Skip to main content
Log in

The Role of GABA Receptor Agonists in Anesthesia and Sedation

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

GABA (γ-aminobutyric acid) receptors, of which there are two types, are involved in inhibitory synapses within the central nervous system. The GABAA receptor (GABAAR) has a central role in modern anesthesia and sedation practice, which is evident from the high proportion of agents that target the GABAAR. Many GABAAR agonists are used in anesthesia practice and sedation, including propofol, etomidate, methohexital, thiopental, isoflurane, sevoflurane, and desflurane. There are advantages and disadvantages to each GABAAR agonist currently in clinical use. With increasing knowledge regarding the pharmacology of GABAAR agonists, however, newer sedative agents have been developed which employ ‘soft pharmacology’, a term used to describe the pharmacology of agents whereby their chemical configuration allows rapid metabolism into inactive metabolites after the desired therapeutic effect(s) has occurred. These newer ‘soft’ GABAAR agonists may well approach ideal sedative agents, as they can offer well-controlled, titratable activity and ultrashort action. This review provides an overview of the role that GABAAR agonists currently play in sedation and anesthesia, in addition to discussing the future role of novel GABAAR agonists in anesthesia and sedation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Whiting PJ. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 2003;8:445–50.

    Article  CAS  PubMed  Google Scholar 

  2. Cossart R, Bernard C, Ben-Ari Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci. 2005;28(2):108–15.

    Article  CAS  PubMed  Google Scholar 

  3. Nutt D. GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med. 2006;2(2):S7–11.

    PubMed  Google Scholar 

  4. Connolly CN, Krishek BJ, McDonald B, Smart TG, Moss SJ. Assembly and cell surface expression of heteromeric and homomeric g-aminobutyric acid type A receptors. J Biol Chem. 1996;271(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  5. Mody I, Pearce RA. Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci. 2004;27:569–75.

    Article  CAS  PubMed  Google Scholar 

  6. Sivilotti L, Nistri A. GABA receptor mechanisms in the central nervous system. Prog Neurobiol. 1991;36(1):35–92.

    Article  CAS  PubMed  Google Scholar 

  7. Antkowiak B, Kirschfeld K. Neural mechanisms of anesthesia [in German]. Anasthesiol Intensivmed. 2000;35:731–43.

    Article  CAS  Google Scholar 

  8. Collins JG, Kendig JJ, Mason P. Anesthetic actions within the spinal cord: contributions to the state of general anesthesia. Trends Neurosci. 1995;18:549–53.

    Article  CAS  PubMed  Google Scholar 

  9. McGaugh JL, Izquierdo I. The contribution of pharmacology to research on the mechanisms of memory formation. Trends Pharmacol Sci. 2000;21:208–10.

    Article  CAS  PubMed  Google Scholar 

  10. McKernan RM, Rosahl TW, Reynolds DS, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci. 2000;3:587–92.

    Article  CAS  PubMed  Google Scholar 

  11. Low K, Crestani F, Keist R, et al. Molecular and neuronal substrate for the selective attenuation of anxiety. Science. 2000;290:131–4.

    Article  CAS  PubMed  Google Scholar 

  12. Chen K, Li HZ, Ye N, Zhang J, Wang JJ. Role of GABAB receptors in GABA and baclofen-induced inhibition of adult rat cerebellar interpositus nucleus neurons in vitro. Brain Res Bull. 2005;67(4):310–8.

    Article  CAS  PubMed  Google Scholar 

  13. Dimitrijevic N, Dzitoyeva S, Satta R, et al. Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB). Eur J Pharmacol. 2005;519(3):246–52.

    Article  CAS  PubMed  Google Scholar 

  14. Dzitoyeva S, Dimitrijevic N, Manev H. Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci USA. 2003;100(9):5485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manev H, Dimitrijevic N. Drosophila model for in vivo pharmacological analgesia research. Eur J Pharmacol. 2004;491(2–3):207–8.

    Article  CAS  PubMed  Google Scholar 

  16. Brogden RN, Speight TM, Avery GS. Baclofen: a preliminary report of its pharmacological properties and therapeutic efficacy in spasticity. Drugs. 1974;8(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  17. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science. 2008;322:876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367:607–14.

    Article  CAS  PubMed  Google Scholar 

  19. Sanna E, Garau F, Harris RA. Novel properties of homomeric beta 1 gamma-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Mol Pharmacol. 1995;47:213–7.

