Skip to main content
Log in

Clinical Evidence on the Purported Pharmacokinetic Interactions between Corticosteroids and Mycophenolic Acid

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Corticosteroids (steroids) are commonly used concurrently with mycophenolic acid (MPA) as the first-line immunosuppression therapy for the prevention of rejection in solid organ transplantations. Steroids are also commonly administered with MPA in various autoimmune disorders such as systemic lupus erythematosus and idiopathic nephrotic syndrome. Despite various review articles having suggested the presence of pharmacokinetic interactions between MPA and steroids, definitive data have not yet been demonstrated. The aim of this Current Opinion is to critically evaluate the available clinical data and propose the optimal study design for characterising the MPA–steroid pharmacokinetic interactions. The PubMed and Embase databases were searched for relevant clinical articles in English as of September 29, 2022, where a total of 8 papers have been identified as supporting and 22 as non-supporting the purported drug interaction. To objectively evaluate the data, novel assessment criteria to effectively diagnose the interaction based on known MPA pharmacology were formulated, including the availability of independent control groups, prednisolone concentrations, MPA metabolite data, unbound MPA concentrations, and the characterisations of entero-hepatic recirculation and MPA renal clearance. Overall, the majority of the identified corticosteroid data were pertaining to prednisone or prednisolone. Our assessment indicated that no conclusive mechanistic data supporting the interaction are available in the current clinical literature, and further studies are required to quantify the effects/mechanisms of steroid-tapering or withdrawal on MPA pharmacokinetics. This current opinion provides justification for further translational investigations, as this particular drug interaction has the potential to exert significant adverse outcomes in patients prescribed MPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.

    Article  CAS  PubMed  Google Scholar 

  2. Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–15.

    Article  PubMed  Google Scholar 

  4. Kiang TK, Ensom MH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol. 2016;12(5):545–53.

    Article  CAS  PubMed  Google Scholar 

  5. Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–58.

    Article  CAS  PubMed  Google Scholar 

  6. Benjanuwattra J, Pruksakorn D, Koonrungsesomboon N. Mycophenolic acid and its pharmacokinetic drug-drug interactions in humans: review of the evidence and clinical implications. J Clin Pharmacol. 2020;60(3):295–311.

    Article  CAS  PubMed  Google Scholar 

  7. Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, et al. Personalized therapy for mycophenolate: consensus report by the international association of therapeutic drug monitoring and clinical toxicology. Ther Drug Monit. 2021;43(2):150–200.

    Article  CAS  PubMed  Google Scholar 

  8. Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol. 2021;87(4):1730–57.

    Article  CAS  PubMed  Google Scholar 

  9. Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol. 2022;17(12):1369–406.

    Article  Google Scholar 

  10. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  11. Uwai Y, Motohashi H, Tsuji Y, Ueo H, Katsura T, Inui K. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  12. El-Sheikh AA, Koenderink JB, Wouterse AC, van den Broek PH, Verweij VG, Masereeuw R, et al. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res. 2014;164(1):46–56.

    Article  CAS  PubMed  Google Scholar 

  13. Picard N, Yee SW, Woillard JB, Lebranchu Y, Le Meur Y, Giacomini KM, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87(1):100–8.

    Article  CAS  PubMed  Google Scholar 

  14. Brunet M, van Gelder T, Asberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307.

    Article  CAS  PubMed  Google Scholar 

  15. Rong Y, Colbourne P, Gourishankar S, Kiang TKL. Significant correlations between p-cresol sulfate and mycophenolic acid plasma concentrations in adult kidney transplant recipients. Clin Drug Investig. 2022;42(3):207–19.

    Article  CAS  PubMed  Google Scholar 

  16. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89.

    Article  CAS  PubMed  Google Scholar 

  17. Kiang TKL, Ensom MHH. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin Pharmacokinet. 2019;58(12):1533–52.

    Article  CAS  PubMed  Google Scholar 

  18. Hale MD, Nicholls AJ, Bullingham RE, Hene R, Hoitsma A, Squifflet JP, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64(6):672–83.

