Skip to main content
Log in

Enigma of Intramuscular Triamcinolone Acetonide (Kenalog®) Efficacy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Triamcinolone acetonide is a glucocorticosteroid used in standard clinical practice for its anti-inflammatory properties. Although it can be given via different routes of administration, the intramuscular route is unique compared with other corticosteroids—its effects remain potent over a longer period of time. We summarize the existing literature on the pharmacokinetic and pharmacodynamic mechanisms of intramuscular triamcinolone acetonide (Kenalog®). The fascinating nature of the purported efficacy of triamcinolone acetonide may be attributed to differing binding mechanisms, low solubility in blood, a low renal clearance rate, and various metabolites and other yet defined effects on skin. The enigma of the purported efficacy of triamcinolone acetonide may lie in the fact that it has a unique nature of having a long-term effect on dermatologic disease using a seemingly low dose compared with other routes of administration and other corticosteroids. Possible reasons for this may be binding differences at the intramuscular site, low solubility due to acetonide esters, a slow rate of absorption from the injected site, and a low renal clearance rate. There is still much to be learned about its mechanism of action, which may be of clinical and therapeutic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Kusama et al. [7]

Fig. 3

Modified from Kusama et al. [7]

Fig. 4

Modified from Soma et al. [6]

Fig. 5

Modified from Coll et al.[11]

Fig. 6

Modified from Matabosch et al. [13]

Fig. 7

Modified from Matabosch et al. [13]

Fig. 8

Similar content being viewed by others

References

  1. Ferguson DC, Dirikolu L, Hoenig M. Glucocorticoids, mineralocorticoids, and adrenolytic drugs. In: Riviere JE, Papich MG, Adams HR, editors. Veterinary pharmacology and therapeutics. 9th ed. Ames: Wiley-Blackwell; 2009. p. 783–4.

    Google Scholar 

  2. McLeod DT, Capewell SJ, Law J, MacLaren W, Seaton A. Intramuscular triamcinolone acetonide in chronic severe asthma. Thorax. 1985;40(11):840–5. https://doi.org/10.1136/thx.40.11.840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frisbie DD, Kawcak CE, Trotter GW, et al. Effects of triamcinolone acetonide on an in vivo equine osteochondral fragment exercise model. Equine Vet J. 1997;29:349–59.

    Article  CAS  PubMed  Google Scholar 

  4. Owen RA, Marsh JA, Hallett FR, et al. Intra-articular, corticosteroid- and exercise-induced arthropathy in a horse. J Am Vet Med Assoc. 1984;184:302–8.

    CAS  PubMed  Google Scholar 

  5. Wolverton SE, Wu JJ. Comprehensive dermatologic drug therapy. Philadelphia: Elsevier; 2021.

    Google Scholar 

  6. Soma LR, Uboh CE, You Y, Guan F, Boston RC. Pharmacokinetics of intra-articular, intravenous, and intramuscular administration of triamcinolone acetonide and its effect on endogenous plasma hydrocortisone and cortisone concentrations in horses. Am J Vet Res. 2011;72(9):1234–42. https://doi.org/10.2460/ajvr.72.9.1234.

    Article  CAS  PubMed  Google Scholar 

  7. Kusama M, Sakauchi N, Kumaoka S. Studies of plasma levels and urinary excretion after intramuscular injection of triamcinolone acetonide. Metabolism. 1971;20(6):590–6. https://doi.org/10.1016/0026-0495(71)90007-2.

    Article  CAS  PubMed  Google Scholar 

  8. Derendorf H, Möllmann H, Grüner A, Haack D, Gyselby G. Pharmacokinetics and pharmacodynamics of glucocorticoid suspensions after intra-articular administration. Clin Pharmacol Ther. 1986;39(3):313–7. https://doi.org/10.1038/clpt.1986.45.

    Article  CAS  PubMed  Google Scholar 

  9. Döppenschmitt SA, Scheidel B, Harrison F, Surmann JP. Simultaneous determination of triamcinolone acetonide and hydrocortisone in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Appl. 1996;682(1):79–88. https://doi.org/10.1016/0378-4347(96)00060-6.

    Article  PubMed  Google Scholar 

  10. Derendorf H, Hochhaus G, Rohatagi S, et al. Pharmacokinetics of triamcinolone acetonide after intravenous, oral, and inhaled administration. J Clin Pharmacol. 1995;35(3):302–5. https://doi.org/10.1002/j.1552-4604.1995.tb04064.x.

    Article  CAS  PubMed  Google Scholar 

  11. Coll S, Monfort N, Alechaga É, Matabosch X, Pérez-Mañá C, Ventura R. Additional studies on triamcinolone acetonide use and misuse in sports: elimination profile after intranasal and high-dose intramuscular administrations. Steroids. 2019;151:108464. https://doi.org/10.1016/j.steroids.2019.108464.