    CAS  PubMed  Google Scholar 

  20. Jones MV, Harrison NL, Pritchett DB, Hales TG. Modulation of the GABAA receptor by propofol is independent of the gamma subunit. J Pharmacol Exp Ther. 1995;274:962–8.

    CAS  PubMed  Google Scholar 

  21. Lam DW, Reynolds JN. Modulatory and direct effects of propofol on recombinant GABAA receptors expressed in xenopus oocytes: influence of alpha- and gamma2-subunits. Brain Res. 1998;784:179–87.

    Article  CAS  PubMed  Google Scholar 

  22. Sanna E, Murgia A, Casula A, Biggio G. Differential subunit dependence of the actions of the general anesthetics alphaxalone and etomidate at gamma-aminobutyric acid type A receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 1997;51:484–90.

    CAS  PubMed  Google Scholar 

  23. Kay B, Rolly G. I.C.I. 35868, a new intravenous induction agent. Acta Anaesthesiol Belg. 1977;28:303–16.

    CAS  PubMed  Google Scholar 

  24. Chen S, Rex D. Registered nurse-administered propofol sedation for endoscopy. Aliment Pharmacol Ther. 2004;19:147–55.

    Article  CAS  PubMed  Google Scholar 

  25. Ansley DM, Raedschelders K, Choi PT, et al. Propofol cardioprotection for on-pump aortocoronary bypass surgery in patients with type 2 diabetes mellitus (PRO-TECT II): a phase 2 randomized-controlled trial. Can J Anesth. 2016;63:442–53.

    Article  PubMed  Google Scholar 

  26. De Cosmo G, Cancelli I, Adduci A, et al. Changes in the hemodynamics during isoflurane and propofol anesthesia: a comparative study. Neurol Res. 2005;27:433–5.

    Article  PubMed  Google Scholar 

  27. Johnston A, Steiner L, Chatfield D, et al. Effects of propofol on cerebral oxygenation and metabolism after head injury. Br J Anaesth. 2003;91(6):781–6.

    Article  CAS  PubMed  Google Scholar 

  28. Absalom AR, Struys M. An overview of TCI and TIVA. Ghent: Academia Press; 2005.

    Google Scholar 

  29. Aglio L, Lekowski R, Urman R. Essential clinical anesthesia review. Cambridge: Cambridge University Press; 2015.

    Book  Google Scholar 

  30. Russell D, Wilkes MP, Hunter SC, et al. Manual compared with target-controlled infusion of propofol. Br J Anaesth. 1995;75:562–6.

    Article  CAS  PubMed  Google Scholar 

  31. Absalom A, Kenny G. Closed-loop control of propofol anaesthesia using bispectral index: performance assessment in patients receiving computer-controlled propofol and manually controlled remifentanil infusions for minor surgery. B J Anaesth. 2003;90(6):737–41.

    Article  CAS  Google Scholar 

  32. Leslie K, Clavisi O, Hargrove J. Target-controlled infusion versus manually-controlled infusion of propofol for general anaesthesia or sedation in adults. Cochrane Database Syst Rev 2008;(3):CD006059.

  33. Bachmann-Mennanga B, Ohlmer A, Heesen M. Incidence of pain after intravenous injection of a medium-/long-chain triglyceride emulsion of propofol. An observational study in 1375 patients. Arzneimittelforschung. 2003;53:621–6.

    Google Scholar 

  34. Fischer MJ, Leffler A, Niedermirtl F, et al. The general anesthetic propofol excites nociceptors by activating TRPV1 and TRPA1 rather than GABAA receptors. J Biol Chem. 2010;285:34781–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ebert TJ. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005;103:20–4.

    Article  CAS  PubMed  Google Scholar 

  36. Blouin RT, Seifert HA, Babenco HD, et al. Propofol depresses the hypoxic ventilator response during conscious sedation and isohypercapnia. Anesthesiology. 1993;79:1177–82.

    Article  CAS  PubMed  Google Scholar 

  37. Nieuwenhuijs D, Sarton E, Teppema LJ, Dahan A. Propofol for monitored anesthesia care: implications on hypoxic control of cardiorespiratory responses. Anesthesiology. 2000;92:46–54.

    Article  CAS  PubMed  Google Scholar 

  38. Bray RJ. Propofol infusion syndrome in children. Paediatr Anaesth. 1998;8:491–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kam PCA, Cardone D. Propofol infusion syndrome. Anaesthesia. 2007;62:690–701.