    Article  CAS  PubMed  Google Scholar 

  19. Greanya ED, Poulin E, Partovi N, Shapiro RJ, Al-Khatib M, Ensom MH. Pharmacokinetics of tacrolimus and mycophenolate mofetil in renal transplant recipients on a corticosteroid-free regimen. Am J Health Syst Pharm. 2012;69(2):134–42.

    Article  CAS  PubMed  Google Scholar 

  20. Wang P, Xie H, Zhang Q, Tian X, Feng Y, Qin Z, et al. Population pharmacokinetics of mycophenolic acid in renal transplant patients: a comparison of the early and stable posttransplant stages. Front Pharmacol. 2022;13: 859351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Hest RM, Mathot RA, Pescovitz MD, Gordon R, Mamelok RD, van Gelder T. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80.

    Article  PubMed  Google Scholar 

  22. van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nourbakhsh N, Ekberg J, Skov K, Peters CD, Ozbay A, Lindner P, et al. Effects of corticosteroid treatment on mycophenolic acid exposure in renal transplant patients-results from the SAILOR study. Front Pharmacol. 2021;12: 742444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cattaneo D, Perico N, Gaspari F, Gotti E, Remuzzi G. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62(3):1060–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kiang TK, Ensom MH. Anti-rejection drugs. In: Murphy JE, editor. Clinical pharmacokinetics (6th Edition). Bethesda: American Society of Health-System Pharmacists; 2017. p. 205–20.

    Google Scholar 

  26. Bergmann TK, Barraclough KA, Lee KJ, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin Pharmacokinet. 2012;51(11):711–41.

    Article  CAS  PubMed  Google Scholar 

  27. Steiner RW, Awdishu L. Steroids in kidney transplant patients. Semin Immunopathol. 2011;33(2):157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Lucena DD, Rangel EB. Glucocorticoids use in kidney transplant setting. Expert Opin Drug Metab Toxicol. 2018;14(10):1023–41.

    Article  PubMed  Google Scholar 

  29. Wishart GJ, Dutton GJ. Regulation of onset of development of UDP-glucuronosyltransferase activity towards o-aminophenol by glucocorticoids in late-foetal rat liver in utero. Biochem J. 1977;168(3):507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schuetz EG, Hazelton GA, Hall J, Watkins PB, Klaassen CD, Guzelian PS. Induction of digitoxigenin monodigitoxoside UDP-glucuronosyltransferase activity by glucocorticoids and other inducers of cytochrome P-450p in primary monolayer cultures of adult rat hepatocytes and in human liver. J Biol Chem. 1986;261(18):8270–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kanou M, Usui T, Ueyama H, Sato H, Ohkubo I, Mizutani T. Stimulation of transcriptional expression of human UDP-glucuronosyltransferase 1A1 by dexamethasone. Mol Biol Rep. 2004;31(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  32. Soars MG, Petullo DM, Eckstein JA, Kasper SC, Wrighton SA. An assessment of UDP-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32(1):140–8.

    Article  CAS  PubMed  Google Scholar 

  33. Djebli N, Picard N, Rerolle JP, Le Meur Y, Marquet P. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics. 2007;17(5):321–30.

    Article  CAS  PubMed  Google Scholar 

  34. Qadri I, Hu LJ, Iwahashi M, Al-Zuabi S, Quattrochi LC, Simon FR. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2). Toxicol Appl Pharmacol. 2009;234(3):281–92.

    Article  CAS  PubMed  Google Scholar 

  35. Rosales R, Romero MR, Vaquero J, Monte MJ, Requena P, Martinez-Augustin O, et al. FXR-dependent and -independent interaction of glucocorticoids with the regulatory pathways involved in the control of bile acid handling by the liver. Biochem Pharmacol. 2013;85(6):829–38.