    Article  CAS  PubMed  Google Scholar 

  12. Lamer TJ, Dickson RR, Gazelka HM, et al. Serum triamcinolone levels following cervical interlaminar epidural injection. Pain Res Manag. 2018;2018:1–5. https://doi.org/10.1155/2018/8474127.

    Article  Google Scholar 

  13. Matabosch X, Pozo OJ, Papaseit E, et al. Detection and characterization of triamcinolone acetonide metabolites in human urine by liquid chromatography/tandem mass spectrometry after intramuscular administration. Rapid Commun Mass Spectrom. 2014;28(16):1829–39. https://doi.org/10.1002/rcm.6965.

    Article  CAS  PubMed  Google Scholar 

  14. Moore CD, Roberts JK, Orton CR, et al. Metabolic pathways of inhaled glucocorticoids by the CYP3A enzymes. Drug Metab Dispos. 2013;41(2):379–89. https://doi.org/10.1124/dmd.112.046318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Firestein GS, Paine MM, Littman BH. Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA–DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids. Arthritis Rheum. 1991;34(9):1094–105. https://doi.org/10.1002/art.1780340905.

    Article  CAS  PubMed  Google Scholar 

  16. Sun W, Ho S, Fang XR, O’Shea T, Liu H. Simultaneous determination of triamcinolone hexacetonide and triamcinolone acetonide in rabbit plasma using a highly sensitive and selective UPLC-MS/MS method. J Pharm Biomed Anal. 2018;153:267–73. https://doi.org/10.1016/j.jpba.2018.02.052.

    Article  CAS  PubMed  Google Scholar 

  17. Frey H, Norman N. Duration of action of depot-corticosteroids. II. Triamcinolone acetonide and triamcinolone diacetate. Eur J Clin Pharmacol. 1971;3(4):229–31. https://doi.org/10.1007/BF00565011.

    Article  CAS  PubMed  Google Scholar 

  18. Seo J, Lee YI, Hwang S, Zheng Z, Kim DY. Intramuscular triamcinolone acetonide: an undervalued option for refractory alopecia areata. J Dermatol. 2016;44(2):173–9. https://doi.org/10.1111/1346-8138.13533.

    Article  CAS  PubMed  Google Scholar 

  19. Wakelin S, Archer C, Maibach H (Eds.). Corticosteroids. In: Handbook of systemic drug treatment in dermatology (2nd ed.). Boca Raton: CRC Press; 2015. https://www.taylorfrancis.com/books/edit/10.1201/b18491/handbook-systemic-drug-treatment-dermatology-clivearcher-howard-maibach-sarah-wakelin.

  20. Mayer M, Kaiser N, Milholland RJ, Rosen F. The binding of dexamethasone and triamcinolone acetonide to glucocorticoid receptors in rat skeletal muscle. J Biol Chem. 1974;249(16):5236–40. https://doi.org/10.1016/s0021-9258(19)42353-3.

    Article  CAS  PubMed  Google Scholar 

  21. Smith K, Shuster S. Characterization and quantification of epidermal and dermal glucocorticoid receptors in the rat. J Investig Dermatol. 1984;82(1):44–8. https://doi.org/10.1111/1523-1747.ep12259088.

    Article  CAS  PubMed  Google Scholar 

  22. Do YS, Feldman D. Heterogeneity of glucocorticoid binders: a high affinity triamcinolone acetonide binder in bovine serum. Endocrinology. 1980;107(5):1370–5. https://doi.org/10.1210/endo-107-5-1370.

    Article  CAS  PubMed  Google Scholar 

  23. Bae YJ, Kratzsch J. Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications. Best Pract Res Clin Endocrinol Metabol. 2015;29(5):761–72. https://doi.org/10.1016/j.beem.2015.09.001.

    Article  CAS  Google Scholar 

  24. Henley D, Lightman S, Carrell R. Cortisol and CBG: getting cortisol to the right place at the right time. Pharmacol Ther. 2016;166:128–35. https://doi.org/10.1016/j.pharmthera.2016.06.020.

    Article  CAS  PubMed  Google Scholar 

  25. Samdani AJ. Dermatophyte growth and degradation of human stratum corneum in vitro (pathogenesis of dermatophytosis). J Ayub Med Coll Abbottabad. 2005;17(4):19–21.

    PubMed  Google Scholar 

  26. Hu S, Lan C-CE. Psoriasis and cardiovascular comorbidities: focusing on severe vascular events, cardiovascular risk factors and implications for treatment. Int J Mol Sci. 2017;18(10):2211. https://doi.org/10.3390/ijms18102211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Younes AK, Younes NK. Recovery of steroid induced adrenal insufficiency. Transl Pediatr. 2017;6(4):269–73. https://doi.org/10.21037/tp.2017.10.01.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wikipedia. Triamcinolone. Published July 16, 2022. https://en.wikipedia.org/wiki/triamcinolone. Accessed 21 July 2022.