    Article  CAS  PubMed  Google Scholar 

  40. Crowther J, Hrazdil J, Jolly DT, et al. Growth of micro-organisms in propofol, thiopental, and a 1:1 mixture of propofol and thiopental. Anesth Analg. 1996;82:475–8.

    CAS  PubMed  Google Scholar 

  41. Wachowski I, Jolly DT, Hrazdil J, et al. The growth of microorganisms in propofol and mixtures of propofol and lidocaine. Anesth Analg. 1999;88:209–12.

    CAS  PubMed  Google Scholar 

  42. McHugh GJ, Roper GM. Propofol emulsion and bacterial contamination. Can J Anaesth. 1995;42:801–4.

    Article  CAS  PubMed  Google Scholar 

  43. Langevin PB, Gravenstein N, Doyle TJ, et al. Growth of Staphylococcus aureus in diprivan and intralipid implications on the pathogenesis of infection. Anesthesiology. 1999;91:1394–400.

    Article  CAS  PubMed  Google Scholar 

  44. Lundy JS. Intravenous anesthesia: preliminary report of the use of two new thiobarbiturates. Proc Mayo Clin. 1935;10:536–43.

    Google Scholar 

  45. Chernish SM, Gruber CM, Demeyer M, Littlefield S, Stoeling VK. Double blind comparison of compound 22451, pentothal and surital. Fed Proc. 1956;15:409.

    Google Scholar 

  46. Hooten WM, Rasmussen KG. Effects of general anesthetic agents in adults receiving electroconvulsive therapy: a systematic review. J ECT. 2008;24:208–23.

    Article  CAS  PubMed  Google Scholar 

  47. Steinbach JH, Akk G. Modulation of GABA(A) receptor channel gating by pentobarbital. J Physiol. 2001;537:715–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Drafts BC, Fisher JL. Identification of structures within GABAA receptor alpha subunits that regulate the agonist action of pentobarbital. J Pharmacol Exp Ther. 2006;318:1094–101.

    Article  CAS  PubMed  Google Scholar 

  49. Bieda MC, Su H, Maciver MB. Anesthetics discriminate between tonic and phasic gamma-aminobutyric acid receptors on hippocampal CA1 neurons. Anesth Analg. 2009;108:484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oddo M, Crippa I, Mehta S, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ioannides C, Parke DV. Mechanism of induction of hepatic microsomal drug metabolizing enzymes by a series of barbiturates. J Pharm Pharmacol. 1975;27(10):739–46.

    Article  CAS  PubMed  Google Scholar 

  52. Christensen JH, Andreasen F, Jansen J. Pharmacokinetics and pharmacodynamics of thiopental in patients undergoing renal transplantation. Acta Anaesthesiol Scand. 1983;27(6):513–8.

    Article  CAS  PubMed  Google Scholar 

  53. Dundee JW, McCleery WN, McLoughlin G. The hazard of thiopental anaesthesia in porphyria. Anesth Analg. 1962;41:567–74.

    Article  CAS  PubMed  Google Scholar 

  54. Thiopental summary of product characteristics. https://www.medicines.org.uk/emc/medicine/14338. Accessed 16 Apr 2017.

  55. Cordato DJ, Herkes GK, Mather LE, et al. Prolonged thiopentone infusion for neurosurgical emergencies: usefulness of therapeutic drug monitoring. Anaesth Intensive Care. 2001;29(4):339–48.

    CAS  PubMed  Google Scholar 

  56. Godefroi EF, Jansen PA, Ven Der Eychen CA, et al. dl-1-(1-Arylalkyl)imidazole-5-carboxylate esters: a novel type of hypotic agents. J Med Chem. 1965;8:220–3.

    Article  CAS  PubMed  Google Scholar 

  57. Doenicke A. Etomidate, a new intravenous hypnotic. Acta Anaesthesiol Belg. 1974;25(3):307–15.

    CAS  PubMed  Google Scholar 

  58. Thyagarajan R, Ramanjaneyulu R, Ticku MK. Enhancement of diazepam and gamma-aminobutyric acid binding by (+)etomidate and pentobarbital. J Neurochem. 1983;41:578–85.