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Liu C, You G. The activity of organic anion transporter-3: role of dexamethasone. J Pharmacol Sci. 2018;136(2):79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morassi A, Rivera-Velez SM, Slovak JE, Court MH, Villarino NF. Ex vivo binding of the immunosuppressant mycophenolic acid to dog and cat plasma proteins and the effect of co-incubated dexamethasone and prednisolone. J Vet Pharmacol Ther. 2018;41(4):513–21.

    Article  CAS  PubMed  Google Scholar 

  38. Lam S, Partovi N, Ting LS, Ensom MH. Corticosteroid interactions with cyclosporine, tacrolimus, mycophenolate, and sirolimus: fact or fiction? Ann Pharmacother. 2008;42(7):1037–47.

    Article  CAS  PubMed  Google Scholar 

  39. Le Meur Y, Buchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transpl. 2007;7(11):2496–503.

    Article  Google Scholar 

  40. van Hest RM, van Gelder T, Vulto AG, Shaw LM, Mathot RA. Pharmacokinetic modelling of the plasma protein binding of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2009;48(7):463–76.

    Article  PubMed  Google Scholar 

  41. Barraclough KA, Staatz CE, Johnson DW, Lee KJ, McWhinney BC, Ungerer JP, et al. Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transpl Int. 2012;25(11):1182–93.

    Article  CAS  PubMed  Google Scholar 

  42. Alvarez-Elias AC, Yoo EC, Todorova EK, Singh RN, Filler G. A retrospective study on mycophenolic acid drug interactions: effect of prednisone, sirolimus, and tacrolimus with MPA. Ther Drug Monit. 2017;39(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  43. Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients. Clin Pharmacokinet. 2019;58(11):1483–95.

    Article  CAS  PubMed  Google Scholar 

  44. Romano-Aguilar M, Resendiz-Galvan JE, Medellin-Garibay SE, Milan-Segovia RDC, Martinez-Martinez MU, Abud-Mendoza C, et al. Population pharmacokinetics of mycophenolic acid in Mexican patients with lupus nephritis. Lupus. 2020;29(9):1067–77.

    Article  CAS  PubMed  Google Scholar 

  45. Gregoor PJ, de Sevaux RG, Hene RJ, Hesse CJ, Hilbrands LB, Vos P, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.

    Article  CAS  PubMed  Google Scholar 

  46. Kuypers DR, Claes K, Evenepoel P, Maes B, Coosemans W, Pirenne J, et al. Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients. J Clin Pharmacol. 2003;43(8):866–80.

    Article  CAS  PubMed  Google Scholar 

  47. Le Guellec C, Bourgoin H, Buchler M, Le Meur Y, Lebranchu Y, Marquet P, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet. 2004;43(4):253–66.

    Article  PubMed  Google Scholar 

  48. Borrows R, Chusney G, James A, Stichbury J, Van Tromp J, Cairns T, et al. Determinants of mycophenolic acid levels after renal transplantation. Ther Drug Monit. 2005;27(4):442–50.

    Article  CAS  PubMed  Google Scholar 

  49. Payen S, Zhang D, Maisin A, Popon M, Bensman A, Bouissou F, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit. 2005;27(3):378–88.

    Article  CAS  PubMed  Google Scholar 

  50. Naito T, Shinno K, Maeda T, Kagawa Y, Hashimoto H, Otsuka A, et al. Effects of calcineurin inhibitors on pharmacokinetics of mycophenolic acid and its glucuronide metabolite during the maintenance period following renal transplantation. Biol Pharm Bull. 2006;29(2):275–80.

    Article  CAS  PubMed  Google Scholar 

  51. Naesens M, de Loor H, Vanrenterghem Y, Kuypers DR. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation. 2007;84(3):362–73.