  29. Wikipedia. Triamcinolone acetonide. Published July 16, 2022. https://en.wikipedia.org/wiki/triamcinolone_acetonide. Accessed 21 July 2022.

  30. Wikipedia. Triamcinolone hexacetonide. Published April 23, 2022. https://en.wikipedia.org/wiki/triamcinolone_hexacetonide. Accessed 22 July 2022.

  31. Matabosch X, Pozo OJ, Pérez-Mañá C, et al. Evaluation of the reporting level to detect triamcinolone acetonide misuse in sports. J Steroid Biochem Mol Biol. 2015;145:94–102. https://doi.org/10.1016/j.jsbmb.2014.09.018.

    Article  CAS  PubMed  Google Scholar 

  32. Knych HK, Vidal MA, Casbeer HC, McKemie DS. Pharmacokinetics of triamcinolone acetonide following intramuscular and intra-articular administration to exercised thoroughbred horses. Equine Vet J. 2013;45(6):715–20. https://doi.org/10.1111/evj.12059.

    Article  CAS  PubMed  Google Scholar 

  33. Reddy S, Ananthakrishnan S, Garg A. A prospective observational study evaluating hypothalamic–pituitary–adrenal axis alteration and efficacy of intramuscular triamcinolone acetonide for steroid-responsive dermatologic disease. J Am Acad Dermatol. 2013;69(2):226–31. https://doi.org/10.1016/j.jaad.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  34. Abraham G, Demiraj F, Ungemach FR. Comparison of the hypothalamic–pituitary–adrenal axis susceptibility upon single-dose i.m. depot versus long-acting i.v. triamcinolone acetonide therapy: a direct pharmacokinetic correlation. J Endocrinol. 2006;191(2):491–6. https://doi.org/10.1677/joe.1.06991.

    Article  CAS  PubMed  Google Scholar 

  35. Robins DN. Intramuscular triamcinolone: a safe, effective and underutilized dermatologic therapy. J Drugs Dermatol. 2009;8(6):580–5.

    PubMed  Google Scholar 

  36. French K, Pollitt CC, Pass MA. Pharmacokinetics and metabolic effects of triamcinolone acetonide and their possible relationships to glucocorticoid-induced laminitis in horses. J Vet Pharmacol Ther. 2000;23(5):287–92. https://doi.org/10.1046/j.1365-2885.2000.00288.x.

    Article  CAS  PubMed  Google Scholar 

  37. Yao Q, Guo Y, Xue J, et al. Development and validation of a LC–MS/MS method for simultaneous determination of six glucocorticoids and its application to a pharmacokinetic study in nude mice. J Pharm Biomed Anal. 2020;179:112980. https://doi.org/10.1016/j.jpba.2019.112980.

    Article  CAS  PubMed  Google Scholar 

  38. Doty AC, Weinstein DG, Hirota K, et al. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. J Control Release. 2017;256:19–25. https://doi.org/10.1016/j.jconrel.2017.03.031.

    Article  CAS  PubMed  Google Scholar 

  39. Pershing LK, et al. Skin blanching response to topical corticosteroids reflects ADD allelic haplotype associated with fast alcohol metabolizing isoforms. J Investig Dermatol. 2004;122:A46.

    Google Scholar 

  40. Pershing LK. Assessment of topical corticosteroid-induced skin blanching response using the visual McKenzie–Stoughton and colorimetric methods. Drug Inf J. 1995;29(3):923–34. https://doi.org/10.1177/009286159502900314.

    Article  Google Scholar 

  41. Raney SG, Ghosh P, Ramezanli T, Lehman PA, Franz TJ. Cutaneous pharmacokinetic approaches to compare bioavailability and/or bioequivalence for topical drug products. Dermatol Clin. 2022;40(3):319–32. https://doi.org/10.1016/j.det.2022.02.007.

    Article  CAS  PubMed  Google Scholar 

  42. Mikhail GR. Long-term intramuscular administration of triamcinolone acetonide. Arch Dermatol. 1977;113(1):111–211. https://doi.org/10.1001/archderm.113.1.111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeva Shahinfar.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflicts of interest/competing interests

Sheeva Shahinfar and Howard Maibach have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Authors’ contributions

SS: data curation, investigation, methodology, writing, reviewing and editing. HM: conceptualization, data curation, analysis, investigation, methodology, project administration, resources, supervision, reviewing and editing.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 387 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahinfar, S., Maibach, H. Enigma of Intramuscular Triamcinolone Acetonide (Kenalog®) Efficacy. Clin Pharmacokinet 62, 1189–1199 (2023). https://doi.org/10.1007/s40262-023-01297-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01297-5

Navigation