    Article  CAS  PubMed  Google Scholar 

  59. Hill-Venning C, Belelli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol. 1997;120:749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gooding JM, Corssen G. Effect of etomidate on the cardiovascular system. Anesth Analg. 1977;56:717–9.

    CAS  PubMed  Google Scholar 

  61. Uchida I, Kamatchi G, Burt D, Yang J. Etomidate potentiation of GABAA receptor gated current depends on the subunit composition. Neurosci Lett. 1995;185:203–6.

    Article  CAS  PubMed  Google Scholar 

  62. Ledingham IM, Watt I. Influence of sedation on mortality in critically ill multiple trauma patients. Lancet. 1983;321:1270.

    Article  Google Scholar 

  63. Watt I, Ledingham IM. Mortality amongst multiple trauma patients admitted to an intensive therapy unit. Anaesthesia. 1984;39:973–81.

    Article  CAS  PubMed  Google Scholar 

  64. Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med. 1984;310:1415–21.

    Article  CAS  PubMed  Google Scholar 

  65. Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology. 1984;61:647–51.

    Article  CAS  PubMed  Google Scholar 

  66. Jackson WL. Should we use etomidate as an induction agent for endotracheal intubation in patients with septic shock? A critical appraisal. Chest. 2005;127:1031–8.

    Article  PubMed  Google Scholar 

  67. Walls RM, Murphy MF. Clinical controversies: etomidate as an induction agent for endotracheal intubation in patients with sepsis: continue to use etomidate for intubation of patients with septic shock. Ann Emerg Med. 2008;52:13–4.

    Article  PubMed  Google Scholar 

  68. Groth C, Acquista N, Khadem T. Current practices and safety of medication use during rapid sequence intubation (RSI). Crit Care Med. 2015;43(12):147.

    Article  Google Scholar 

  69. Ball CM, Westhorpe RN. Intravenous induction agents: etomidate. Anaesth Intens Care. 2002;30(4):405.

    Google Scholar 

  70. Johnstone M. The human cardiovascular response to fluothane anaesthesia. Br J Anaesth. 1956;28:392.

    Article  CAS  PubMed  Google Scholar 

  71. Bovill JG. Inhalational anaesthesia: from diethyl ether to xenon. In: Schuttler J, Schwilden H, editors. Handbook of experimental pharmacology. Berlin: Springer; 2008. p. 122–42.

    Google Scholar 

  72. Smith I, Nathanson M, White PF. Sevoflurane—a long-awaited volatile anaesthesia. Br J Anaesth. 1996;76:435–45.

    Article  CAS  PubMed  Google Scholar 

  73. Mihic SJ, Ye Q, Wick MJ, et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature. 1997;389:385–9.

    Article  CAS  PubMed  Google Scholar 

  74. Jenkins A, Greenblatt EP, Faulkner HJ, et al. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci. 2001;21(RC136):1–4.

    Google Scholar 

  75. Garcia PS, Kolesky SE, Jenkins A. General anesthetic actions on GABAA receptors. Curr Neuropharmacol. 2010;8(1):2–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wheeler DM, Katz A, Rice RT, Hansford RG. Volatile anesthetic effects on sarcoplasmic reticulum calcium content and sarcolemmal calcium flux in isolated rat cardiac cell suspensions. Anesthesiology. 1994;80:372–82.

    Article  CAS  PubMed  Google Scholar 

  77. Van den Elsen M, Sarton E, Teppema L, Berkenbosch A, Dahan A. Influence of 0.1 minimum alveolar concentration of sevoflurane, desflurane and isoflurane on dynamic ventilatory response to hypercapnia in humans. Br J Anaesth. 1998;80:174–82.

    Article  PubMed  Google Scholar 

  78. Rosenberg H, Pollock N, Schiemann A, et al. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kenna JG, van Pelt FN. The metabolism and toxicity of inhaled anaesthetic agents. Anaesth Pharmacol Rev. 1994;2:29–42.

    CAS  Google Scholar 

  80. Page C, Hoffman BB, Curtis M. Integrated pharmacology. 3rd ed. Philadelphia: Mosby; 2006.

    Google Scholar 

  81. Olkkola KT, Ahonen J. Midazolam and other benzodiazepines. Handb Exp Pharm. 2008;182:335–60.

    Article  CAS  Google Scholar 

  82. Cascade E, Kalali AH. Use of benzodiazepines in the treatment of anxiety. Psychiatry. 2008;5(9):21–2.

    PubMed  PubMed Central  Google Scholar 

  83. Kelly MD, Smith A, Banks G, et al. Role of the histidine residue at position 105 in the human alpha 5 containing GABA(A) receptor on the affinity and efficacy of benzodiazepine site ligands. Br J Pharmacol. 2002;135(1):248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sieghart W. Pharmacology of benzodiazepine receptors: an update. J Psychiatry Neurosci. 1994;19(1):24–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rudolph U, Crestani F, Benke D, et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature. 1999;401(6755):796–800.