    Article  CAS  PubMed  Google Scholar 

  52. Zahr N, Amoura Z, Debord J, Hulot JS, Saint-Marcoux F, Marquet P, et al. Pharmacokinetic study of mycophenolate mofetil in patients with systemic lupus erythematosus and design of Bayesian estimator using limited sampling strategies. Clin Pharmacokinet. 2008;47(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  53. Djabarouti S, Breilh D, Duffau P, Lazaro E, Greib C, Caubet O, et al. Steady-state mycophenolate mofetil pharmacokinetic parameters enable prediction of systemic lupus erythematosus clinical flares: an observational cohort study. Arthritis Res Ther. 2010;12(6):R217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao W, Elie V, Baudouin V, Bensman A, Andre JL, Brochard K, et al. Population pharmacokinetics and Bayesian estimator of mycophenolic acid in children with idiopathic nephrotic syndrome. Br J Clin Pharmacol. 2010;69(4):358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao W, Fakhoury M, Deschenes G, Roussey G, Brochard K, Niaudet P, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50(11):1280–91.

    Article  CAS  PubMed  Google Scholar 

  56. Mino Y, Naito T, Shimoyama K, Ogawa N, Kawakami J. Pharmacokinetic variability of mycophenolic acid and its glucuronide in systemic lupus erythematosus patients in remission maintenance phase. Biol Pharm Bull. 2011;34(5):755–9.

    Article  CAS  PubMed  Google Scholar 

  57. Saint-Marcoux F, Guigonis V, Decramer S, Gandia P, Ranchin B, Parant F, et al. Development of a Bayesian estimator for the therapeutic drug monitoring of mycophenolate mofetil in children with idiopathic nephrotic syndrome. Pharmacol Res. 2011;63(5):423–31.

    Article  CAS  PubMed  Google Scholar 

  58. Barau C, Furlan V, Debray D, Taburet AM, Barrail-Tran A. Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol. 2012;74(3):515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Frymoyer A, Verotta D, Jacobson P, Long-Boyle J. Population pharmacokinetics of unbound mycophenolic acid in adult allogeneic haematopoietic cell transplantation: Effect of pharmacogenetic factors. Br J Clin Pharmacol. 2013;75(2):463–75.

    Article  CAS  PubMed  Google Scholar 

  60. Han N, Yun HY, Kim IW, Oh YJ, Kim YS, Oh JM. Population pharmacogenetic pharmacokinetic modelling for flip-flop phenomenon of enteric-coated mycophenolate sodium in kidney transplant recipients. Eur J Clin Pharmacol. 2014;70(10):1211–9.

    Article  CAS  PubMed  Google Scholar 

  61. Velickovic-Radovanovic RM, Jankovic SM, Milovanovic JR, Catic-Dordevic AK, Spasic AA, Stefanovic NZ, et al. Variability of mycophenolic acid elimination in the renal transplant recipients—population pharmacokinetic approach. Ren Fail. 2015;37(4):652–8.

    Article  CAS  PubMed  Google Scholar 

  62. Yu ZC, Zhou PJ, Wang XH, Francoise B, Xu D, Zhang WX, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in Chinese adult renal transplant recipients. Acta Pharmacol Sin. 2017;38(11):1566–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okour M, Jacobson PA, Ahmed MA, Israni AK, Brundage RC. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharmacol. 2018;58(5):628–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim JH, Han N, Kim MG, Yun HY, Lee S, Bae E, et al. Increased exposure of tacrolimus by co-administered mycophenolate mofetil: population pharmacokinetic analysis in healthy volunteers. Sci Rep. 2018;8(1):1687.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Min JS, Bae SK. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modelling. Arch Pharm Res. 2017;40(12):1356–79.

    Article  CAS  PubMed  Google Scholar 

  66. van Gelder T. How cyclosporine reduces mycophenolic acid exposure by 40 % while other calcineurin inhibitors do not. Kidney Int. 2021;100(6):1185–9.

