterranean diet as a tool to counteract neuroinflammation in multiple sclerosis: nutritional suggestions. Nutrients. 2022;14(12):2384. https://doi.org/10.3390/nu14122384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jensen SN, Cady NM, Shahi SK, Peterson SR, Gupta A, Gibson-Corley KN, et al. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. Sci Adv. 2021;7(28):eabd4595. https://doi.org/10.1126/sciadv.abd4595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cekanaviciute E, Yoo BB, Runia TF, Debelius JW, Singh S, Nelson CA, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci. 2017;114(40):10713–8. https://doi.org/10.1073/pnas.1711235114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Valizadeh S, Seghinsara AM, Chollou KM, Bahadori A, Abbaszadeh S, Taghdir M, et al. The efficacy of probiotics in experimental autoimmune encephalomyelitis (an animal model for MS): a systematic review and meta-analysis. Lett Appl Microbiol. 2021;73(4):408–17. https://doi.org/10.1111/LAM.13543.

    Article  CAS  PubMed  Google Scholar 

  85. Tankou SK, Regev K, Healy BC, Tjon E, Laghi L, Cox LM, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83(6):1147–61. https://doi.org/10.1002/ana.25244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Berer K, Gerdes LA, Cekanaviciute E, Jia X, Xiao L, Xia Z, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA. 2017;114(40):10719–24. https://doi.org/10.1073/pnas.1711233114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kouchaki E, Tamtaji OR, Salami M, Bahmani F, Daneshvar Kakhaki R, Akbari E, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin Nutr Edinb Scotl. 2017;36(5):1245–9. https://doi.org/10.1016/j.clnu.2016.08.015.

    Article  CAS  Google Scholar 

  88. Fleming J, Isaak A, Lee J, Luzzio C, Carrithers M, Cook T, et al. Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler J. 2011;17(6):743–54. https://doi.org/10.1177/1352458511398054.

    Article  CAS  Google Scholar 

  89. Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007;61(2):97–108. https://doi.org/10.1002/ANA.21067.

    Article  CAS  PubMed  Google Scholar 

  90. Kristensen NB, Bryrup T, Allin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med. 2016;8(1):1–11. https://doi.org/10.1186/S13073-016-0300-5.

    Article  Google Scholar 

  91. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388-1405.e21. https://doi.org/10.1016/j.cell.2018.08.041.

    Article  CAS  PubMed  Google Scholar 

  92. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406-1423.e16. https://doi.org/10.1016/j.cell.2018.08.047.

    Article  CAS  PubMed  Google Scholar 

  93. Li K, Wei S, Hu L, Yin X, Mai Y, Jiang C, et al. Protection of fecal microbiota transplantation in a mouse model of multiple sclerosis. Mediat Inflamm. 2020;2020:e2058272. https://doi.org/10.1155/2020/2058272.

    Article  CAS  Google Scholar 

  94. Borody T, Leis S, Campbell J, Torres M, Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am J Gastroenterol. 2011;106:S352. https://doi.org/10.14309/00000434-201110002-00942.

    Article  Google Scholar 

  95. Makkawi S, Camara-Lemarroy C, Metz L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):459. https://doi.org/10.1212/NXI.0000000000000459.

    Article  Google Scholar 

  96. Engen PA, Zaferiou A, Rasmussen H, Naqib A, Green SJ, Fogg LF, et al. Single-arm, non-randomized, time series, single-subject study of fecal microbiota transplantation in multiple sclerosis. Front Neurol. 2020;11(September):1–11. https://doi.org/10.3389/fneur.2020.00978.

    Article  Google Scholar 

  97. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–15. https://doi.org/10.1016/j.chom.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  98. Sand IK, Zhu Y, Ntranos A, Clemente JC, Cekanaviciute E, Brandstadter R, et al. Disease-modifying therapies alter gut microbial composition in MS. Neurol Neuroimmunol Neuroinflamm. 2019. https://doi.org/10.1212/NXI.0000000000000517.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Cosorich I, Dalla-Costa G, Sorini C, Ferrarese R, Messina MJ, Dolpady J, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3(7):e1700492. https://doi.org/10.1126/sciadv.1700492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Forbes JD, Chen CY, Knox NC, Marrie RA, El-Gabalawy H, de Kievit T, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome. 2018;6(1):221. https://doi.org/10.1186/s40168-018-0603-4.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ventura RE, Iizumi T, Battaglia T, Liu M, Perez-Perez GI, Herbert J, et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course. Sci Rep. 2019;9(1):1–10. https://doi.org/10.1038/s41598-019-52894-z.

    Article  CAS  Google Scholar 

  102. Choileáin SN, Kleinewietfeld M, Raddassi K, Hafler DA, Ruff WE, Longbrake EE. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiome. J Transl Autoimmun. 2020;3:100032. https://doi.org/10.1016/j.jtauto.2019.100032.

    Article  PubMed  Google Scholar 

  103. Reynders T, Devolder L, Valles-Colomer M, Van Remoortel A, Joossens M, De Keyser J, et al. Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes. Ann Clin Transl Neurol. 2020;7(4):406–19. https://doi.org/10.1002/acn3.51004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tremlett H, Zhu F, Arnold D, Bar-Or A, Bernstein CN, Bonner C, et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol. 2021;8(12):2252–69. https://doi.org/10.1002/acn3.51476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cantoni C, Lin Q, Dorsett Y, Ghezzi L, Liu Z, Pan Y, et al. Alterations of host-gut microbiome interactions in multiple sclerosis. EBioMedicine. 2022;76:103798. https://doi.org/10.1016/j.ebiom.2021.103798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou X, Baumann R, Gao X, Mendoza M, Singh S, Katz Sand I, et al. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022;185(19):3467-3486.e16. https://doi.org/10.1016/j.cell.2022.08.021.

    Article  CAS  Google Scholar 

  107. Thirion F, Sellebjerg F, Fan Y, Lyu L, Hansen TH, Pons N, et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023;15(1):1. https://doi.org/10.1186/s13073-022-01148-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Bhargava.

Ethics declarations

Funding

This work was partly supported by a Harry Weaver Neuroscience Scholar Award from the National MS Society to Pavan Bhargava.

Conflict of interest

DCL has no conflicts of interest to declare. PB is the principal investigator of a trial of TUDCA supplementation in progressive MS supported by the National Multiple Sclerosis Society.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

DCL and PB planned and prepared the manuscript. Both authors agreed on the finalized version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladakis, D.C., Bhargava, P. The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs 37, 117–132 (2023). https://doi.org/10.1007/s40263-023-00986-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-023-00986-w

Navigation