    Article  CAS  PubMed  Google Scholar 

  86. Kaufmann WA, Humpel C, Alheid GF, Marksteiner J. Compartmentation of alpha 1 and alpha 2 GABA(A) receptor subunits within rat extended amygdala: implications for benzodiazepine action. Brain Res. 2003;964(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  87. Crestani F, Löw K, Keist R, et al. Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol. 2001;59(3):442–5.

    CAS  PubMed  Google Scholar 

  88. Olkkola KT, Ahonen J. Midazolam and other benzodiazepines. Handb Exp Pharmacol. 2008;182:335–60.

    Article  CAS  Google Scholar 

  89. Sarasin DS, Ghoneim MM, Block RI. Effects of sedation with midazolam or propofol on cognition and psychomotor functions. J Oral Maxillofac Surg. 1996;54:1187–93.

    Article  CAS  PubMed  Google Scholar 

  90. Kestin IG, Harvey PB, Nixon C. Psychomotor recovery after three methods of sedation during spinal anaesthesia. Br J Anaesth. 1990;64:675–8.

    Article  CAS  PubMed  Google Scholar 

  91. Ibrahim AE, Taraday JK, Kharasch ED. Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol. Anesthesiology. 2001;95:1151–9.

    Article  CAS  PubMed  Google Scholar 

  92. Nilsson A, Persson MP, Hartvig P. Effects of the benzodiazepine antagonist flumazenil on postoperative performance following total intravenous anaesthesia with midazolam and alfentanil. Acta Anaesthesiol Scand. 1988;32:441–6.

    Article  CAS  PubMed  Google Scholar 

  93. Johnson KB. New horizons in sedative hypnotic drug development: fast, clean, and soft. Anesth Analg. 2012;115(2):220–2.

    Article  CAS  PubMed  Google Scholar 

  94. Sear JW. Research into new drugs in anesthesia: then and now. Anesth Analg. 2012;115(2):233–4.

    Article  PubMed  Google Scholar 

  95. Buchwald P, Bodor N. Recent advances in the design and development of soft drugs. Pharmazie. 2014;69:403–13.

    CAS  PubMed  Google Scholar 

  96. Lusedra US prescribing Information. http://medlibrary.org/lib/rx/meds/lusedra/. Accessed 14 June 2017.

  97. Lee M (MD), NYU Langone Medical Centre (US). Preventing propofol injection pain: prospective randomized trial comparing propofol versus fospropofol [ClinicalTrials.gov identifier NCT01401049]. 2015 Mar 30. National Institutes of Health, ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01401049. Accessed 30 Mar 2017.

  98. Welliver M, Rugari SM. New drug, fospropofol disodium: a propofol prodrug. AANA J. 2009;77(4):301–8.

    PubMed  Google Scholar 

  99. Brohan J, Lee P. Newer drugs for sedation: soft pharmacology. In: Goudra BG, Singh PM, editors. Out of operating room anesthesia: a comprehensive review. Cham: Springer; 2017.

    Google Scholar 

  100. Abdelmalak B, Khanna A, Tetzlaff J. Fospropofol, a new sedative anesthetic, and its utility in the perioperative period. Curr Pharm Des. 2012;18(38):6241–52.

    Article  CAS  PubMed  Google Scholar 

  101. FDA approval of fospropofol. https://www.drugs.com/newdrugs/fda-approveslusedra-fospropofol-disodium-monitored-anesthesia-care-mac-sedation-1205.html. Accessed 14 June 2017.

  102. Mueller SW, Moore GD, MacLaren R. Fospropofol disodium for procedural sedation: emerging evidence of its value? Clin Med Insights Ther. 2010;2:513–22.