    Article  PubMed  Google Scholar 

  67. Sollinger HW. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation. 1995;60(3):225–32.

  68. The U.S. Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection of primary cadaveric kidney transplants: status of the MYC 1866 study at 1 year. Transpl Proc. 1997;29(1–2):348–9.

  69. van Gelder T, Hilbrands LB, Vanrenterghem Y, Weimar W, de Fijter JW, Squifflet JP, et al. A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999;68(2):261–6.

    Article  PubMed  Google Scholar 

  70. Pescovitz MD, Guasch A, Gaston R, Rajagopalan P, Tomlanovich S, Weinstein S, et al. Equivalent pharmacokinetics of mycophenolate mofetil in African-American and Caucasian male and female stable renal allograft recipients. Am J Transplant. 2003;3(12):1581–6.

    Article  CAS  PubMed  Google Scholar 

  71. Premaud A, Le Meur Y, Debord J, Szelag JC, Rousseau A, Hoizey G, et al. Maximum a posteriori bayesian estimation of mycophenolic acid pharmacokinetics in renal transplant recipients at different postgrafting periods. Ther Drug Monit. 2005;27(3):354–61.

    Article  CAS  PubMed  Google Scholar 

  72. Barraclough KA, Isbel NM, Franklin ME, Lee KJ, Taylor PJ, Campbell SB, et al. Evaluation of limited sampling strategies for mycophenolic acid after mycophenolate mofetil intake in adult kidney transplant recipients. Ther Drug Monit. 2010;32(6):723–33.

    Article  CAS  PubMed  Google Scholar 

  73. Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, et al. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol. 2011;71(2):207–23.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Barraclough KA, Isbel NM, McWhinney BC, Ungerer JP, Medley G, Johnson DW, et al. Evaluation of limited sampling strategies for total and free prednisolone in adult kidney transplant recipients. Eur J Clin Pharmacol. 2011;67(12):1243–52.

    Article  CAS  PubMed  Google Scholar 

  75. Jacobson P, Rogosheske J, Barker JN, Green K, Ng J, Weisdorf D, et al. Relationship of mycophenolic acid exposure to clinical outcome after hematopoietic cell transplantation. Clin Pharmacol Ther. 2005;78(5):486–500.

    Article  CAS  PubMed  Google Scholar 

  76. Jacobson P, Green K, Rogosheske J, Brunstein C, Ebeling B, DeFor T, et al. Highly variable mycophenolate mofetil bioavailability following nonmyeloablative hematopoietic cell transplantation. J Clin Pharmacol. 2007;47(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  77. Jacobson P, El-Massah SF, Rogosheske J, Kerr A, Long-Boyle J, DeFor T, et al. Comparison of two mycophenolate mofetil dosing regimens after hematopoietic cell transplantation. Bone Marrow Transpl. 2009;44(2):113–20.

    Article  CAS  Google Scholar 

  78. Ekberg J, Baid-Agrawal S, Jespersen B, Kallen R, Rafael E, Skov K, et al. A randomized controlled trial on safety of steroid avoidance in immunologically low-risk kidney transplant recipients. Kidney Int Rep. 2022;7(2):259–69.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Kiang.

Ethics declarations

Funding

None.

Conflicts of interest

Yan Rong and Tony Kiang declare that they have no conflicts of interest.

Availability of data and material

Not applicable

Code availability

Not applicable

Ethics approval/consent to participate/consent for publication

Not applicable.

Author Contributions

Manuscript conception (Tony Kiang); literature search and data extraction (Yan Rong, under guidance of Tony Kiang); data analysis (Yan Rong and Tony Kiang); first manuscript draft (Yan Rong); final manuscript draft (Yan Rong and Tony Kiang).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Kiang, T. Clinical Evidence on the Purported Pharmacokinetic Interactions between Corticosteroids and Mycophenolic Acid. Clin Pharmacokinet 62, 157–207 (2023). https://doi.org/10.1007/s40262-023-01212-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01212-y

Navigation