    CAS  Google Scholar 

  103. Levitzky B, Varge J. Fospropofol disodium injection for the sedation of patients undergoing colonoscopy. Ther Clin Risk Manag. 2008;4:733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Candiotti KA, Gan TJ, Young C, et al. A randomized, open-label study of the safety and tolerability of fospropofol for patients requiring intubation and mechanical ventilation in the intensive care unit. Anesth Analg. 2011;113(3):550–6.

    CAS  PubMed  Google Scholar 

  105. Fechner J, Ihmsen H, Schuttler J, Jeleazcov C. A randomized open-label phase I pilot study of the safety and efficacy of total intravenous anesthesia with fospropofol for coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2013;27(5):908–15.

    Article  CAS  PubMed  Google Scholar 

  106. Zorrilla-Vaca A, Arevalo JJ, Escandón-Vargas K, Soltanifar D, Mirski MA. Infectious disease risk associated with contaminated propofol anesthesia, 1989–2014. Emerg Infect Dis. 2016;22(6):981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dhareshwar SS, Stella VJ. Your prodrug releases formaldehyde: should you be concerned? No! J Pharm Sci. 2008;97:4184–93.

    Article  CAS  PubMed  Google Scholar 

  108. Struys M, Fechner J, Schuttler J, Schwilden H. Erroneously published fospropofol pharmacokinetic–pharmacodynamic data and retraction of the affected publications. Anesthesiology. 2010;112(4):1056–7.

    Article  PubMed  Google Scholar 

  109. Rex DK, Cohen LB, Kline JK, et al. Fospropofol disodium for minimal-to-moderate sedation during colonoscopy produces clear-headed recovery: results of a phase 3, randomized, double-blind trial. Gastrointest Endosc. 2007;65:AB367.

    Article  Google Scholar 

  110. Cohen L, Cattau E, Goetch A, et al. A randomized, double-blind, phase 3 study of fospropofol disodium for sedation during colonoscopy. J Clin Gastroent. 2010;44(5):345–53.

    PubMed  Google Scholar 

  111. Silvestri GA, Vincent BD, Wahidi MM, et al. A phase 3, randomized, double-blind study to assess the efficacy and safety of fospropofol disodium injection for moderate sedation in patients undergoing flexible bronchoscopy. Chest. 2009;135:41–7.

    Article  CAS  PubMed  Google Scholar 

  112. Medscape. Fospropofol (discontinued). http://reference.medscape.com/drug/lusedra-fospropofol-343112. Accessed 16 June 2017.

  113. Cotten JF, Husain SS, Forman SA, et al. Methoxycarbonyl-etomidate: a novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology. 2009;111:240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cotton JF, Le Ge R, Banacos N, et al. Closed-loop continuous infusions of etomidate and etomidate analogs in rats: a comparative study of dosing and the impact on adrenocortical function. Anesthesiology. 2011;115:764–73.

    Article  Google Scholar 

  115. Le Ge R, Pejo E, Haburcak M, et al. Pharmacological studies of methoxycarbonyl etomidate’s carboxylic acid metabolite. Anesth Analg. 2012;115(2):305–8.

    Article  CAS  PubMed  Google Scholar 

  116. Pejo E, Ge R, Banacos N, et al. Electroencephalographic recovery, hypnotic emergence, and the effects of metabolite after continuous infusions of a rapidly metabolized etomidate analog in rats. Anesthesiology. 2012;116:1057–65.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Husain SS, Pejo E, Ge R, et al. Modifying methoxycarbonyl etomidate inter-ester specer optimizes in vitro metabolic stability and in vivo hypnotic potency and duration of action. Anesthesiology. 2012;117(5):1027–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ge R, Pejo E, Husain SS, et al. Encephalographic and hypnotic recoveries following brief and prolonged infusions of etomidate and optimized soft etomidate analogs. Anesthesiology. 2012;117:1037–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pejo E, Liu J, Lin X, Raines DE. Distinct hypnotic recoveries after infusions of methoxycarbonyl etomidate and cyclopropyl methoxycarbonyl metomidate: the role of the metabolite. Anesth Analg. 2016;122(4):1008–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ge R, Pejo E, Gallin H, et al. The pharmacology of cyclopropyl-methoxycarbonyl metomidate: a comparison with propofol. Anesth Analg. 2014;118(3):563–7.

    Article  CAS  PubMed  Google Scholar 

  121. Santer P, Pejo E, Feng Y, et al. Cyclopropyl-methoxycarbonyl metomidate: studies in a lipopolysaccharide inflammatory model of sepsis. Anesthesiology. 2015;123(2):368–76.

    Article  CAS  PubMed  Google Scholar 

  122. Struys MMRF, Valk BI, Eleveld DJ, et al. A phase 1, single-center, double-blind, placebo-controlled study in healthy subjects to assess the safety, tolerability, clinical effects, and pharmacokinetics-pharmacodynamics of intravenous cyclopropyl-methoxycarbonylmetomidate (ABP-700) after a single ascending bolus dose. Anesthesiology. 2017;127(1):20–35.

    Article  CAS  PubMed  Google Scholar 

  123. Pejo E, Cotton JF, Kelly EW, et al. In vivo and in vitro pharmacological studies of methoxycarbonyl-carboetomidate. Anesth Analg. 2012;115(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  124. Cotten JF, Forman SA, Laha JK, et al. Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology. 2010;112:637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kilpatrick GJ, McIntyre MS, Cox RF, et al. CNS 7056: a novel ultra-short-acting benzodiazepine. Anesthesiology. 2007;107:60–6.

    Article  CAS  PubMed  Google Scholar 

  126. Sneyd R. Remimazolam: new beginnings or just a me-too? Anesth Analg. 2012;115(2):217–9.

    Article  CAS  PubMed  Google Scholar 

  127. Antonik LJ, Goldwater R, Kilpatrick GJ, et al. A placebo and midazolam-controlled phase I single ascending-dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056): part I. Safety, efficacy and basic pharmacokinetics. Anesth Analg. 2012;115:274–83.

    Article  CAS  PubMed  Google Scholar 

  128. Wiltshire HR, Kilpatrick GJ, Tilbrook GS, Borkett KM. A placebo and midazolam-controlled phase I single ascending dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam (CNS 7056). Part II: populating pharmacokinetic and pharmacodynamic modeling and simulation. Anesth Analg. 2012;115:284–96.

    Article  CAS  PubMed  Google Scholar 

  129. Worthington MT, Antonik LJ, Goldwater DR, et al. A phase Ib dose-finding study of multiple doses of remimazolam (CNS 7056) in volunteers undergoing colonoscopy. Anesth Analg. 2013;117:1093–100.

    Article  CAS  PubMed  Google Scholar 

  130. Borkett KM, Riff DS, Schwartz HI, et al. A phase II, randomized, double-blind study of remimazolam (CNS 7056) versus midazolam for sedation in upper gastrointestinal endoscopy. Anesth Analg. 2015;120(4):771–80.

    Article  CAS  PubMed  Google Scholar 

  131. ClinicalTrials.gov. Search results: remimazolam. https://clinicaltrials.gov/ct2/results?term=remimazolam&Search=Search. Accessed 16 June 2017.

  132. Cottrell GA, Lambert JJ, Peters JA. Modulation of the GABA receptor activity by alphaxalone. Br J Pharmacol. 1987;90:491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Harrison NL, Simmonds MA. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 1984;323:287–92.

    Article  CAS  PubMed  Google Scholar 

  134. Gyermek L, Soyka LF. Steroid anesthetics. Anesthesiology. 1975;42:331–44.

    Article  CAS  PubMed  Google Scholar 

  135. Radford SG, Lockyear JA, Simpson PJ. Immunological aspects of adverse reactions to althesin. Br J Anaesth. 1982;54:859–63.

    Article  CAS  PubMed  Google Scholar 

  136. Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36:30–42.

    Article  CAS  PubMed  Google Scholar 

  137. Goodchild CS, Serrao JM, Kolosov A, Boyd BJ. Alphaxolone reformulation: a water-soluble intravenous anesthetic preparation in sulfobutyl-ether-β-cyclodextrin. Anesth Analg. 2015;120:1025–31.

    Article  CAS  PubMed  Google Scholar 

  138. Monagle J, Siu L, Worrell J, et al. A phase 1c trial comparing the efficacy and safety of a new aqueous formulation of alphaxalone with propofol/. Anesth Analg. 2015;121(4):914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavana G. Goudra.

Ethics declarations

Funding

There is no funding to declare.

Conflict of interest

B. G. Goudra and J. Brohan have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brohan, J., Goudra, B.G. The Role of GABA Receptor Agonists in Anesthesia and Sedation. CNS Drugs 31, 845–856 (2017). https://doi.org/10.1007/s40263-017-0463-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-017-0463-7

Navigation